мдлиной, асцидии — до 1 мвысоты, кальмары и рыбы — 2—5 м). Среди Г. ж. имеются многие со специальными приспособлениями, например рыбы-удильщики с фотофорами и отростками-приманками, зубастые змеевидные Stomias boa, угреобразные с огромным ртом Р Saccopharynx и Eurypharynx, светящиеся анчоусы, бесцветный мягкотелый Paraliparis, слепой с длиннейшими лучами плавников Benthosaurus и т.д. Рыба Chiasmodon глотает жертву, в 2—3 раза превышающую длину собственного тела; креветки Acanthephyra, каракатица Heterotheutis выпускают как дымовую завесу клубы светящейся жидкости.
   
    Лит.:Зенкевич Л. А. Глубоководные впадины Тихого океана и их фауна, «Вести АН СССР» 1953 № 12; Зенкевич Л. А., Бирштейн Я. А., Беляев Г. М., Изучение фауны Курило-Камчатской впадины, «Природа», 1954, № 2; Расс Т. С., Рыбы самых больших глубин, там же, 1958, № 7; Тарасов Н. И., Море живёт, 3 изд., М., 1956; Итоги науки. Достижения океанологии, т. 1, М., 1959; Беляев Г. М., Донная фауна наибольших глубин (ультраабиссали) мирового океана, М., 1966; Bruun A. F., Animal life of the deep sea bottom, в кн.: The Galathea deep sea of the expedition, N. Y., 1956.
      Е. Ф. Гурьянова.
   Сцифомедуза Peryphilla hyacintina.
   Глубоководные животные: 1 — кальмар Thaumatolampas diadema; 2 — рыба Galathothauma axeli.
   Глубоководные животные: 1 — изопода Storthyngura benti; 2 — моллюск Neopilina ewingi; 3 — голотурия Scotoplanes murrayi.
   Глубоководные животные: 1 — морская звезда Stiracaster horridus; 2 — голотурия Ipsilothuria bitentaculata; 3 — многощетинковый червь Macellicephalus grandicirra; 4 — рак Probeebei mirabilis; 5 — погонофоры Spirobranchia beklemischevi.
   Асцидия Culeolus murrayi.
   Рыба-удильщик Melanocetus jonstoni.
   Глубоководные животные: 1 — Рыба Photostomias guerneri; 2 — Рыба Myctophum punctatum; 3 — Осьминог Vampyroteuthis infernalis.
   Глубоководные животные: 1 — морское перо Umbellula tomsoni; 2 — актиния Galatheanthemum profundale и 3 — усоногие рачки Scalpellum на ней.
   Глубоководные животные: 1 — мизида Gnathophausia gigas; 2 — рыба Careproctus amblystomopsis; 3 — морская лилия Bathycrinus pacificus; 4 — морское перо Kaphabelemnon biflorum; 5 — голотурия Psychropotes longicauda; 6 — морской ёж Echinocrepis cuneata; 7 — эхиурида Prometor grandis; 8 — губка Hyalomena.

Абиссальные отложения .

Глубиннонасосная эксплуатация ). Наиболее распространены Г. н. центробежного типа, например отечественные насосы ЦЭВ (центробежный водяной насос с электрическим приводом) с подачей от 2 до 360 м 3и напором от 25 до 675 м.
     Лит.:Хохловкин Д. М., Глубинные насосы для водопонижения и водоснабжения, 3 изд., М., 1962.

Джоуля — Томсона эффект ); расширение газа или пара с совершением внешней работы; адиабатическое размагничивание (см. Магнитное охлаждение ), последний способ используется для создания сверхнизких температур. Основное назначение Г. о. — сжижение газов и разделение газовых смесей. Важнейшее из них — разделение воздуха на составные части. Воздухоразделительные установки производят: технический кислород (О 2— 99,2, 99,5 и 99,7%), технологический кислород (O 2— 95%) и чистый азот (N 2— 99,998%). Различают 3 типа воздухоразделительных установок для получения: газообразного кислорода под атмосферным давлением, газообразного кислорода под повышенным давлением и жидкого кислорода или жидкого азота. Одновременно на установках, применяя соответствующие устройства, можно получать сырой аргон, первичный концентрат криптона, а также неоно-гелиевую смесь.
     Большое значение Г. о. имеет при извлечении гелия из природных газов, при разделении коксового газа, газов крекинга и пиролиза нефти.
     Жидкий азот широко применяется в медицине и биологии для консервации и длительного (до нескольких лет) хранения крови, костного мозга, кровеносных сосудов и мышечной ткани; используется при хранении и перевозке пищевых продуктов в автомобильных и ж.-д. холодильниках, где он заменяет ледо-соляные охладители и холодильные установки умеренного холода. В 60 — начале 70-х гг. крупнейшим потребителем сжиженных газов стала ракетная техника. Ежемесячная потребность жидкого кислорода для этих целей в США превышает 4 тыс. т. Применение жидкого водорода в качестве топлива и жидкого кислорода в качестве окислителя позволяет довести удельный импульс ракетного двигателя до 450 секвместо 280 сек. Разрабатывается возможность использования шугообразного водорода и атомарного водорода, который может храниться в твёрдом состоянии при температуре 4,2 К. Весьма перспективны для повышения удельной тяги жидкий озон и фтор. Важное значение имеет Г. о. в атомной технике, где важнейший продукт ядерной энергетики — дейтерий — получается по методу низкотемпературной дистилляции. Жидкие водород и ксенон в ядерной технике служат для заполнения пузырьковых камер . Жидкий гелий, водород и неон находят широкое применение в криогенной вакуумной технике. Для Г. о. различных сред всё большее распространение получают микрокриогенные охлаждающие устройства. С их помощью производится охлаждение до температуры 77—1,7 К, например, детекторов инфракрасного излучения, квантовых генераторов ( лазеров ), чувствительных полупроводниковых приборов, в том числе электронных вычислительных машин, сверхпроводящих устройств, антенн и др. радиоэлектронных систем космической техники и сверхдальней связи. Применяются микрокриогенные устройства дроссельного и машинного типа с компрессором и детандером. Микроохладитель такого типа, свободно помещающийся на ладони, обеспечивает холодопроизводительность в несколько вт, масса его 200—300 г. Разрабатываются микрокриогенные системы, источником охлаждения в которых служат сублимирующие отверждённые газы — метан, азот, аргон или водород.
     Перспективно применение Г. о. в энергетике. Охлаждение проводников электрических турбогенераторов, электродвигателей, трансформаторов, магнитов и накопителей энергии позволяет в несколько (5—6) раз уменьшить массу этих машин и габаритные размеры, увеличить единичную мощность, резко уменьшить электрическое сопротивление (до 800 раз). Г. о. сверхдальних электрических линий передач, например из Сибири в Европу, позволит значительно сократить массу электрических проводов, уменьшить расход энергии на омическое сопротивление и рассеяние в атмосферу, а также увеличить мощность передаваемой энергии за счёт увеличения плотности тока. Общая стоимость энергетической установки со сверхпроводниками и системой охлаждения, например крупного сверхпроводящего солениода, в 2—10 раз меньше обычной.
     Весьма перспективно использование сжиженных газов (например, водорода и кислорода) в электрохимических генераторах (топливных элементах).
     Лит.:Клод Ж., Жидкий воздух, пер. с франц., Л., 1930; Кеезом В., Гелий, пер. с англ., М., 1949; Герш С. Я., Глубокое охлаждение, 3 изд., ч. 1—2, М.—Л., 1957—60; Разделение воздуха методом глубокого охлаждения, т. 1—2, М., 1964; Техника низких температур, М. — Л., 1964; Новые направления криогенной техники, пер. с англ., М., 1966; Фастовский В. Г., Петровский Ю. В., Ровинский А. С., Криогенная техника, М., 1967; Криогенная техника за рубежом, М., 1967.
      И. П. Вишнёв.

глутатиона , фолиевой кислоты ). Природная форма представляет D (+) изомер. Г. к. — заменимая аминокислота для животных. Содержится в большом количестве в казеине, желатине, клейковине. В плазме крови вместе со своим g-моноамидом — глутамином — составляет около 1/ 3всех свободных аминокислот. Реакция:
     осуществляется ферментом глутаминсинтетазой, относящейся к группе лиаз (см. ферменты ); при этом происходит связывание избытка аммиака в тканях животных и растений. Т. о., глутамин транспортирует аммиак к месту его детоксикации (в большинстве случаев в почках и печени), он служит также резервом аминогрупп и входит в состав белков. Особенно важную роль система глутамин — Г. к. играет в обмене веществ. Г. к. участвует и в др. важных процессах обмена веществ: в переаминировании (где она наряду с аспарагиновой кислотой является одним из непременных участников); в окислительном дезаминировании с образованием a-кетоглутаровой кислоты, вовлекаемой в трикарбоновых кислот цикл ; в декарбоксилировании , приводящем к образованию важного нейротропного агента гамма-аминомасляной кислоты ; во многих синтезах, в том числе глутатиона, глюкозы , орнитина (см. Орнитиновый цикл ).
     Г. к. используется в пищевой промышленности в виде натриевой соли для улучшения вкуса и пищевой ценности продуктов. В медицине применяется в таблетках, порошках, пастах, а также в растворах (для внутривенного вливания) при лечении некоторых психических и нервных заболеваний. Назначаются также кальциевая и магниевая соли Г. к.
      А. А. Болдырев.

глутаминовой кислоты , цистеина и глицина . Особенность строения Г. — пептидная связь между цистеином и глутаминовой кислотой, в которой участвует её g-карбоксильная группа. Г. содержится во всех живых организмах и имеет важное значение для окислительно-восстановительных реакций в связи со способностью сульфгидрильной группы (SH—) цистеина вступать в обратимую реакцию:
     Г. может выступать в качестве кофермента при действии катепсинов, папаина и др. протеолитических ферментов . По-видимому, функции Г. в обмене веществ включают в себя также защиту SH-групп белков цитоплазмы от окисления.

проламинами характерно для эндосперма семян, в зародыше семени их нет. Для Г. характерно сравнительно высокое содержание глутаминовой кислоты и наличие лизина .

желтопузик .

крапиву , но лишена жгучих волосков. Цветки белые, в ложных мутовках. Растет в умеренной зоне Северного полушария. В СССР встречается почти повсеместно как сорное растение (в садах, огородах, у заборов и т.п.), реже в кустарниках и лесах. Цветки и листья содержат слизи, дубильные вещества, сапонин, аскорбиновую кислоту. Хороший медонос.
     Лит.:Атлас лекарственных растений СССР, М., 1962.
      Т. В. Егорова.
   Рис. к ст. Глухая крапива.

Согласные .

Батурина , стал резиденцией украинских гетманов, а с 1722 — резиденцией Малороссийской коллегии . С 1782 Г. уездный город.
     В 1750—80-е гг. Г. получил регулярную планировку (архитектор Ан. В. Квасов), при которой Николаевская церковь (конец 17 в., колокольня — 1871) вошла в ансамбль главной площади, дополненный Преображенской церковью (1765). При въезде в Г. — триумфальная арка (Московские ворота; 1766—69, архитектор Ан. В. Квасов). В центре Г. — Анастасьевский собор (конец 19 в.) в русско-византийском стиле. К С.-З. от Г. — укрепленный Гамалеевский монастырь (основан в 1702) с церковью Харлампия (между 1702 и 1713), 5-купольным собором (после 1713—1735), домовой церковью (начало 18 в.) с белокаменными надгробиями гетмана И. Скоропадского и его жены (18 в.).
     В Г. имеются мясокомбинат, заводы: «Электропанель», агрегатных узлов, стройматериалов, маслодельный, плодоконсервный; суконная фабрика и др. предприятия. Педагогический институт, Всесоюзный научно-исследовательский институт лубяных культур, техникум гидромелиорации, механизации и электрификации сельского хозяйства, медицинское училище.