Ещё до создания М. т. Б. владел, с одной стороны, вполне точно формулированным понятием (1-1)-соответствия, а с другой стороны, считал несомненным существование бесконечностей различных ступеней; однако он не только не сделал (1-1)-соответствие основой установления количественной равносильности множеств, но решительно возражал против этого. Больцано останавливало то, что бесконечное множество может находиться в (1-1)-соответствии со своей правильной частью. Например, если каждому натуральному числу nпоставить в соответствие натуральное число 2 n, то получим (1-1)-соответствие между множеством всех натуральных и множеством всех чётных чисел. Вместо того чтобы в применении к бесконечным множествам отказаться от аксиомы: часть меньше целого, Больцано отказался от взаимной однозначности как критерия равномощности и, т. о., остался вне основной линии развития М. т. В каждом бесконечном множестве Мимеется (как легко доказывается) правильная часть, равномощная всему М, тогда как ни в одном конечном множестве такой правильной части найти нельзя. Поэтому наличие правильной части, равномощной целому, можно принять за определение бесконечного множества ( Р. ) .
Для двух бесконечных множеств Аи Ввозможны лишь следующие три случая: либо Аесть правильная часть, равномощная В, но в Внет правильной части, равномощной А; либо, наоборот, в Весть правильная часть, равномощная А, а в Анет правильной части, равномощной В; либо, наконец, в Аесть правильная часть, равномощная В, и в Весть правильная часть, равномощная А. Доказывается, что в третьем случае множества Аи Bравномощны (теорема Кантора - Бернштейна). В первом случае говорят, что мощность множества Абольше мощности множества В, во втором - что мощность множества Вбольше мощности множества А. A priori возможный четвёртый случай - в Анет правильной части, равномощной В, а в Внет правильной части, равномощной А, - в действительности не может осуществиться (для бесконечных множеств).
Ценность понятия мощности множества определяется существованием неравномощных бесконечных множеств. Например, множество всех подмножеств данного множества Мимеет мощность большую, чем множество М. Множество, равномощное множеству всех натуральных чисел, называется счётным множеством. Мощность счётных множеств есть наименьшая мощность, которую может иметь бесконечное множество; всякое бесконечное множество содержит счётную правильную часть. Кантор доказал, что множество всех рациональных и даже всех алгебраических чисел счётно, тогда как множество всех действительных чисел несчётно. Тем самым было дано новое доказательство существования т. н. трансцендентных чисел, т. е. действительных чисел, не являющихся корнями никакого алгебраического уравнения с целыми коэффициентами (и даже несчётность множества таких чисел). Мощность множества всех действительных чисел называется мощностью континуума. Множеству всех действительных чисел равномощны: множество всех подмножеств счётного множества, множество всех комплексных чисел и, следовательно, множество всех точек плоскости, а также множество всех точек трёх- и вообще n-мерного пространства при любом n. Кантор высказал гипотезу (т. н. континуум-гипотезу): всякое множество, состоящее из действительных чисел, либо конечно, либо счётно, либо равномощно множеству всех действительных чисел; по поводу этой гипотезы и существенных связанных с нею результатов см. .
Отображения множеств.В М. т. аналитическое понятие функции, геометрическое понятие отображения или преобразования фигуры и т. п. объединяются в общее понятие отображения одного множества в другое. Пусть даны два множества Хи Y, пусть каждому элементу хО Хпоставлен в соответствие некоторый определённый элемент у= f( x) множества Y; тогда говорят, что имеется отображение множества Хв множество Y, или что имеется функция, аргумент хкоторой пробегает множество X, а значения упринадлежат множеству Y; при этом для каждого данного хО Хэлемент у= f( x) множества Yназывается образом элемента хО Хпри данном отображении или значением данной функции для данного значения её аргумента х.
Примеры. 1) Пусть задан в плоскости с данной на ней прямоугольной системой координат квадрат с вершинами (0; 0), (0; 1), (1; 0), (1; 1) и осуществлена проекция этого квадрата, например на ось абсцисс; эта проекция есть отображение множества Хвсех точек квадрата на множество Yвсех точек его основания; точке с координатами ( х; у) соответствует точка ( х; 0).
2) Пусть Х- множество всех действительных чисел; если для каждого действительного числа xО Xположить у= f( x) = x 3, то тем самым будет установлено отображение множества Хв себя.
3) Пусть Х- множество всех действительных чисел; если для каждого хО Хположить у= f( x) = arctg х, то этим будет установлено отображение множества Хна интервал ( - p/2, p/2).
(1-1)-соответствие между двумя множествами Хи Yесть такое отображение множества Хв множество Y, при котором каждый элемент множества Yявляется образом одного и только одного элемента множества X. Отображения примеров 2) и 3) взаимно однозначны, примера 1) - нет.
Операции над множествами.Суммой, или объединением, двух, трёх, вообще произвольного конечного или бесконечного множества множеств называется множество всех тех предметов, каждый из которых есть элемент хотя бы одного из данных множеств-слагаемых. Пересечением двух, трёх, вообще любого конечного или бесконечного множества множеств называется множество всех элементов, общих всем данным множествам. Пересечение даже двух непустых множеств может быть пустым. Разностью между множеством Ви множеством Аназывается множество всех элементов из В, не являющихся элементами из А: разность между множеством Ви его частью Аназывается дополнением множества Ав множестве В.
Операции сложения и пересечения множеств удовлетворяют условиям сочетательности и переместительности (см. , ). Операция пересечения, кроме того, распределительна по отношению к сложению и вычитанию. Эти действия обладают тем общим свойством, что если их производить над множествами, являющимися подмножествами одного и того же множества М, то и результат будет подмножеством множества М. Указанным свойством не обладает т. н. внешнее умножение множеств: внешним произведением множеств Хи Yназывается множество Хґ Увсевозможных пар ( х, у), где хО Х, yО Y. Другим в этом смысле «внешним» действием является «возведение в степень»: степенью Y Xназывается множество всех отображений множества Хв множество Y. Можно определить внешнее умножение любого множества множеств так, что в случае совпадения множителей оно перейдёт в возведение в степень. Если x и h мощности множеств Хи Y, то xh и h xопределяются соответственно как мощности множеств Хґ Yи Y Х, что в случае конечных множеств согласуется с умножением и возведением в степень натуральных чисел. Аналогично определяется сумма мощностей как мощность суммы попарно непересекающихся множеств с заданными мощностями.
Упорядоченные множества.Установить в данном множестве Хпорядок - значит установить для некоторых пар x', х"элементов этого множества какое-то правило предшествования (следования), выражаемое словами «элемент x'предшествует элементу х", x'< х"», или, что то же, «элемент x'следует за элементом х", x'< х"», причём предполагается выполненным условие транзитивности: если х< x'и x'< х",то х< х".Множество, рассматриваемое вместе с каким-нибудь установленным в нём порядком, называется «частично упорядоченным множеством»; иногда вместо «частично упорядоченное множество» говорят «упорядоченное множество» (Н. ). Однако чаще упорядоченным множеством называется такое частично упорядоченное множество, в котором порядок удовлетворяет следующим дополнительным требованиям («линейного порядка»): 1) никакой элемент не предшествует самому себе; 2) из всяких двух различных элементов х, x'один предшествует другому, т. е. или х< x', или x’< х.
Примеры. 1) Всякое множество , элементами которого являются некоторые множества х, является «частично упорядоченным ''по включению''»: х< x', если хМ x'.
2) Любое множество функций f, определённых на числовой прямой, частично упорядочено, если положить f 1< f 2, тогда и только тогда, когда для каждого действительного числа х имеем f 1( x) Ј f 2( x).
3) Всякое множество действительных чисел линейно упорядочено: меньшее из двух чисел считается предшествующим большему.
Два упорядоченных множества называются подобными между собой, или имеющими один и тот же порядковый тип, если между ними можно установить (1-1)-соответствие, сохраняющее порядок. Элемент упорядоченного множества называется первым, если он предшествует в этом упорядоченном множестве всем остальным элементам; аналогично определяется и последний элемент. Примеры: в упорядоченном множестве всех действительных чисел нет ни первого, ни последнего элемента; в упорядоченном множестве всех неотрицательных чисел нуль есть первый элемент, а последнего элемента нет; в упорядоченном множестве всех действительных чисел x, удовлетворяющих неравенствам аЈ хЈ b, число аесть первый элемент, b- последний.
Упорядоченное множество называется вполне упорядоченным, если оно само и всякое его правильное подмножество имеют первый элемент. Порядковые типы вполне упорядоченных множеств называются порядковыми, или ординальными, числами. Если вполне упорядоченное множество конечно, то его порядковое число есть обычное порядковое число элементарной арифметики. Порядковые типы бесконечных вполне упорядоченных множеств называются .
Точечные множества.Теория точечных множеств, т. е. в первоначальном понимании слова - теория множеств, элементами которых являются действительные числа (точки числовой прямой), а также точки двух-, трёх- и вообще n-мерного пространства, основана Г. Кантором, установившим понятие множества и примыкающие к нему понятия и др. Дальнейшее развитие теории точечных множеств привело к понятиям и , изучением которых занимается общая . Наиболее самостоятельное существование ведёт дескриптивная теория множеств. Основанная французскими математиками Р. Бэром и А. в связи с классификацией разрывных функций (1905), дескриптивная М. т. началась с изучения и классификации т. н. борелевских множеств ( B-множеств). Борелевские множества определяются как множества, могущие быть построенными, отправляясь от замкнутых множеств, применением операций сложения и пересечения в любых комбинациях, но каждый раз к конечному или к счётному множеству множеств. А. Лебег показал, что те же множества - и только они - могут быть получены как множества точек, в которых входящая в действительная функция f( x) обращается в нуль или, более общо, удовлетворяет условию вида а< f( x) Ј b. Дальнейшее развитие дескриптивной М. т. было осуществлено преимущественно русскими и польскими математиками, особенно московской школой, созданной Н. Н. (П. С. Александров, М. Я. Суслин, М. А. Лаврентьев, А. Н. Колмогоров, П. С. Новиков). Александров доказал теорему (1916) о том, что всякое несчётное борелевское множество имеет мощность континуума. Аппарат этого доказательства был применен Суслиным для построения теории А-множеств, охватывающих как частный случай борелевские (или В-) множества (считавшиеся до того единственными множествами, принципиально могущими встретиться в анализе). Суслин показал, что множество, дополнительное к А-множеству М, является само А-множеством только в том случае, когда множество М- борелевское (дополнение к борелевскому множеству есть всегда борелевское множество). При этом А-множества оказались совпадающими с непрерывными образами множества всех иррациональных чисел. Теория А-множеств в течение нескольких лет оставалась в центре дескриптивной М. т. до того, как Лузин пришёл к общему определению проективных множеств, которые могут быть получены, отправляясь от множества всех иррациональных чисел при помощи повторного применения операции вычитания и непрерывного отображения. К теории А-множеств и проективных множеств относятся также работы Новикова и др. Дескриптивная М. т. тесно связана с исследованиями по основаниям математики (с вопросами эффективной определимости математических объектов и разрешимости математических проблем).
Значение М. т.Влияние М. т. на развитие современной математики очень велико. Прежде всего, М. т. явилась фундаментом ряда новых математических дисциплин (теории функций действительного переменного, общей топологии, общей алгебры, функционального анализа и др.).
Постепенно теоретико-множественные методы находят всё большее применение и в классических частях математики. Например, в области математического анализа они широко применяются в качественной теории дифференциальных уравнений, вариационном исчислении, теории вероятностей и др.
Наконец, М. т. оказала глубокое влияние на понимание самого предмета или таких её больших отделов, как . Только М. т. позволила отчётливо сформулировать понятие систем объектов, заданных вместе со связывающими их отношениями, и привела к пониманию того обстоятельства, что каждая математическая теория в её чистой абстрактной форме изучает ту или иную систему объектов лишь «с точностью до изоморфизма», т. е. может быть без всяких изменений перенесена на любую систему объектов, изоморфную той, для изучения которой теория была первоначально создана.
Что касается М. т. в вопросах обоснования математики, т. е. создания строгого, логически безупречного построения математических теорий, то следует иметь в виду, что сама М. т. нуждается в обосновании применяемых в ней методов рассуждения. Более того, все логические трудности, связанные с обоснованием математического учения о бесконечности (см. в математике), при переходе на точку зрения общей М. т. приобретают лишь большую остроту (см. , , , ).
Лит.:Лузин Н. Н., Теория функций действительного переменного, 2 изд., М., 1948; Александров П. С., Введение в общую теорию множеств и функций, М. - Л., 1948; Хаусдорф Ф., Теория множеств, пер. с нем., М. - Л., 1937.
П. С. Александров.
Множественные процессы
Мно'жественные проце'ссы,рождение большого числа вторичных сильно взаимодействующих частиц ( ) в одном акте столкновения частиц при высокой энергии. М. п. характерны для столкновения адронов, однако в редких случаях они наблюдаются и при столкновениях других частиц, если их энергия достаточна для рождения нескольких адронов (например, при электронных столкновениях на ускорителях со встречными пучками). При столкновениях адронов с энергией выше нескольких ГэвМ. п. доминируют над процессами одиночного рождения мезонов и упругого рассеяния частиц. Впервые М. п. наблюдались в , однако тщательное их изучение стало возможным после создания ускорителей заряженных частиц высоких энергий. В результате исследований взаимодействия частиц космических лучей с энергией до 10 6-10 7 Гэвв лабораторной системе координат, а также частиц от ускорителей с энергией до ~ 10 3 Гэв(встречные пучки) выявлены некоторые эмпирические закономерности М. п.
С наибольшей вероятностью в М. п. рождаются самые лёгкие адроны - , составляющие 70-80 % вторичных частиц. Значительную долю составляют также и (~ 10-20 %) и нуклон-антинуклонные пары (порядка нескольких процентов). Многие из этих частиц возникают от распада рождающихся .
Вероятность столкновения, сопровождаемого М. п. (эффективное сечение М. п.), при высоких энергиях почти не зависит от энергии сталкивающихся частиц (меняется не более чем на несколько десятков процентов при изменении энергии столкновения в 10 4раз). Приблизительное постоянство сечения М. п. привело к модели «чёрных шариков» для описания процессов столкновения адронов. Согласно этой модели, при каждом сближении адронов высокой энергии на расстояния, меньшие радиуса действия ядерных сил, происходит неупругий процесс множественного рождения частиц; упругое рассеяние при этом носит в основном дифракционный характер (дифракция частиц на «чёрном шарике»). Эта модель сыграла важную роль в развитии теории сильных взаимодействий (в частности, в установлении теоремы Померанчука о равенстве эффективных сечений взаимодействия частиц и античастиц при предельно высоких энергиях). С другой стороны, согласно квантовой теории поля, возможен медленный рост сечения М. п. с увеличением энергии Е, не быстрее, чем ln 2 Е(теорема Фруассара).
Число частиц, рождающихся в различных актах столкновения адронов определённой энергии, сильно варьирует и в отдельных случаях оказывается очень большим (
рис. 1
). Среднее число вторичных частиц
Изучение М. п. очень существенно для выяснения структуры адронов и построения теории сильных взаимодействий. В этом отношении особое значение имеют закономерности, установленные при изучении специального класса М. п. - т. н. инклюзивных процессов, когда из большого числа М. п., происходящих при столкновениях адронов «а» и «b», отбираются события с рождением определённой частицы «с» независимо от того, какие др. частицы (X) и в каком количестве сопровождают рождение частицы «с». На важность изучения инклюзивных процессов указал в 1967 А. А. , установивший на основе квантовой теории поля предельные законы возрастания их сечения с ростом энергии (аналогичные теореме Фруассара). При экспериментальном исследовании инклюзивных процессов на Серпуховском ускорителе (1968) и сравнении полученных данных с результатами опытов при более низких энергиях был обнаружен своеобразный закон подобия в микромире - т. н. масштабная инвариантность, или скейлинг (scaling). Масштабная инвариантность состоит в том, что вероятность рождения «инклюзивной» частицы «с» с определённым значением продольного импульса p L, (проекции импульса на направление движения сталкивающихся частиц) является при разных энергиях столкновения универсальной функцией от переменной Х= p L /p макс, где р макс- максимально возможное (при данной энергии) значение продольного импульса частицы «с» ( рис. 3 ). Т. о., продольные импульсы вторичных частиц растут пропорционально энергии столкновения. Указания на существование такого рода зависимости получались ранее при изучении космических лучей. Она вытекала из того факта, что энергетический спектр вторичной компоненты космических лучей почти точно повторяет форму энергетического спектра первичной компоненты (Г. Т. и др.). Масштабная инвариантность имеет глубокий физический смысл. Объяснение её на основе модельных представлений о составном строении адронов было предложено в 1969 Р. . (В 1963 на возможность такой закономерности указывал американский физик К. Уилсон.)
Экспериментальные данные показывают, что масштабная инвариантность наблюдается при столкновениях не только элементарных частиц, но и атомных ядер при релятивистских энергиях.
Из-за отсутствия полной и последовательной теории сильных взаимодействий для объяснения эмпирических закономерностей, обнаруженных в М. п., используются различные теоретические модели. В статистико-гидродинамических моделях [развитых в работах В. , Э. , Л. Д. (1949-53) и др.] предполагается, что для сильно взаимодействующих частиц в течение короткого времени столкновения успевает установиться статистическое равновесие между образовавшимися в результате соударения частицами. Это позволяет рассчитать многие характеристики М. п., в частности среднюю множественность, которая должна расти с энергией по степенному закону Е nс показателем степени n < 1 (в теории Ферми - Ландау n = 1/ 4). В другом классе моделей (итальянские физики Д. Амати, С. Фубини, А. Стангеллини и др., советские физики Е. Л. , Д. С. Чернавский и др.) считается, что рождение вторичных частиц происходит в «периферических» или «мультипериферических» взаимодействиях адронов, возникающих в результате обмена между ними виртуальным p-мезоном или другой частицей. С конца 60-х гг. для теоретического анализа М. п. широко используется представление о том, что сильное взаимодействие при высоких энергиях осуществляется путём обмена особым состоянием - «реджеоном», являющимся как бы струей частиц с монотонно меняющимся от частицы к частице импульсом (см. ). Эти представления (развитые, в частности, советскими физиками В. Н. Грибовым, К. А. Тер-Мартиросяном и др.) позволяют количественно объяснить многие закономерности М. п. Согласно «мультипериферическим» моделям и модели «реджеонов», средняя множественность должна расти пропорционально логарифму энергии столкновения.
Лит.:Мурзин В. С., Capычева Л. И., Множественные процессы при больших энергиях, М., 1974 (в печати); Беленький С. З., Ландау Л. Д., Гидродинамическая теория множественного образования частиц, «Успехи физических наук», 1955, т. 56, в. 3, с. 309; Фейнберг Е. Л., Множественная генерация адронов и статистическая теория, там же, 1971, т. 104, в. 4, с. 539; Feynman R., Very high-energy collisions of hadrons, «Physical Review Letters», 1969, v. 23, p. 1415; Ежела В. В. [и др.]. Инклюзивные процессы при высоких энергиях, «Теоретическая и математическая физика», 1973, т. 15, № 2; Тер-Мартиросян К. А., Процессы образования частиц при высокой энергии, в кн.: Материалы 6-й зимней школы по теории ядра и физике высоких энергий, ч. 2, Л., 1971, с. 334; Розенталь И. Л., Множественные процессы при больших энергиях, «Природа», 1973, № 12.
С. С. Герштейн.
Рис. 3. График, иллюстрирующий масштабную инвариантность в инклюзивном процессе р+р®p -+Х (р - протон, p -- отрицательный p-мезон, Х - совокупность остальных адронов, родившихся в реакции). Зависимость величины (2/p)xds/dx, пропорциональной дифференциальному сечению рождения p --мезона ds/dx, от х= р L/ p мaкс; экспериментальные данные при различных энергиях столкновения с точностью до ошибок измерения укладываются в универсальную зависимость от х. Разными значками помечены данные, относящиеся к различным энергиям (импульсам) столкновения в лабораторной системе; точки при 1500, 1100, 500, 270 Гэв/ сполучены в опытах на ускорителе со встречными пучками в ЦЕРНе, при 70 Гэв/ с- в советско-французском эксперименте в Серпухове.
Рис. 1. Фотография множественного рождения заряженных частиц, полученная в жидководородной пузырьковой камере «Мирабель», помещенной в пучок p-мезонов с энергией 50 Гэвна Серпуховском ускорителе.
Рис. 2. Среднее число вторичных заряженных частиц n скак функция кинетической энергии Qсталкивающихся частиц в системе их центра инерции. Разными значками обозначены результаты, относящиеся к рассеянию p ±-, К ±-мезонов и протонов на нуклонах.
Множество
Мно'жество(математическое), см. .
МНР
МНР,сокращённое название .