Типы мышц. Морфологи различают 2 основных типа М.: поперечнополосатые мышцы и гладкие мышцы . К первым относится вся скелетная мускулатура позвоночных животных и человека, обеспечивающая возможность выполнения произвольных движений, М. языка, верхней трети пищевода и некоторые др., М. сердца (миокард), имеющая свои особенности (состав белков, характер сокращения и др.), а также М. членистоногих и некоторых др. беспозвоночных. К гладким М. принадлежит бо'льшая часть мускулатуры беспозвоночных животных и мышечные слои внутренних органов и стенок кровеносных сосудов позвоночных животных и человека, обеспечивающие возможность выполнения ряда важнейших физиологических функций. Некоторые гистологи, изучающие М. беспозвоночных, выделяют и 3-й тип М. - с двойной косой исчерченностью (см. Мышечная ткань ).
Структурными элементами всех типов М. являются мышечные волокна ( рис. 1 ). Поперечнополосатые мышечные волокна в скелетных М. образуют пучки, соединённые друг с другом прослойками соединительной ткани. Своими концами мышечные волокна сплетаются с сухожильными волокнами, через посредство которых мышечная тяга передаётся на кости скелета. Волокна поперечнополосатых М. представляют собой гигантские многоядерные клетки, диаметр которых варьирует от 10 до 100 мкм, а длина часто соответствует длине М., достигая, например, в некоторых М. человека 12 см. Волокно покрыто эластичной оболочкой - сарколеммой и состоит из саркоплазмы, структурными элементами которой являются такие органоиды, как митохондрии, рибосомы, трубочки и пузырьки саркоплазматической сети и так называемые Т-системы ( рис. 2 ), различные включения и т. д. В саркоплазме обычно в форме пучков расположено множество нитевидных образований толщиной от 0,5 до нескольких мкм- миофибрилл, обладающих, как и всё волокно в целом, поперечной исчерченностью. Каждая миофибрилла разделена на несколько сот участков длиной 2,5-3 мкм, называемых саркомерами. Каждый саркомер, в свою очередь, состоит из чередующихся участков - дисков, обладающих неодинаковой оптической плотностью и придающих миофибриллам и мышечному волокну в целом характерную поперечную исчерченность, чётко обнаруживаемую при наблюдении в фазовоконтрастном микроскопе. Более тёмные диски обладают способностью к двойному лучепреломлению и называются анизотропными, или дисками А. Более светлые диски не обладают этой способностью и называются изотропными, или дисками I. Среднюю часть диска Азанимает зона более слабого двойного лучепреломления - зона Н. Диск Iделится на 2 равные части тёмной Z-пластинкой, отграничивающей один саркомер от другого. В каждом саркомере имеется два типа нитей (филаментов), состоящих из мышечных белков: толстые миозиновые и тонкие - актиновые ( рис. 3 ). Несколько иную структуру имеют гладкие мышечные волокна. Они представляют собой веретенообразные одноядерные клетки, лишённые поперечной исчерченности. Длина их обычно достигает 50-250 мкм(в матке - до 500 мкм), ширина - 4-8 мкм; миофиламенты в них обычно не объединены в обособленные миофибриллы, а расположены по длине волокна в виде множества одиночных актиновых нитей ( рис. 4 ). Упорядоченная система миозиновых нитей в гладкомышечных клетках отсутствует. В гладкой мускулатуре моллюсков наиболее важную роль в осуществлении запирательной функции играют, по-видимому, парамиозиновые волокна (тропомиозин А).
Химический состав мышц колеблется в зависимости от вида и возраста животного, типа и функционального состояния М. и ряда др. факторов. Основные вещества, входящие в состав поперечнополосатых М. человека и животных, и их содержание (в % к сырой массе) представлены ниже:
Вода..............................................72-80
Плотные вещества.....................20-28
В том числе:
Белки...........................................16,5-20,9
Гликоген......................................0,3-3,0
Фосфатиды.................................0,4-1,0
Холестерин.................................0,06-0,2
Креатин + креатинфосфат.......0,2-0,55
Креатинин....................................0,003-0,005
АТФ...............................................0,25-0,4
Карнозин......................................0,2-0,3
Карнитин......................................0,02-0,05
Анзерин........................................0,09-0,15
Свободные аминокислоты........0,1-0,7
Молочная кислота......................0,01-0,02
Зола...............................................1,0-1,5
В среднем около 75% сырой массы М. составляет вода. Основное количество плотных веществ приходится на долю белков. Различают белки миофибриллярные (сократительные) - миозин , актин и их комплекс - актомиозин , тропомиозин и ряд так называемых минорных белков (a и b-актинины, тропонин и др.), и саркоплазматические - глобулины X, миогены, дыхательные пигменты, в частности миоглобин, нуклеопротеиды и ферменты, участвующие в процессах обмена веществ в М. Из др. соединений важнейшими являются экстрактивные, принимающие участие в обмене веществ и осуществлении сократительной функции М.: АТФ, фосфокреатин, карнозин, анзерин и др.; фосфолипиды, играющие важную роль в образовании клеточных микроструктур и в обменных процессах; безазотистые вещества: гликоген и продукты его распада (глюкоза, молочная кислота и др.), нейтральные жиры, холестерин и др.; минеральные вещества - соли К, Na, Ca, Mg. Гладкие мышцы существенно отличаются по химическому составу от поперечнополосатых (более низкое содержание контрактальных белков - актомиозина, макроэргических соединений, дипептидов и др.).
Функциональные особенности поперечнополосатых мышц. Поперечнополосатые М. богато снабжены различными нервами, с помощью которых осуществляется регуляция мышечной деятельности со стороны нервных центров. Важнейшие из них: двигательные нервы, проводящие к М. импульсы, вызывающие её возбуждение и сокращение; чувствительные нервы, по которым от М. к нервным центрам поступает информация о её состоянии, и, наконец, адаптационно-трофические волокна симпатической нервной системы, воздействующие на обмен веществ и замедляющие развитие утомления М. (см. Адаптационно-трофическая функция ).
Каждая веточка двигательного нерва, иннервирующего целую группу мышечных волокон, образующих так называемую моторную единицу, доходит до отдельного мышечного волокна. Все мышечные волокна, входящие в состав такой единицы, сокращаются при возбуждении практически одновременно. Под влиянием нервного импульса в окончаниях двигательного нерва высвобождается медиатор- ацетилхолин , взаимодействующий с холинорецептором постсинаптической мембраны (см. Синапсы ). В результате этого происходит повышение проницаемости мембраны для ионов Na и К, что, в свою очередь, обусловливает её деполяризацию (появление постсинаптического потенциала). После этого на соседних участках мембраны мышечного волокна возникает волна возбуждения (волна электроотрицательности), которая распространяется по скелетному мышечному волокну обычно со скоростью несколько мв 1 сек. В результате возбуждения М. изменяет свои эластические свойства. Если точки прикрепления М. не фиксированы неподвижно, происходит её укорочение (сокращение). При этом М. производит определённую механическую работу. Если точки прикрепления М. неподвижны, в ней развивается напряжение. Между возникновением возбуждения и появлением волны сокращения или волны напряжения протекает некоторое время, называемое латентным периодом. Сокращение М. сопровождается выделением тепла, которое продолжается в течение определённого времени и после их расслабления.
В М. млекопитающих и человека установлено существование «медленных» мышечных волокон (к ним принадлежат «красные», содержащие дыхательный пигмент миоглобин) и «быстрых» («белых», не имеющих миоглобина), различающихся скоростью проведения волны сокращения и её продолжительностью. В «медленных» волокнах млекопитающих длительность волны сокращения примерно в 5 раз больше, а скорость проведения в 2 раза меньше, чем в «быстрых» волокнах. Почти все скелетные М. относятся к смешанному типу, т. е. содержат как «быстрые», так и «медленные» волокна. В зависимости от характера раздражения возникает либо одиночное - фазное - сокращение мышечных волокон, либо длительное - тетаническое. Тетанус возникает в случае поступления в М. серии раздражений с такой частотой, при которой каждое последующее раздражение ещё застаёт М. в состоянии сокращения, вследствие чего происходит суммирование сократительных волн. Н. Е. Введенский установил, что увеличение частоты раздражений вызывает возрастание тетануса, но лишь до известного предела, называемого им «оптимумом». Дальнейшее учащение раздражений уменьшает тетаническое сокращение ( пессимум ). Развитие тетануса имеет большое значение при сокращении «медленных» мышечных волокон. В М. с преобладанием «быстрых» волокон максимальное сокращение - обычно результат суммации сокращений всех моторных единиц, в которые нервные импульсы поступают, как правило, неодновременно, асинхронно.
В поперечнополосатых М. установлено также существование так называемых чисто тонических волокон, которые особенно широко представлены в М. земноводных и пресмыкающихся. Тонические волокна участвуют в поддержании «неутомляемого» мышечного тонуса . Тоническим сокращением называется медленно развивающееся слитное сокращение, способное длительно поддерживаться без значительных энергетических затрат и выражающееся в «неутомляемом» противодействии внешним силам, стремящимся растянуть мышечный орган. Тонические волокна реагируют на нервный импульс волной сокращения лишь локально (в месте раздражения). Тем не менее, благодаря большому числу концевых двигательных бляшек тоническое волокно может возбуждаться и сокращаться всё целиком. Сокращение таких волокон развивается настолько медленно, что уже при весьма малых частотах раздражения отдельные волны сокращения накладываются друг на друга и сливаются в длительно поддерживающееся укорочение. Длительное противодействие тонических волокон, а также медленных фазных волокон растягивающим усилиям обеспечивается не только упругим напряжением, но и возрастанием вязкости мышечных белков.
Для характеристики сократительной функции М. пользуются понятием «абсолютной силы», которая является величиной, пропорциональной сечению М., направленной перпендикулярно её волокнам, и выражается в кг/см 2. Так, например, абсолютная сила двуглавой М. человека равна 11,4, икроножной - 5,9 кг/см 2.
Систематическая усиленная работа М. (тренировка) увеличивает их массу, силу и работоспособность. Однако чрезмерная работа приводит к развитию утомления, т. е. к падению работоспособности М. Бездеятельность М. ведёт к их атрофии.
Функциональные особенности гладких мышц. Гладкие М. внутренних органов по характеру иннервации, возбуждения и сокращения существенно отличаются от скелетных М. Волны возбуждения и сокращения протекают в гладких М. в очень замедленном темпе. Развитие состояния «неутомляемого» тонуса гладких М. связано, как и в тонических скелетных волокнах, с замедленностью сократительных волн, сливающихся друг с другом даже при редких ритмических раздражениях. Для гладких М. характерна также способность к автоматизму , т. е. к деятельности, не связанной с поступлением в М. нервных импульсов из центральной нервной системы. Установлено, что способностью к ритмическому самопроизвольному возбуждению и сокращению обладают не только нервные клетки, имеющиеся в гладких М., но и сами гладкомышечные клетки.
Своеобразие сократительной функции гладких М. позвоночных животных определяется не только особенностями их иннервации и гистологического строения, но и спецификой их химического состава: более низким содержанием контрактильных белков (актомиозина), макроэргических соединений, в частности АТФ, низкой АТФ-азной активностью миозина, наличием в них водорастворимой модификации актомиозина - тоноактомиозина и т. д.
Существенное значение для организма имеет способность гладких мышц изменять длину без повышения напряжения (наполнение полых органов, например мочевого пузыря, желудка и др.).
И. И. Иванов.
Скелетные мышцы человека,различные по форме, величине, положению, составляют свыше 40% массы его тела. При сокращении происходит укорочение М., которое может достигать 60% их длины; чем длиннее М. (самая длинная М. тела портняжная достигает 50 см), тем больше размах движении. Сокращение куполообразной М. (например, диафрагмы) обусловливает ее уплощение, сокращение кольцеобразных М. (сфинктеров) сопровождается сужением или закрытием отверстия. М. радиального направления, наоборот, вызывают при сокращении расширение отверстий. Если М. расположены между костными выступами и кожей, их сокращение обусловливает изменение кожного рельефа.
Все скелетные, или соматические (от греч. so'ma - тело), М. по топографо-анатомическому принципу могут быть разделены на М. головы, среди которых различают мимические и жевательные М., воздействующие на нижнюю челюсть, М. шеи, туловища и конечностей. М. туловища покрывают грудную клетку, составляют стенки брюшной полости, вследствие чего их делят на М. груди, живота и спины. Расчленённость скелета конечностей служит основанием для выделения соответствующих групп М.: для верхней конечности - это М. плечевого пояса, плеча, предплечья и кисти; для нижней конечности - М. тазового пояса, бедра, голени, стопы.
У человека около 500 М., связанных со скелетом. Среди них одни крупные (например, четырёхглавая М. бедра), другие - мелкие (например, короткие мышцы спины). Совместная работа М. выполняется по принципу синергизма, хотя отдельные функциональные группы М. при выполнении определенных движений работают как антагонисты. Так, спереди на плече находятся двуглавая и плечевая М., выполняющие сгибание предплечья в локтевом суставе, а сзади располагается трёхглавая М. плеча, сокращение которой вызывает противоположное движение - разгибание предплечья.
В суставах шаровидной формы происходят простые и сложные движения. Например, в тазобедренном суставе сгибание бедра вызывает пояснично-подвздошная М., разгибание - большая ягодичная. Бедро отводится при сокращении средней и малой ягодичных М., а приводится с помощью пяти М. медиальной группы бедра. По окружности тазобедренного сустава локализуются также М., которые обусловливают вращение бедра внутрь и кнаружи.
Наиболее мощные М. размещаются на туловище. Это М. спины - выпрямитель туловища, М. живота, составляющие у человека особую формацию - брюшной пресс . В связи с вертикальным положением тела М. нижней конечности человека стали более сильными, поскольку, кроме участия в локомоции, они обеспечивают опору тела. М. верхней конечности в процессе эволюции, напротив, сделались более ловкими, гарантирующими выполнение быстрых и точных движений.
На основе анализа пространственного положения и функциональной деятельности М. современная наука пользуется также следующим их объединением: группа М., осуществляющая движения туловища, головы и шеи; группа М., осуществляющая движения плечевого пояса и свободной верхней конечности; М. нижней конечности. В пределах этих групп выделяются более мелкие ансамбли.
В. В. Куприянов.
Патология мышц.Нарушения сократительной функции М. и их способности к развитию и поддержанию тонуса наблюдаются при гипертонии, инфаркте миокарда, миодистрофии, атонии матки, кишечника, мочевого пузыря, при различных формах параличей (например, после перенесённого полиомиелита) и др. Патологические изменения функций мышечных органов могут возникать в связи с нарушениями нервной или гуморальной регуляции, повреждениями отдельных М. или их участков (например, при инфаркте миокарда) и, наконец, на клеточном и субклеточном уровнях. При этом может иметь место нарушение обмена веществ (прежде всего ферментной системы регенерации макроэргических соединений - главным образом АТФ) или изменение белкового сократительного субстрата. Указанные изменения могут быть обусловлены недостаточным образованием мышечных белков на почве нарушения синтеза соответствующих информационных, или матричных, РНК, т. е. врождённых дефектов в структуре ДНК хромосомного аппарата клеток. Последняя группа заболеваний, т. о., относится к числу наследственных заболеваний .
Саркоплазматические белки скелетных и гладких М. представляют интерес не только с точки зрения возможного участия их в развитии вязкого последействия. Многие из них обладают ферментативной активностью и участвуют в клеточном метаболизме. При повреждении мышечных органов, например при инфаркте миокарда или нарушении проницаемости поверхностных мембран мышечных волокон, ферменты (креатинкиназа, лактатдегидрогеназа, альдолаза, аминотрансферазы и др.) могут выходить в кровь. Т. о., определение активности этих ферментов в плазме крови при ряде заболеваний (инфаркт миокарда, миопатии и др.) представляет серьёзный клинический интерес.
Лит.:Энгельгардт В. А., Ферментативные и механические свойства белков мышц, «Успехи современной биологии», 1941, т. 14, в. 2; Сент-Джиордьи А., О мышечной деятельности, пер. с англ., М., 1947; Иванов И. И., Юрьев В. А., Биохимия и патобиохимия мышц, Л., 1961; Поглазов Б. Ф., Структура и функции сократительных белков, М., 1965; Хайаши Т., Как клетки движутся, в кн.: Живая клетка, пер. с англ., 2 изд., М., 1966; Хаксли Г., Механизм мышечного сокращения, в сб.: Молекулы и клетки, пер. с англ., в. 2, М., 1967; Смит Д., Летательные мышцы насекомых, там же; Бендолл Дж., Мышцы, молекулы и движение, пер. с англ., М., 1970; Арронет Н. И., Мышечные и клеточные сократительные (двигательные) модели, Л., 1971; Лёви А., Сикевиц Ф., Структура и функции клетки, пер. с англ., М., 1971; Иванов И. И., Некоторые актуальные проблемы эволюционной биохимии мышц, «Журнал эволюционной биохимии и физиологии» 1972, т. 8, № 3; Gibbons I. R., The biochemistry of motility, «Annual Review of Biochemistry», 1968, v. 37, р. 521.
И. И. Иванов.
Рис. 4. Электронная микрофотография гладкомышечного волокна. Видны актиновые нити (показаны стрелками).
Рис. 3. Строение саркомера поперечнополосатого мышечного волокна: А - электронная микрофотография (малое увеличение), на которой четко видна структура саркомера; Б - схема саркомера; В - электронная микрофотография с высокой разрешающей способностью; Г - поперечное сечение саркомера на различных уровнях, видно положение толстых и тонких нитей в различных участках покоящегося саркомера (по Х. Хаксли).
Рис. 1. Поперечнополосатые мышечные волокна человека: а - отрезки двух волокон; б - поперечный разрез волокна, миофибриллы образуют скопления, разграниченные саркоплазмой; в - поперечный разрез волокна с равномерным распределением миофибрилл.
Рис. 2. Электронная микрофотография саркоплазматической сети и Т-системы мышечного волокна.
Мышьяк
Мышья'к(лат. Arsenicum), As, химический элемент V группы периодической системы Менделеева, атомный номер 33, атомная масса 74,9216; кристаллы серо-стального цвета. Элемент состоит из одного устойчивого изотопа 75As.
Историческая справка. Природные соединения М. с серой (аурипигмент As 2S 3, реальгар As 4S 4) были известны народам древнего мира, которые применяли эти минералы как лекарства и краски. Был известен и продукт обжигания сульфидов М. - оксид М. (III) As 2O 3(«белый М.»). Название arsenikуn встречается уже у Аристотеля; оно произведено от греч. бrsen - сильный, мужественный и служило для обозначения соединений М. (по их сильному действию на организм). Русское название, как полагают, произошло от «мышь» (по применению препаратов М. для истребления мышей и крыс). Получение М. в свободном состоянии приписывают Альберту Великому (около 1250). В 1789 А. Лавуазье включил М. в список химических элементов.
Распространение в природе. Среднее содержание М. в земной коре (кларк) 1,7·10 -4% (по массе), в таких количествах он присутствует в большинстве изверженных пород. Поскольку соединения М. летучи при высоких температурах, элемент не накапливается при магматических процессах; он концентрируется, осаждаясь из горячих глубинных вод (вместе с S, Se, Sb, Fe, Co, Ni, Cu и др. элементами). При извержении вулканов М. в виде своих летучих соединений попадает в атмосферу. Так как М. многовалентен, на его миграцию оказывает большое влияние окислительно-восстановительная среда. В окислительных условиях земной поверхности образуются арсенаты (As 5+) и арсениты (As 3+). Это редкие минералы, встречающиеся только на участках месторождений М. Ещё реже встречается самородный М. и минералы As 2+. Из многочисленных минералов М. (около 180) основное промышленное значение имеет лишь арсенопирит FeAsS (см. Мышьяковые руды ).
Малые количества М. необходимы для жизни. Однако в районах месторождении М. и деятельности молодых вулканов почвы местами содержат до 1% М., с чем связаны болезни скота, гибель растительности. Накопление М. особенно характерно для ландшафтов степей и пустынь, в почвах которых М. малоподвижен. Во влажном климате М. легко вымывается из почв.
В живом веществе в среднем 3·10 -5% М., в реках 3·10 -7%. М., приносимый реками в океан, сравнительно быстро осаждается. В морской воде лишь 1·10 -7% М., но зато в глинах и сланцах 6,6·10 -4%. Осадочные железные руды, железомарганцевые конкреции часто обогащены М.
Физические и химические свойства. М. имеет несколько аллотропических модификаций. При обычных условиях наиболее устойчив так называемый металлический, или серый, М. (a-As) - серо-стальная хрупкая кристаллическая масса; в свежем изломе имеет металлический блеск, на воздухе быстро тускнеет, т. к. покрывается тонкой плёнкой As 2O 3. Кристаллическая решётка серого М. ромбоэдрическая ( а= 4,123 Е, угол a = 54°10', х= 0,226), слоистая. Плотность 5,72 г/см 3(при 20°C), удельное электрическое сопротивление 35·10 -8 омЧ м, или 35·10 -6 омЧ см, температурный коэффициент электросопротивления 3,9·10 -3(0°-100 °C), твёрдость по Бринеллю 1470 Мн/м 2, или 147 кгс/мм 2(3-4 по Моосу); М. диамагнитен. Под атмосферным давлением М. возгоняется при 615 °C не плавясь, т. к. тройная точка (см. Диаграмма состояния ) a-As лежит при 816 °C и давлении 36 ат. Пар М. состоит до 800 °C из молекул As 4, выше 1700 °C - только из As 2. При конденсации пара М. на поверхности, охлаждаемой жидким воздухом, образуется жёлтый М. - прозрачные, мягкие как воск кристаллы, плотностью 1,97 г/см 3, похожие по свойствам на белый фосфор . При действии света или при слабом нагревании он переходит в серый М. Известны также стекловидно-аморфные модификации: чёрный М. и бурый М., которые при нагревании выше 270°C превращаются в серый М.
Конфигурация внешних электронов атома М. 3 d 104 s 24 p 3. В соединениях М. имеет степени окисления + 5, + 3 и – 3. Серый М. значительно менее активен химически, чем фосфор. При нагревании на воздухе выше 400°C М. горит, образуя As 2O 3. С галогенами М. соединяется непосредственно; при обычных условиях AsF 5- газ; AsF 3, AsCl 3, AsBr 3- бесцветные легко летучие жидкости; AsI 3и As 2l 4- красные кристаллы. При нагревании М. с серой получены сульфиды: оранжево-красный As 4S 4и лимонно-жёлтый As 2S 3. Бледно-жёлтый сульфид As 2S 5осаждается при пропускании H 2S в охлаждаемый льдом раствор мышьяковой кислоты (или её солей) в дымящей соляной кислоте: 2H 3AsO 4+ 5H 2S = As 2S 5+ 8H 2O; около 500°C он разлагается на As 2S 3и серу. Все сульфиды М. нерастворимы в воде и разбавленных кислотах. Сильные окислители (смеси HNO 3+ HCl, HCl + KClO 3) переводят их в смесь H 3AsO 4и H 2SO 4. Сульфид As 2S 3легко растворяется в сульфидах и полисульфидах аммония и щелочных металлов, образуя соли кислот - тиомышьяковистой H 3AsS 3и тиомышьяковой H 3AsS 4. С кислородом М. даёт окислы: оксид М. (III) As 2O 3- мышьяковистый ангидрид и оксид М. (V) As 2O 5- мышьяковый ангидрид. Первый из них образуется при действии кислорода на М. или его сульфиды, например 2As 2S 3+ 9O 2= 2As 2O 3+ 6SO 2. Пары As 2O 3конденсируются в бесцветную стекловидную массу, которая с течением времени становится непрозрачной вследствие образования мелких кристаллов кубической сингонии, плотность 3,865 г/см 3. Плотность пара отвечает формуле As 4O 6: выше 1800°C пар состоит из As 2O 3. В 100 гводы растворяется 2,1 гAs 2O 3(при 25°C). Оксид М. (III) - соединение амфотерное, с преобладанием кислотных свойств. Известны соли (арсениты), отвечающие кислотам ортомышьяковистой H 3AsO 3и метамышьяковистой HAsO 2; сами же кислоты не получены. В воде растворимы только арсениты щелочных металлов и аммония. As 2O 3и арсениты обычно бывают восстановителями (например, As 2O 3+ 2I 2+ 5H 2O = 4HI + 2H 3AsO 4), но могут быть и окислителями (например, As