Основное понятие О. т. - точечное событие, т.е. нечто, происходящее в данной точке пространства в данный момент времени (например, световая вспышка, распад элементарной частицы). Это понятие является абстракцией - реальные события всегда имеют некоторую протяжённость в пространстве и во времени и могут рассматриваться как точечные только приближённо. Любой физический процесс есть последовательность событий ( С)- C 1, C 2,..., С п,.... Справедливость симметрий 1-4 означает, что наряду с последовательностью ( С) законы природы допускают существование бесконечного числа др. последовательностей ( С*), которые получаются из ( С) соответствующим преобразованием и различаются положением событий в пространстве и времени, но имеют одинаковую с ( С) внутреннюю структуру. Например, в случае симметрии 4 процесс ( С) можно наглядно описать как происходящий в стоящем на земле самолёте, а процесс ( С*) - как такой же процесс, происходящий в самолёте, летящем с постоянной скоростью (относительно земли); различным скоростям и направлениям движения соответствуют различные последовательности ( С*). Преобразования, переводящие одну последовательность событий в другую, называются активными (в отличие от пассивных преобразований, которые связывают координаты одного и того же события в двух системах отсчёта; см. ниже). Совокупность этих преобразований должна удовлетворять определённым свойствам. Прежде всего последовательное применение любых двух преобразований должно представлять собой одно из возможных преобразований [например, переход от системы (1) к системе (2), а затем от системы (2) к системе (3) эквивалентен переходу (1)-(3)]. Кроме того, для каждого преобразования должно существовать обратное преобразование, так что последовательное применение обоих преобразований даёт тождественное (единичное) преобразование, являющееся одним из возможных преобразований системы. Это означает, что совокупность рассматриваемых преобразований (1-4) должна составлять группу в математическом смысле. Эта группа называется группой Пуанкаре (название предложено Ю. Вигнером ). Преобразования группы Пуанкаре носят универсальный характер: они действуют одинаково на события любого типа. Это позволяет считать, что они описывают свойства пространства-времени, а не свойства конкретных процессов. Свойства преобразований Пуанкаре могут быть описаны различными способами (так же, как можно описывать различными способами свойства движений в трёхмерном пространстве); наиболее простое описание получается при использовании инерциальных систем отсчёта и связанных с ними часов. Роль инерционных систем отсчёта (и. с. о.) в О. т. такая же, как роль прямоугольных декартовых координат в геометрии Евклида.
Инерциальные системы отсчёта
С той степенью точности, с какой свойства данной области пространства-времени описываются частной О. т., можно ввести и. с. о., в которых описание пространственно-временных закономерностей О. т. принимает особенно простую форму. Под системой отсчёта в этом случае можно подразумевать жёсткую систему твёрдых тел (или её мысленное продолжение), по отношению к которой определяются положения событий, траектории тел и световых лучей. Любая система отсчёта, движущаяся относительно данной и. с. о. равномерно и прямолинейно без вращения, также будет инерциальной, а система отсчёта, вращающаяся или движущаяся ускоренно, уже не будет и. с. о. Следовательно, и. с. о. образуют выделенный класс систем отсчёта. В и. с. о. справедлив закон инерции, т. е. свободная (не испытывающая воздействий др. тел) частица движется в и. с. о. прямолинейно и (при принятой синхронизации часов; см. ниже) равномерно. Требование выполнения закона инерции может быть принято как определение и. с. о. Первый закон Ньютона может рассматриваться при этом как утверждение о существовании таких систем отсчёта. Все и. с. о. равноправны; это равноправие является непосредственным выражением принципа относительности.
Степень инерциальности системы отсчёта зависит от свойств гравитационных полей, действующих в рассматриваемой области пространства-времени. Количественные критерии применимости частной О. т. и инерциальности систем отсчёта рассматриваются в ОТО.
В области пространства-времени, в которой справедлива частная О. т., можно пользоваться и неинерционными системами отсчёта (так же, как можно пользоваться криволинейными координатами в геометрии Евклида), но при этом описание свойств пространства-времени оказывается более сложным.
В данной и. с. о. необходимо определить способ измерения времени и координат. В и. с. о. трёхмерная пространственная геометрия - евклидова, если прямые определить, например, как траектории световых лучей, а расстояния измерять твёрдыми масштабами. Поэтому в данной и. с. о. можно ввести декартовы прямоугольные координаты х, у, z. Для определения времени tсобытия можно принять, что в той точке, где оно произошло, находятся часы, покоящиеся в данной и. с. о. Если события происходят в разных точках A, В, то для сравнения их времён нужно синхронизировать часы в Aи В, т.е. определить значение того, что часы в Аи Впоказывают одинаковое время. Обычное определение таково: пусть в момент t Aпо часам в Апосылается сигнал в В, а в момент его прибытия в Впосылается такой же сигнал из Вв A; если сигнал пришёл в Ав момент t’ A, то принимается, что сигнал пришёл в Вв момент t B= ( t A+ t’ A )/2 и соответственно устанавливаются часы в В. При таком определении времена распространения сигнала из Aв Ви из Вв Аодинаковы и равны ( t’ A – t A)/2. Сигналами могут служить световые вспышки, звуковые сигналы (если среда, в которой они распространяются, покоится по отношению к данной системе отсчёта), выстрелы из двух одинаковых орудий, установленных в Aи В, и т.д., требуется лишь, чтобы условия передачи сигнала из Ав Ви из Вв Абыли одинаковыми. Целесообразность такого определения времени связана с тем, что в любой и. с. о. отсутствует какое-либо физически выделенное направление; описанная процедура синхронизации часов симметрична относительно Aи Ви поэтому не вносит анизотропии в способ описания. Отсутствие выделенного направления проявляется в том, что синхронизация любыми сигналами приводит к одному и тому же результату; к такому же результату приводит медленный (с u<< с>
) перенос часов из Aв В. При практических измерениях времён и координат используются многочисленные косвенные методы, при условии, что они дают такой же результат, как и описанные выше процедуры. В любой другой и. с. о. координаты и время измеряются с помощью таких же масштабов и часов, синхронизируемых таким же способом. Заранее не очевидно, что времена, определённые таким образом в двух различных и. с. о., будут одними и теми же, и они действительно оказываются различными. После того как синхронизация произведена, могут измеряться скорости частиц и сигналов в данной и. с. о., в частности скорость распространения световых сигналов. Скорость света в любой и. с. о. всегда равна с.Преобразования Лоренца
Рассмотренные выше активные преобразования непосредственно связаны с пассивными преобразованиями, описывающими связь между координатами и временем данного события в двух различных и. с. о. В силу принципа относительности безразлично, сообщить ли телу скорость Vпо отношению к данной и. с. о. Lили перейти к системе отсчёта Lў, движущейся со скоростью Vотносительно L, - закон преобразования координат и времени должен быть одним и тем же.
Вследствие справедливости симметрий 1-4, преобразования, связывающие координаты и времена событий х, у, z, tи х’, у’, z’, t’, измеренные в двух и. с. о. Lи L’, должны быть линейными. Из симметрий 1-4 и требования, чтобы преобразования составляли группу, можно получить вид этих преобразований. Если система отсчёта L’ движется относительно Lсо скоростью V, то при надлежащем выборе осей координат и начал отсчёта времени в Lи L’(оси хи х’совпадают и направлены по V, оси уи у’, zи z’соответственно параллельны, начала координат Ои О’совпадают при t= 0 и часы в L’установлены так, что при t= 0 часы в О’ показывают время t’= 0) преобразования координат и времени имеют вид:
, , , (2)
где с– произвольная постоянная, имеющая смысл предельной скорости движения (равной скорости света в вакууме). Эта постоянная может быть определена из любого эффекта О. т. (например, замедления времени распада быстрого p-мезона). Справедливость кинематики и динамики, основанных на преобразованиях (2), подтверждена неисчислимой совокупностью экспериментальных фактов.
Преобразования Лоренца (2) вместе с преобразованиями вращения вокруг начала координат образуют группу Лоренца; добавление к ней сдвигов во времени t’= t+ аи в пространстве х’= х+ b(где a, bпроизвольные постоянные размерности времени и длины) даёт группу Пуанкаре.
Из принципа относительности вытекает, что физические законы должны иметь одинаковую форму во всех и. с. о.; следовательно, они должны сохранять свой вид при преобразованиях Лоренца. Это требование называется принципом (постулатом) релятивистской инвариантности, или лоренц-инвариантности (лоренц-ковариантности), законов природы.
Из преобразований Лоренца вытекает релятивистский закон сложения скоростей. Если частица или сигнал движется в Lпо оси хсо скоростью u, то в момент tx= utи скорость частицы u’= x’/ t’, измеряемая в системе L’, равна:
(3)
Эта формула отражает основную черту релятивистской кинематики - независимость скорости света от движения источника. Действительно, если скорость света, испущенного покоящимся в некоторой и. с. о. Lисточником, есть с, u= с, то из закона сложения скоростей (2) получаем, что измеренная в и. с. о. L’скорость света u’также равна с. Так как направление оси хпроизвольно, то отсюда следует независимость скорости света от движения источника. Это свойство скорости света однозначно определяет вид преобразований Лоренца: постулировав независимость скорости света от движения источника, однородность пространства и времени и изотропию пространства, можно вывести преобразования Лоренца.
Особая роль скорости света в О. т. связана с тем, что она является предельной скоростью распространения сигналов и движения частиц, достигаемой при энергии частицы, стремящейся к бесконечности, или массе, стремящейся к нулю; если бы масса покоя m gфотона оказалась хотя и очень малой, но отличной от нуля (экспериментально установлено, что m g < 4Ч10 –21 m e, где m e- масса электрона), то скорость света была бы меньше предельной. Чтобы предельная скорость вообще могла существовать, она не должна зависеть от движения источника частиц.
Из преобразований Лоренца легко получить основные эффекты О. т.: относительность одновременности, замедление времени, сокращение продольных размеров движущихся тел. Действительно, события 1, 2, одновременные в одной и. с. о. L: t 1= t 2и происходящие в разных точках x 1, x 2, оказываются неодновременными в другой и. с. о. L’: . Далее, когда часы, покоящиеся в Lв точке х= 0, показывают время t, то время t’по часам в L’, пространственно совпадающим с часами в Lв этот момент времени, есть
(4)
или
(4, а)
т. е. с точки зрения наблюдателя в L’часы в Lотстают. В силу принципа относительности отсюда следует, что с точки зрения наблюдателя в L’, все процессы в Lзамедлены в такое же число раз.
Легко получить также, что размеры lвсех тел, покоящихся в L, оказываются при измерении в L’сокращёнными в раз в направлении V:
(5)
В частности, продольный диаметр сферы, движущейся со скоростью uотносительно L’, будет при измерении в Lў в раз короче, чем поперечный. (Заметим, что это сокращение не обнаружилось бы на мгновенной фотографии сферы: из-за различного запаздывания световых сигналов, приходящих от разных точек сферы, её видимая форма остаётся прежней.)
Для и. с. о. пространственно-временные эффекты, определяемые преобразованиями Лоренца, относительны: с точки зрения наблюдателя в Lзамедляются все процессы и сокращаются все продольные масштабы в L’. Однако это утверждение несправедливо, если хотя бы одна из систем отсчёта неинерциальна. Если, например, часы 1 перемещаются относительно Lиз Ав Всо скоростью u, а потом из Вв Асо скоростью - u, то они отстанут по сравнению с покоящимися Aчасами 2 в раз; это можно обнаружить прямым сравнением, так что эффект абсолютен. Он должен иметь место для любого процесса; например, близнец, совершивший путешествие со скоростью u, вернётся в раз более молодым, чем его брат, остававшийся неподвижным в и. с. о. Это явление, получившее название «парадокса близнецов», в действительности не содержит парадокса: система отсчёта, связанная с часами 1, не является инерциальной, т.к. эти часы при повороте в Виспытывают ускорение по отношению к инерциальной системе; поэтому часы 1 и 2 неравноправны.
При малых скоростях uпреобразования Лоренца переходят в преобразования Галилея x’= x– ut, y’ = y, z’’ = z, t’ = t, которые описывают связь между картинами различных наблюдателей, известную из повседневного опыта: размеры предметов и длительность процессов одинаковы для всех наблюдателей.
Преобразования Пуанкаре оставляют инвариантной величину, называемую интервалом s ABмежду событиями А, В, которая определяется соотношением:
s 2 AB = c 2( t A– t B) 2– ( x A– x B) 2– ( y A– y B) 2– ( z A– z B) 2. (6)
Математически инвариантность sаналогична инвариантности расстояния при преобразованиях движения в евклидовой геометрии. Величины ct, х, у, zможно рассматривать как четыре координаты события в четырёхмерном пространстве Минковского: х 0= ct, х 1= х, x 2= у, x 3= z, которые являются компонентами четырёхмерного вектора.
Если вместо x 0ввести мнимую координату x 4= ix 0= ict, то произвольное преобразование Пуанкаре можно записать в виде, полностью аналогичном формуле, описывающей вращения и сдвиги в трёхмерном пространстве.
Вследствие того, что квадраты разностей временны'х и пространственных координат входят в (6) с разными знаками, знак s 2может быть различным; геометрия такого пространства отличается от евклидовой и называется псевдоевклидовой. В такой геометрии интервалы разделяются на три типа: s 2< 0, s 2> О и s 2= 0. Интервалы первого и второго типа называются соответственно времениподобными и пространственноподобными. Если s 2³ 0, знак t A– t Bне зависит от системы отсчёта. Это тесно связано с принципом причинности. Действительно, если s 2³ 0 и (для определённости) t A< t B, то события Аи Вмогут быть связаны сигналом, распространяющимся со скоростью uЈ с, т.е. Аможет быть причиной В. Обычные представления о причинности требуют тогда, чтобы в любой системе отсчёта событие Вследовало за событием А. Инвариантность условия s 2= 0 непосредственно выражает инвариантность скорости света. Если s 2< 0, то знак t A– t Bможет быть различным в разных и. с. о. Однако это не противоречит причинности, т.к. такие события не могут быть связаны никаким взаимодействием.
Если s 2< 0, то существует такая система отсчёта, в которой события Аи Водновременны; в этой системе s 2= – l 2, где l - обычное расстояние. При s 2> 0 существует система отсчёта, в которой события Аи Впроисходят в одной точке.
В классической физике требование инвариантности законов физики относительно преобразований Лоренца означает, что любые физические величины должны преобразовываться как скаляры , векторы или тензоры в пространстве Минковского. Правила вычислений с такими величинами даются тензорным исчислением. Использование тензорного исчисления позволяет записывать законы физики в таком виде, что их лоренц-инвариантность становится непосредственно очевидной.
Законы сохранения в теории относительности и релятивистская механика
В О. т., так же как в классической механике, для замкнутой физической системы сохраняется импульс ри энергия Е. Трёхмерный вектор импульса вместе с энергией образует четырёхмерный вектор импульса-энергии с компонентами Е/ с, р, обозначаемый как ( Е/ с, р). При преобразованиях Лоренца остаётся инвариантной величина
E 2– (cp) 2= m 2 c 4, (7)
где m –масса покоя частицы. Из требований лоренц-инвариантности следует, что зависимость энергии и импульса от скорости имеет вид
, . (8)
Энергия и импульс частицы связаны соотношением р= Eu/ c 2. Это соотношение справедливо также для частицы с нулевой массой покоя; тогда u= си р= Е/с.Такими частицами, по-видимому, являются фотоны (g) и электронные и мюонные нейтрино. Из (8) видно, что импульс и энергия частицы с m¹ 0 стремятся к бесконечности при u® с.
Обсуждалась возможность существования объектов, движущихся со скоростью, большей скорости света (т. н. тахионов). Формально это не противоречит лоренц-инвариантности, но приводит к серьёзным затруднениям с выполнением требования причинности.
Масса покоя тне является сохраняющейся величиной. В частности, в процессах распадов и превращений элементарных частиц сумма энергий и импульсов частиц сохраняется, а сумма масс покоя меняется. Так, в процессе аннигиляции позитрона и электрона е ++ е –® 2g сумма масс покоя изменяется на 2 m е.
В системе отсчёта, в которой тело покоится (такая система отсчёта наз. собственной), его энергия (энергия покоя) есть Е 0= mс 2. Если тело, оставаясь в покое, изменяет своё состояние, получая энергию в виде излучения или тепла, то из релятивистского закона сохранения энергии следует, что полученная телом энергия D Есвязана с увеличением его массы покоя соотношением D Е= D mc 2. Из этого соотношения, названного Эйнштейном принципом эквивалентности массы и энергии, следует, что величина Е 0= mc 2определяет максимальную величину энергии, которая может быть «извлечена» из данного тела в системе отсчёта, в которой оно покоится.
Для движущегося тела величина
(9)
определяет его кинетическую энергию. При u<< с
(9) переходит в нерелятивистское выражение Е кин= mu 2/2, при этом импульс равен р= mu. Из определения Е кинследует, что для любого процесса в изолированной системе выполняется равенство:, (10)
согласно которому увеличение кинетической энергии пропорционально уменьшению суммы масс покоя. Это соотношение широко используется в ядерной физике; оно позволяет предсказывать энерговыделение в ядерных реакциях, если известны массы покоя участвующих в них частиц. Возможность протекания процессов, в которых происходит превращение энергии покоя в кинетическую энергию частиц, ограничена др. законами сохранения (например, законом сохранения барионного заряда , запрещающим процесс превращения протона в позитрон и g-квант).
Иногда вводят массу, определяемую как
; (11)
при этом связь между импульсом и энергией имеет тот же вид, что и в ньютоновской механике: р= m движ u. Определённая таким образом масса отличается от энергии тела лишь множителем 1/ с 2. (В теоретич. физике часто выбирают единицы измерения так, что с= 1, тогда Е= m движ.)
Основные уравнения релятивистской механики имеют такой же вид, как второй закон Ньютона и уравнение энергии, только вместо нерелятивистских выражений для энергии и импульса используются выражения (8):
,
, (12)
где F- сила, действующая на тело. Для заряженной частицы, движущейся в электромагнитном поле, Fесть Лоренца сила .
Теория относительности и эксперимент
Предположения о точечных событиях, справедливости принципа относительности, однородности времени и однородности и изотропии пространства с неизбежностью приводят к О. т. При этом абстрактно допустим предельный случай, соответствующий с= Ґ, однако такая возможность исключена экспериментально: доказано с огромной точностью (см. ниже), что предельная скорость сесть скорость света в вакууме (её значение дано в начале статьи).
Каковы границы применимости О. т.? Отклонения от пространственно-временной геометрии О. т., связанные с гравитацией, наблюдаемы и рассчитываются в ОТО; никаких др. ограничений применимости О. т. пока не обнаружено, хотя неоднократно высказывались подозрения, что на очень малых расстояниях (например, ~10 –17 см) понятие точечного события, а следовательно, и О. т. могут оказаться неприменимыми (см., например, Квантование пространства-времени ).
Предположение о лоренц-инвариантности и точечности событий (означающей локальность взаимодействий) лежит в основе всех современных теорий, в которых существен релятивизм. Справедливость квантовой электродинамики электронов и мюонов , а следовательно, и О. т. установлена вплоть до расстояний 10 –15 см. При энергиях порядка масс этих частиц согласие квантовой электродинамики с опытом установлено с относительной точностью, несколько лучшей, чем 10 –5; с точностью того же порядка должна быть справедлива и механика О. т.
Релятивистские законы сохранения применяются при исследованиях превращений элементарных частиц, вызванных сильным, слабым и электромагнитным взаимодействиями; отсутствие противоречий подтверждает справедливость этих законов. Всё, что известно о названных взаимодействиях, согласуется с представлением об их лоренц-инвариантности.
Предположение о невозможности сверхсветовых сигналов, вытекающее из О. т., лежит в основе дисперсионных методов, широко используемых в теории сильных взаимодействий (см. также Квантовая теория поля ); их успех демонстрирует справедливость основных представлений О. т.
Одним из наиболее ярких подтверждений справедливости релятивистской инвариантности явилось предсказание на её основе существования античастиц и их последующее открытие (см. Дирака уравнение , Античастицы ).
Требование лоренц-инвариантности взаимодействий приводит при очень общих предположениях к т. н. СРТ-теореме , устанавливающей связь между свойствами частиц и античастиц. Эта связь выполняется на опыте для всех известных взаимодействий.
Неоднократно ставились опыты по прямой проверке основных черт кинематики О. т. Независимость скорости света от движения источника проверена с наилучшей точностью в 1964 в опытах [Европейский центр ядерных исследований (ЦЕРН, Швейцария)], в которых использовались g-кванты от распада p°-мезона; при скорости p° u= 0,9997 сотносит. точность совпадения скорости g-кванта с ссоставляла 10 –4. Релятивистское замедление времени измерено в широком интервале скоростей с помощью поперечного Доплера эффекта и непосредственно по распадам элементарных частиц с точностью 1–5%. Неоднократно проверялась также формула ; наилучшая достигнутая точность - 5Ч10 –4(В. Мейер и др., 1963).
История частной теории относительности
Хотя О. т. в логическом смысле проста, путь, приведший к ней, был сложным. Справедливость принципа относительности для механических явлений и его связь с явлением инерции были поняты после появления теории Н.