Страница:
внутренним трением,или
вязкостью.В идеальных кристаллах
теплопроводность
и вязкость определяются столкновениями квазичастиц друг с другом, в реальных кристаллах к этим процессам добавляется рассеяние звуковых волн на дефектах кристаллической решётки, важную роль играет также диффузия. Исследование поглощения звука — метод изучения динамических свойств Т. т., в частности свойств квазичастиц.
Механические свойства Т. т. — основа их инженерного применения как конструкционных материалов. В частности, знание связи деформаций и напряжений позволяет решать конкретные практические задачи о распределении напряжений и деформаций в Т. т. различной формы (балки, пластины, оболочки и т. п.) при разнообразных нагрузках — изгибе, кручении (см. Сопротивление материалов ).
Движение частиц в Т. т.Фононы. Исследование теплового движения частиц в конденсированных средах приводит к понятию фононов. Если N— число ячеек кристалла, а n — число атомов (ионов) в элементарной ячейке, то 3 Nn — полное степеней свободы число атомов кристалла, совершающих колебательное движение вблизи положений равновесия. Колебательный характер их движения сохраняется вплоть до температуры плавления Т пл. При Т= Т плсредняя амплитуда колебания атома меньше межатомного расстояния. Плавление обусловлено тем, что термодинамический потенциал жидкости при Т> Т плменьше термодинамического потенциала Т. т. В первом (гармония.) приближении систему с 3 Nn колебательными степенями свободы можно рассматривать как совокупность 3 Nn независимых осцилляторов, каждый из которых соответствует отдельному нормальному колебанию.
В кристалле с нарушениями периодичности (дефектами) среди нормальных колебаний имеются особые, в которых участвуют не все атомы кристалла, а только локализованные вблизи дефекта (например, чужеродного атома). Такие колебания называются локальными. Хотя их число невелико, они в ряде случаев определяют некоторые физические свойства (оптические свойства, особенности Мёссбауэра эффекта и др.). Вблизи поверхности в Т. т. могут распространяться локальные поверхностные волны, амплитуда которых экспоненциально уменьшается при удалении от поверхности (Рэлея волны). Подобные волны могут распространяться также и внутри кристалла вдоль плоских дефектов (например, границ кристаллических зёрен) и вдоль дислокаций.
Нормальное колебание — волна смещений атомов из положения равновесия. Существует 3n типов нормальных колебаний (для простых решёток n = 1). Каждая волна характеризуется волновым вектором kи частотой w. Разным типам нормальных колебаний соответствуют различные зависимости: w s ( k)( s= 1, 2,..., 3n), называемые законом дисперсии. Периодичность в расположении атомов приводит к тому, что все величины, зависящие от k,в кристалле оказываются также периодическими функциями. Например, w s( k+ 2p b) = w s( k), где b —произвольный вектор обратной решётки.
Зная силы взаимодействия между структурными частицами кристалла, можно рассчитать законы дисперсии. Существуют и экспериментальные методы их определения. Наиболее результативный из них — неупругое рассеяние медленных нейтронов в кристаллах. Некоторые выводы о законе дисперсии можно сделать, исходя из общих положений: среди нормальных колебаний должны быть такие, которые при больших длинах волн (по сравнению с межатомными расстояниями) соответствуют обычным звуковым волнам в кристалле. Таких волн три (для упругоизотропного тела — две волны поперечные и одна продольная), причём для всех трёх частота w — однородная функция 1-го порядка от компонент вектора k,обращающаяся в нуль при k= 0, то есть для трёх из 3n типов нормальных колебаний закон дисперсии при малых значениях волнового вектора имеет вид:
w s = c sk (s = 1, 2, 3), где c s— скорость звука в кристалле, зависящая от направления распространения звука. Эти три типа нормальных колебаний называются акустическими, при их возбуждении атомы одной ячейки колеблются как целое. Остальные 3n — 3 типов колебаний называются оптическими (впервые наблюдались по резонансному поглощению света). Частота w оптического колебания при k® 0 стремится к конечному пределу. При этом атомы элементарной ячейки колеблются друг относительно друга, а центр тяжести ячейки покоится. Колебание каждого типа имеет макс. частоту w sмакс; это значит. что существует максимальная частота колебаний атомов в кристалле w макс» с/а» 10 12—10 13 сек –1 .Знание закона дисперсии позволяет определить плотность состояний n(w). Число колебательных состояний в интервале частот (w, w + Dw) равно n(w) Dw. При w ® 0 n(w) ~ w 2, а при w ® w максn(w) » . Плотность состояний играет определяющую роль в термодинамических равновесных свойствах Т. т.
Каждой волне с волновым вектором kи частотой со можно сопоставить квазичастицу с квазиимпульсом и энергией (см. Корпускулярно-волновой дуализм ) .Квазичастица, соответствующая волне нормальных колебаний, называется фононом. Квазиимпульс фонона во многом схож с импульсом свободной частицы. Скорость фонона u ф— групповая скорость волны:
.
Распределение фононов по энергиям в состоянии термодинамического равновесия описывается функцией Планка:
,
где ,— среднее число фононов сорта s( s= 1, 2..., 3n) с квазиимпульсом р. Функцию Планка можно рассматривать как функцию распределения идеального газа фононов, подчиняющихся статистике Бозе — Эйнштейна (см. Статистическая физика ) .Химический потенциал фононов равен нулю, что указывает на зависимость числа фононов от температуры. При высоких температурах число фононов растет с температурой линейно, а при низких — пропорционально T 3 ,что отражает уменьшение амплитуды тепловых колебаний атомов с уменьшением температуры. В действительности газ фононов не является идеальным, так как фононы взаимодействуют друг с другом (ангарионизм колебаний); чем выше температура, тем это взаимодействие существеннее. Взаимодействие фононов описывается в теории введением для них длины свободного пробега, которая возрастает при понижении температуры. Фононы взаимодействуют не только друг с другом, но и с др. квазичастицами, а также со всеми дефектами кристалла (в частности, рассеиваются границами Т. т.).
В аморфных телах тепловое движение частиц также носит колебательный характер. Однако фононы удаётся ввести только для низкочастотных акустических колебаний, когда на длине волны расположено много атомов, колеблющихся синфазно, и их взаимное расположение не слишком существенно. Максимальные частоты колебаний в аморфных телах мало отличаются от максимальных частот в кристаллах, так как определяются силами взаимодействия между ближайшими атомами. В результате этого, а также наличия ближнего порядка в аморфных телах плотность колебательных состояний близка к плотности колебательных состояний кристаллов.
Диффузия атомов. В процессе колебания кинетическая энергия частицы в результате флуктуаций может превысить глубину потенциальной ямы,в которой она движется. Это означает, что частица способна «оторваться» от своего положения равновесия. Обычно вероятность Wтакого процесса при комнатной температуре мала:
.
Здесь W 0~ W макс» 10 12—10 13 сек –1 ,а величина u порядка энергии связи, рассчитанной на одну частицу. Поэтому все процессы в Т. т., сопровождающиеся переносом вещества (диффузия, самодиффузия и т. д.), идут сравнительно медленно. Только вблизи температуры плавления скорость этих процессов возрастает. Коэффициент диффузии, определяющий поток частиц по известному градиенту их концентрации, пропорционален Wи существенно зависит от состояния кристаллической решётки. Пластическая деформация обычно «разрыхляет» кристалл, снижает потенциальные барьеры, разделяющие равновесные положения атомов, и поэтому увеличивает вероятность их «перескоков».
В исключительных случаях, например в твёрдом Не, возможно туннельное «просачивание» атомов из одного положения равновесия в другое (см. Туннельный эффект ) .Эта «квантовая» диффузия приводит к тому, что коэффициент диффузии ¹ 0 при Т® 0 К. Делокализация атомов, связанная с туннельными переходами, превращает примесные атомы и вакансии в своеобразные квазичастицы (примесоны, вакансионы). Они определяют свойства квантовых кристаллов.
Тепловые свойства Т. т.У большинства Т. т. теплоёмкость Спри комнатных температурах приближённо подчиняется Дюлонга и Пти закону: С =3 R кал/моль( R — газовая постоянная) .Закон Дюлонга и Пти — следствие того, что за тепловые свойства Т. т. при высоких температурах ответственны колебательные движения атомов, подчиняющиеся закону равнораспределения (средняя энергия, приходящаяся на одну колебательную степень свободы, равна kT) .Наблюдаемые при высоких температурах отклонения от закона Дюлонга и Пти объясняются повышением роли ангармонизма колебаний. Понижение температуры приводит к уменьшению теплоёмкости; благодаря квантовому «замораживанию» средняя энергия колебания Ek, определяемая выражением: , меньше kT.При самых низких температурах часть теплоёмкости, обусловленная колебаниями решётки, С ~ T 3 .Колебательная часть теплоёмкости Т. т. может быть представлена как теплоёмкость газа фононов.
Переход от классического значения теплоёмкости С = 3Rк квантовому С ~ T 3наблюдается при характерной для каждого Т. т. температуре q, называемой Дебая температурой,физический смысл которой определяется соотношением: . Отсюда следует, что при Т <.q в Т. т. есть колебания, к которым необходимо применять квантовые законы. Для большинства Т. т. q колеблется в пределах 10 2—10 3K. У молекулярных кристаллов q аномально низка (» 10 К).
Температурная зависимость колебательной части теплоёмкости при Т<< q, как и её значение при Т>> q, одинакова для всех Т. т. ( рис. 1 ), в частности и аморфных. В промежуточной области температур теплоёмкость зависит от детальных свойств n(w), то есть от конкретного распределения частот по спектру Т. т. Вблизи Т= 0 К из-за уменьшения колебательной части теплоёмкости Т. т. проявляются другие (неколебательные), низко расположенные уровни энергии Т. т. Так, в металлах при ( E F— энергия Ферми, см. ниже) основной вклад в теплоёмкость вносят электроны проводимости (электронная часть теплоёмкости ~ Т), а в ферритах при ТЈ q 2/ Т с( T c— температура Кюри) — спиновые волны (магнонная часть теплоёмкости ~ T , см. ниже). Квантовое «замораживание» большинства движений в Т. т. при Т® 0 К позволяет измерить ядерную теплоёмкость и теплоёмкость, обусловленную локальными колебаниями частиц.
Важной характеристикой тепловых свойств Т. т. служит коэффициент теплового расширения ( V- объем Т. т., р —давление). Отношение a/ Сне зависит от температуры (закон Грюнайзена). Хотя закон Грюнайзена выполняется приближённо, он качественно правильно передаёт температурный ход a .Тепловое расширение — следствие ангармоничности колебаний (при гармонических колебаниях среднее расстояние между частицами не зависит от температуры).
Теплопроводность зависит от типа Т. т. Металлы обладают значительно большей теплопроводностью, чем диэлектрики, что связано с участием электронов проводимости в переносе тепла (см. ниже). Теплопроводность — структурно чувствительное свойство. Коэффициент теплопроводности зависит от кристаллического состояния (моно- или поликристалл), наличия или отсутствия дефектов и т. п. Явление теплопроводности удобно описывать, используя концепцию квазичастиц. Все квазичастицы (прежде всего фононы) переносят тепло, причём, согласно кинетической теории газов, вклад каждого из газов квазичастиц в коэффициент теплопроводности можно записать в виде: ,где g — численный множитель, С— теплоёмкость, — средняя тепловая скорость, l— длина свободного пробега квазичастиц. Величина lопределяется рассеянием квазичастиц, которое в случае фонон-фононных столкновений — следствие ангармоничности колебаний.
Из-за участия в тепловых свойствах разнообразных движений, присущих Т. т., температурная зависимость большинства характеристик Т. т. очень сложна. Она дополнительно осложняется фазовыми переходами, которые сопровождаются резким изменением многих величин (например, теплоёмкости) при приближении к точке фазового перехода.
Электроны в Т. т. Зонная теория.Сближение атомов в Т. т. на расстоянии порядка размеров самих атомов приводит к тому, что внешние (валентные) электроны теряют связь с определённым атомом — они движутся по всему Т. т., вследствие чего дискретные атомные уровни энергии расширяются в полосы (энергетические зоны). Зоны разрешенных энергий могут быть отделены друг от друга зонами запрещенных энергий, но могут и перекрываться. Глубинные атомные уровни расширяются незначительно, уровни, соответствующие внешним оболочкам атома, расширяются настолько, что соответствующие энергетические зоны обычно перекрываются. Индивидуальность зон, однако, сохраняется: состояния электронов с одной и той же энергией, но принадлежащие разным зонам, различны.
В кристаллах состояние электрона в зоне благодаря периодичности сил, действующих на него, определяется квазиимпульсом р,а энергия электрона E— периодическая функция квазиимпульса: . [ — закон дисперсии, s— номер зоны]. В аморфных телах, хотя состояние электрона не определяется квазиимпульсом (квазиимпульс ввести нельзя), зонный характер электронного энергетического спектра сохраняется. Строго запрещенных зон энергии в аморфных телах, по-видимому, нет, однако есть квазизапрещённые области, где плотность состояний меньше, чем в разрешенных зонах. Движение электрона с энергией из квазизапрещённой области локализовано, из разрешенной зоны — делокализовано (как в кристалле).
В соответствии с Паули принципом в каждом энергетическом состоянии может находиться не более двух электронов. Поэтому в каждой энергетической зоне кристалла может поместиться не более 2Nэлектронов, где N —число уровней в зоне, равное числу элементарных ячеек кристалла. При Т® 0 К все электроны занимают наиболее низкие энергетические состояния. Существование Т. т. с различными электрическими свойствами связано с характером заполнения электронами энергетических зон при Т= 0 К. Если все зоны либо полностью заполнены электронами, либо пусты, то такие Т. т. не проводят электрического тока, то есть являются диэлектриками ( рис. 2 , а). Т. т., имеющие зоны, частично заполненные электронами, — проводники электрического тока — металлы ( рис. 2 , б) .Полупроводники представляют собой диэлектрики (нет частично заполненных зон при Т= 0 К) со сравнительно малой шириной запрещенной зоны между последней заполненной (валентной) зоной и первой (свободной — зоной проводимости, ( рис. 2 , в). Наличие дефектов и примесей в кристалле приводит к возникновению дополнительных (примесных) энергетических уровней, располагающихся в запрещенной зоне. У полупроводников эти уровни часто расположены очень близко либо от валентной зоны ( рис. 2 , д), либо от зоны проводимости ( рис. 2 , г). Т. т. с аномально малым перекрытием валентной зоны и зоны проводимости называется полуметаллами (например, у Bi ширина перекрытия ~ 10 -5ширины зоны). Существуют бесщелевые полупроводники, у которых зона проводимости примыкает к валентной (например, сплавы Bi — Sb, Hg — Те с определённым соотношением компонент).
Энергия, отделяющая занятые состояния от свободных, называется Ферми энергией.Если она расположена в разрешенной зоне, то ей соответствует изоэнергетическая Ферми поверхность,выделяющая область занятых электронных состояний в пространстве квазиимпульсов. У полупроводников энергия Ферми расположена в запрещенной зоне и носит несколько формальный характер. У бесщелевых полупроводников она совпадает с границей, отделяющей валентную зону от зоны проводимости.
Энергетическая зона, в которой не заняты состояния с энергиями, близкими к максимальной, проявляет себя как зона, содержащая положительно заряженные частицы — дырки. В зависимости от расположения поверхность Ферми бывает электронной и дырочной. Если число электронов n э (число занятых состояний вблизи минимума энергии в зоне) равно числу дырок n д, проводник называется скомпенсированным (например, Bi, у которого n э= n д» 10 -5на атом). У бесщелевых полупроводников поверхность Ферми вырождается в точку либо в линию.
Элементарное возбуждение электронной системы кристалла заключается в приобретении электроном энергии, благодаря чему он оказывается в области р-пространства, где в основном состоянии электрона не было; одновременно возникает свободное место (дырка) в области р-пространства, занятой электронами в основном состоянии. Так как электрон и дырка движутся независимо, то их следует считать различными квазичастицами. Другими словами, элементарное возбуждение электронной системы заключается в рождении пары квазичастиц — электрона проводимости и дырки. Электроны и дырки подчиняются статистике Ферми — Дирака. В диэлектриках и полупроводниках возбуждённые состояния отделены от основного состояния энергетической щелью, в металлах (а также в полуметаллах и бесщелевых полупроводниках) — непосредственно примыкают к основному состоянию ( рис. 2 ). Электронная система Т. т. порождает и более сложные возбуждения: в полупроводниках — экситоны Ванье — Мотта и Френкеля и поляроны;в сверхпроводящих металлах — куперовские пары (см. ниже). Кроме того, по электронной системе Т. т. могут распространяться волны — плазменные колебания (соответствующие им квазичастицы — называются плазмонами ).
Металлы. В металлах при низких температурах электроны частично заполненных зон (электроны проводимости) играют важную роль в тепловых свойствах. Линейная зависимость теплоёмкости и коэффициента теплового расширения от температуры (при Т® 0 К) объясняется тем, что электроны, подчиняющиеся статистике Ферми — Дирака, сильно вырождены. Вырождение сохраняется практически при всех температурах, так как температура вырождения T F= E F/kдля хороших металлов ³ 10 4К. Этим объясняется тот факт, что теплоёмкость металлов при высоких температурах неотличима от теплоёмкости диэлектриков.
Благодаря вырождению в металлах во многих процессах участвуют только электроны, энергия которых E» E F,то есть электроны, расположенные вблизи поверхности Ферми. Поверхности Ферми, как правило, имеют сложную форму. Разнообразие формы поверхностей Ферми у различных металлов обычно выявляется в их поведении в достаточно сильном магнитном поле Н,когда размеры орбиты электрона (~ 1/ Н) значительно меньше длины его свободного пробега. Проекция траектории электрона на плоскость, перпендикулярную Н,подобна плоскому сечению поверхности Ферми, и, если между двумя актами рассеяния электрон многократно опишет свою траекторию, то форма поверхности Ферми проявится в его свойствах. Осцилляции магнитной восприимчивости и электросопротивления в магнитном поле позволяют измерить экстремальные площади сечений поверхности Ферми (см. Де Хааза — ван Альфена эффект, Шубникова — Де Хааза эффект) .По поглощению ультразвука в магнитном поле можно измерить экстремальные диаметры поверхности Ферми; гальваномагнитные явления дают возможность установить общие контуры поверхности Ферми. Циклотронный резонанс — метод определения частоты обращения электрона в магнитном поле Н,которая зависит от его эффективной массы m*,связанной с законом дисперсии электронов. Перечисленные эксперименты производятся при низкой температуре на монокристаллических сверхчистых образцах и дают возможность исследовать электронный энергетический спектр.
Одной из важнейших характеристик металла является его удельная электропроводность ( ,которую для изотропного металла можно записать в виде , где S F— площадь поверхности Ферми, а l p— длина свободного пробега электронов, учитывающая рассеяние электронов с изменением квазиимпульса. Температурная зависимость s и удельного сопротивления r = 1/s ( рис. 3 ) определяется температурной зависимостью длины свободного пробега l p.При Т³ q механизм рассеяния обусловлен столкновениями с фононами ; при Т<< q из-за уменьшения числа фононов «проявляются» др. механизмы: столкновения со статическими дефектами кристалла, в частности с поверхностью образца, электрон-электронные столкновения и др. ( рис. 4 ). В металлах большая часть теплоты переносится электронами проводимости. В широком диапазоне температур существует простое соотношение между электропроводностью s и электронной частью теплопроводности c c( Видемана — Франца закон ) :
',
где — число Лоренца. Наблюдающиеся при ТЈ q отклонения от закона Видемана — Франца отражают особенности взаимодействия электронов проводимости с фононами (при Т< q длина свободного пробега, входящая в выражение для c и учитывающая изменение потока энергии электронов за счёт столкновений, не равна l p) . Термоэлектрические явления( термоэдс, Пельтье эффекти др.) также являются следствием участия электронов в переносе тепла. Магнитное поле изменяет электропроводность и теплопроводность и служит причиной гальваномагнитных и термомагнитных явлений (см. Холла эффект, Нернста — Эттингсхаузена эффект).
Коэффициент отражения электромагнитных волн металлом близок к 1. Электромагнитная волна благодаря скин-эффекту практически не проникает в металл; глубина d проникновения в радиодиапазоне равна (w — частота волны). В оптическом диапазоне d = с/w 0х» 10 -5 см, с— скорость света; w 0» 1015 сек –1— плазменная, или ленгмюровская, частота электронов металла ( — энергия плазмона ) .При низких температурах взаимодействие металла с электромагнитной волной обладает особенностями, связанными с аномальным характером скин-эффекта (d Ј l, см. Металлооптика ) .На характер распространения электромагнитных волн в металле влияет магнитное поле Н:в некоторых металлах при Н¹ 0 и при низких температурах могут распространяться слабозатухающие электромагнитные волны (магнитоплазменные волны, см. Плазма твёрдых тел ).
Сверхпроводимость. У многих металлов и сплавов при охлаждении ниже некоторой температуры T cнаблюдается полная потеря электросопротивления — металл переходит в сверхпроводящее состояние. Такой переход — фазовый переход 2-го рода, если Н= 0, и 1-го рода, если Н¹ 0. T cзависит от Н.В достаточно больших магнитных полях [ Н > Нкр(Т)] сверхпроводящего состояния не существует. Сверхпроводники обладают аномальными магнитными свойствами, по которым делятся на два класса — сверхпроводники 1-го и 2-го родов. В толще сверхпроводника 1-го рода при Н < Нкрмагнитное поле равно 0 ( Мейснера эффект ) .В сверхпроводник 2-го рода магнитное поле может проникать в виде сложной вихревой структуры.
Явление сверхпроводимости объясняется притяжением между электронами, обусловленным обменом фононами. При этом образуются электронные (куперовские) пары, возникает «конденсат», способный двигаться без сопротивления. Устойчивость сверхпроводящего состояния обеспечена наличием энергии связи электронов в паре, благодаря чему зона энергий элементарных возбуждений отделена энергетической щелью от энергии основного состояния (см.
Механические свойства Т. т. — основа их инженерного применения как конструкционных материалов. В частности, знание связи деформаций и напряжений позволяет решать конкретные практические задачи о распределении напряжений и деформаций в Т. т. различной формы (балки, пластины, оболочки и т. п.) при разнообразных нагрузках — изгибе, кручении (см. Сопротивление материалов ).
Движение частиц в Т. т.Фононы. Исследование теплового движения частиц в конденсированных средах приводит к понятию фононов. Если N— число ячеек кристалла, а n — число атомов (ионов) в элементарной ячейке, то 3 Nn — полное степеней свободы число атомов кристалла, совершающих колебательное движение вблизи положений равновесия. Колебательный характер их движения сохраняется вплоть до температуры плавления Т пл. При Т= Т плсредняя амплитуда колебания атома меньше межатомного расстояния. Плавление обусловлено тем, что термодинамический потенциал жидкости при Т> Т плменьше термодинамического потенциала Т. т. В первом (гармония.) приближении систему с 3 Nn колебательными степенями свободы можно рассматривать как совокупность 3 Nn независимых осцилляторов, каждый из которых соответствует отдельному нормальному колебанию.
В кристалле с нарушениями периодичности (дефектами) среди нормальных колебаний имеются особые, в которых участвуют не все атомы кристалла, а только локализованные вблизи дефекта (например, чужеродного атома). Такие колебания называются локальными. Хотя их число невелико, они в ряде случаев определяют некоторые физические свойства (оптические свойства, особенности Мёссбауэра эффекта и др.). Вблизи поверхности в Т. т. могут распространяться локальные поверхностные волны, амплитуда которых экспоненциально уменьшается при удалении от поверхности (Рэлея волны). Подобные волны могут распространяться также и внутри кристалла вдоль плоских дефектов (например, границ кристаллических зёрен) и вдоль дислокаций.
Нормальное колебание — волна смещений атомов из положения равновесия. Существует 3n типов нормальных колебаний (для простых решёток n = 1). Каждая волна характеризуется волновым вектором kи частотой w. Разным типам нормальных колебаний соответствуют различные зависимости: w s ( k)( s= 1, 2,..., 3n), называемые законом дисперсии. Периодичность в расположении атомов приводит к тому, что все величины, зависящие от k,в кристалле оказываются также периодическими функциями. Например, w s( k+ 2p b) = w s( k), где b —произвольный вектор обратной решётки.
Зная силы взаимодействия между структурными частицами кристалла, можно рассчитать законы дисперсии. Существуют и экспериментальные методы их определения. Наиболее результативный из них — неупругое рассеяние медленных нейтронов в кристаллах. Некоторые выводы о законе дисперсии можно сделать, исходя из общих положений: среди нормальных колебаний должны быть такие, которые при больших длинах волн (по сравнению с межатомными расстояниями) соответствуют обычным звуковым волнам в кристалле. Таких волн три (для упругоизотропного тела — две волны поперечные и одна продольная), причём для всех трёх частота w — однородная функция 1-го порядка от компонент вектора k,обращающаяся в нуль при k= 0, то есть для трёх из 3n типов нормальных колебаний закон дисперсии при малых значениях волнового вектора имеет вид:
w s = c sk (s = 1, 2, 3), где c s— скорость звука в кристалле, зависящая от направления распространения звука. Эти три типа нормальных колебаний называются акустическими, при их возбуждении атомы одной ячейки колеблются как целое. Остальные 3n — 3 типов колебаний называются оптическими (впервые наблюдались по резонансному поглощению света). Частота w оптического колебания при k® 0 стремится к конечному пределу. При этом атомы элементарной ячейки колеблются друг относительно друга, а центр тяжести ячейки покоится. Колебание каждого типа имеет макс. частоту w sмакс; это значит. что существует максимальная частота колебаний атомов в кристалле w макс» с/а» 10 12—10 13 сек –1 .Знание закона дисперсии позволяет определить плотность состояний n(w). Число колебательных состояний в интервале частот (w, w + Dw) равно n(w) Dw. При w ® 0 n(w) ~ w 2, а при w ® w максn(w) » . Плотность состояний играет определяющую роль в термодинамических равновесных свойствах Т. т.
Каждой волне с волновым вектором kи частотой со можно сопоставить квазичастицу с квазиимпульсом и энергией (см. Корпускулярно-волновой дуализм ) .Квазичастица, соответствующая волне нормальных колебаний, называется фононом. Квазиимпульс фонона во многом схож с импульсом свободной частицы. Скорость фонона u ф— групповая скорость волны:
.
Распределение фононов по энергиям в состоянии термодинамического равновесия описывается функцией Планка:
,
где ,— среднее число фононов сорта s( s= 1, 2..., 3n) с квазиимпульсом р. Функцию Планка можно рассматривать как функцию распределения идеального газа фононов, подчиняющихся статистике Бозе — Эйнштейна (см. Статистическая физика ) .Химический потенциал фононов равен нулю, что указывает на зависимость числа фононов от температуры. При высоких температурах число фононов растет с температурой линейно, а при низких — пропорционально T 3 ,что отражает уменьшение амплитуды тепловых колебаний атомов с уменьшением температуры. В действительности газ фононов не является идеальным, так как фононы взаимодействуют друг с другом (ангарионизм колебаний); чем выше температура, тем это взаимодействие существеннее. Взаимодействие фононов описывается в теории введением для них длины свободного пробега, которая возрастает при понижении температуры. Фононы взаимодействуют не только друг с другом, но и с др. квазичастицами, а также со всеми дефектами кристалла (в частности, рассеиваются границами Т. т.).
В аморфных телах тепловое движение частиц также носит колебательный характер. Однако фононы удаётся ввести только для низкочастотных акустических колебаний, когда на длине волны расположено много атомов, колеблющихся синфазно, и их взаимное расположение не слишком существенно. Максимальные частоты колебаний в аморфных телах мало отличаются от максимальных частот в кристаллах, так как определяются силами взаимодействия между ближайшими атомами. В результате этого, а также наличия ближнего порядка в аморфных телах плотность колебательных состояний близка к плотности колебательных состояний кристаллов.
Диффузия атомов. В процессе колебания кинетическая энергия частицы в результате флуктуаций может превысить глубину потенциальной ямы,в которой она движется. Это означает, что частица способна «оторваться» от своего положения равновесия. Обычно вероятность Wтакого процесса при комнатной температуре мала:
.
Здесь W 0~ W макс» 10 12—10 13 сек –1 ,а величина u порядка энергии связи, рассчитанной на одну частицу. Поэтому все процессы в Т. т., сопровождающиеся переносом вещества (диффузия, самодиффузия и т. д.), идут сравнительно медленно. Только вблизи температуры плавления скорость этих процессов возрастает. Коэффициент диффузии, определяющий поток частиц по известному градиенту их концентрации, пропорционален Wи существенно зависит от состояния кристаллической решётки. Пластическая деформация обычно «разрыхляет» кристалл, снижает потенциальные барьеры, разделяющие равновесные положения атомов, и поэтому увеличивает вероятность их «перескоков».
В исключительных случаях, например в твёрдом Не, возможно туннельное «просачивание» атомов из одного положения равновесия в другое (см. Туннельный эффект ) .Эта «квантовая» диффузия приводит к тому, что коэффициент диффузии ¹ 0 при Т® 0 К. Делокализация атомов, связанная с туннельными переходами, превращает примесные атомы и вакансии в своеобразные квазичастицы (примесоны, вакансионы). Они определяют свойства квантовых кристаллов.
Тепловые свойства Т. т.У большинства Т. т. теплоёмкость Спри комнатных температурах приближённо подчиняется Дюлонга и Пти закону: С =3 R кал/моль( R — газовая постоянная) .Закон Дюлонга и Пти — следствие того, что за тепловые свойства Т. т. при высоких температурах ответственны колебательные движения атомов, подчиняющиеся закону равнораспределения (средняя энергия, приходящаяся на одну колебательную степень свободы, равна kT) .Наблюдаемые при высоких температурах отклонения от закона Дюлонга и Пти объясняются повышением роли ангармонизма колебаний. Понижение температуры приводит к уменьшению теплоёмкости; благодаря квантовому «замораживанию» средняя энергия колебания Ek, определяемая выражением: , меньше kT.При самых низких температурах часть теплоёмкости, обусловленная колебаниями решётки, С ~ T 3 .Колебательная часть теплоёмкости Т. т. может быть представлена как теплоёмкость газа фононов.
Переход от классического значения теплоёмкости С = 3Rк квантовому С ~ T 3наблюдается при характерной для каждого Т. т. температуре q, называемой Дебая температурой,физический смысл которой определяется соотношением: . Отсюда следует, что при Т <.q в Т. т. есть колебания, к которым необходимо применять квантовые законы. Для большинства Т. т. q колеблется в пределах 10 2—10 3K. У молекулярных кристаллов q аномально низка (» 10 К).
Температурная зависимость колебательной части теплоёмкости при Т<< q, как и её значение при Т>> q, одинакова для всех Т. т. ( рис. 1 ), в частности и аморфных. В промежуточной области температур теплоёмкость зависит от детальных свойств n(w), то есть от конкретного распределения частот по спектру Т. т. Вблизи Т= 0 К из-за уменьшения колебательной части теплоёмкости Т. т. проявляются другие (неколебательные), низко расположенные уровни энергии Т. т. Так, в металлах при ( E F— энергия Ферми, см. ниже) основной вклад в теплоёмкость вносят электроны проводимости (электронная часть теплоёмкости ~ Т), а в ферритах при ТЈ q 2/ Т с( T c— температура Кюри) — спиновые волны (магнонная часть теплоёмкости ~ T , см. ниже). Квантовое «замораживание» большинства движений в Т. т. при Т® 0 К позволяет измерить ядерную теплоёмкость и теплоёмкость, обусловленную локальными колебаниями частиц.
Важной характеристикой тепловых свойств Т. т. служит коэффициент теплового расширения ( V- объем Т. т., р —давление). Отношение a/ Сне зависит от температуры (закон Грюнайзена). Хотя закон Грюнайзена выполняется приближённо, он качественно правильно передаёт температурный ход a .Тепловое расширение — следствие ангармоничности колебаний (при гармонических колебаниях среднее расстояние между частицами не зависит от температуры).
Теплопроводность зависит от типа Т. т. Металлы обладают значительно большей теплопроводностью, чем диэлектрики, что связано с участием электронов проводимости в переносе тепла (см. ниже). Теплопроводность — структурно чувствительное свойство. Коэффициент теплопроводности зависит от кристаллического состояния (моно- или поликристалл), наличия или отсутствия дефектов и т. п. Явление теплопроводности удобно описывать, используя концепцию квазичастиц. Все квазичастицы (прежде всего фононы) переносят тепло, причём, согласно кинетической теории газов, вклад каждого из газов квазичастиц в коэффициент теплопроводности можно записать в виде: ,где g — численный множитель, С— теплоёмкость, — средняя тепловая скорость, l— длина свободного пробега квазичастиц. Величина lопределяется рассеянием квазичастиц, которое в случае фонон-фононных столкновений — следствие ангармоничности колебаний.
Из-за участия в тепловых свойствах разнообразных движений, присущих Т. т., температурная зависимость большинства характеристик Т. т. очень сложна. Она дополнительно осложняется фазовыми переходами, которые сопровождаются резким изменением многих величин (например, теплоёмкости) при приближении к точке фазового перехода.
Электроны в Т. т. Зонная теория.Сближение атомов в Т. т. на расстоянии порядка размеров самих атомов приводит к тому, что внешние (валентные) электроны теряют связь с определённым атомом — они движутся по всему Т. т., вследствие чего дискретные атомные уровни энергии расширяются в полосы (энергетические зоны). Зоны разрешенных энергий могут быть отделены друг от друга зонами запрещенных энергий, но могут и перекрываться. Глубинные атомные уровни расширяются незначительно, уровни, соответствующие внешним оболочкам атома, расширяются настолько, что соответствующие энергетические зоны обычно перекрываются. Индивидуальность зон, однако, сохраняется: состояния электронов с одной и той же энергией, но принадлежащие разным зонам, различны.
В кристаллах состояние электрона в зоне благодаря периодичности сил, действующих на него, определяется квазиимпульсом р,а энергия электрона E— периодическая функция квазиимпульса: . [ — закон дисперсии, s— номер зоны]. В аморфных телах, хотя состояние электрона не определяется квазиимпульсом (квазиимпульс ввести нельзя), зонный характер электронного энергетического спектра сохраняется. Строго запрещенных зон энергии в аморфных телах, по-видимому, нет, однако есть квазизапрещённые области, где плотность состояний меньше, чем в разрешенных зонах. Движение электрона с энергией из квазизапрещённой области локализовано, из разрешенной зоны — делокализовано (как в кристалле).
В соответствии с Паули принципом в каждом энергетическом состоянии может находиться не более двух электронов. Поэтому в каждой энергетической зоне кристалла может поместиться не более 2Nэлектронов, где N —число уровней в зоне, равное числу элементарных ячеек кристалла. При Т® 0 К все электроны занимают наиболее низкие энергетические состояния. Существование Т. т. с различными электрическими свойствами связано с характером заполнения электронами энергетических зон при Т= 0 К. Если все зоны либо полностью заполнены электронами, либо пусты, то такие Т. т. не проводят электрического тока, то есть являются диэлектриками ( рис. 2 , а). Т. т., имеющие зоны, частично заполненные электронами, — проводники электрического тока — металлы ( рис. 2 , б) .Полупроводники представляют собой диэлектрики (нет частично заполненных зон при Т= 0 К) со сравнительно малой шириной запрещенной зоны между последней заполненной (валентной) зоной и первой (свободной — зоной проводимости, ( рис. 2 , в). Наличие дефектов и примесей в кристалле приводит к возникновению дополнительных (примесных) энергетических уровней, располагающихся в запрещенной зоне. У полупроводников эти уровни часто расположены очень близко либо от валентной зоны ( рис. 2 , д), либо от зоны проводимости ( рис. 2 , г). Т. т. с аномально малым перекрытием валентной зоны и зоны проводимости называется полуметаллами (например, у Bi ширина перекрытия ~ 10 -5ширины зоны). Существуют бесщелевые полупроводники, у которых зона проводимости примыкает к валентной (например, сплавы Bi — Sb, Hg — Те с определённым соотношением компонент).
Энергия, отделяющая занятые состояния от свободных, называется Ферми энергией.Если она расположена в разрешенной зоне, то ей соответствует изоэнергетическая Ферми поверхность,выделяющая область занятых электронных состояний в пространстве квазиимпульсов. У полупроводников энергия Ферми расположена в запрещенной зоне и носит несколько формальный характер. У бесщелевых полупроводников она совпадает с границей, отделяющей валентную зону от зоны проводимости.
Энергетическая зона, в которой не заняты состояния с энергиями, близкими к максимальной, проявляет себя как зона, содержащая положительно заряженные частицы — дырки. В зависимости от расположения поверхность Ферми бывает электронной и дырочной. Если число электронов n э (число занятых состояний вблизи минимума энергии в зоне) равно числу дырок n д, проводник называется скомпенсированным (например, Bi, у которого n э= n д» 10 -5на атом). У бесщелевых полупроводников поверхность Ферми вырождается в точку либо в линию.
Элементарное возбуждение электронной системы кристалла заключается в приобретении электроном энергии, благодаря чему он оказывается в области р-пространства, где в основном состоянии электрона не было; одновременно возникает свободное место (дырка) в области р-пространства, занятой электронами в основном состоянии. Так как электрон и дырка движутся независимо, то их следует считать различными квазичастицами. Другими словами, элементарное возбуждение электронной системы заключается в рождении пары квазичастиц — электрона проводимости и дырки. Электроны и дырки подчиняются статистике Ферми — Дирака. В диэлектриках и полупроводниках возбуждённые состояния отделены от основного состояния энергетической щелью, в металлах (а также в полуметаллах и бесщелевых полупроводниках) — непосредственно примыкают к основному состоянию ( рис. 2 ). Электронная система Т. т. порождает и более сложные возбуждения: в полупроводниках — экситоны Ванье — Мотта и Френкеля и поляроны;в сверхпроводящих металлах — куперовские пары (см. ниже). Кроме того, по электронной системе Т. т. могут распространяться волны — плазменные колебания (соответствующие им квазичастицы — называются плазмонами ).
Металлы. В металлах при низких температурах электроны частично заполненных зон (электроны проводимости) играют важную роль в тепловых свойствах. Линейная зависимость теплоёмкости и коэффициента теплового расширения от температуры (при Т® 0 К) объясняется тем, что электроны, подчиняющиеся статистике Ферми — Дирака, сильно вырождены. Вырождение сохраняется практически при всех температурах, так как температура вырождения T F= E F/kдля хороших металлов ³ 10 4К. Этим объясняется тот факт, что теплоёмкость металлов при высоких температурах неотличима от теплоёмкости диэлектриков.
Благодаря вырождению в металлах во многих процессах участвуют только электроны, энергия которых E» E F,то есть электроны, расположенные вблизи поверхности Ферми. Поверхности Ферми, как правило, имеют сложную форму. Разнообразие формы поверхностей Ферми у различных металлов обычно выявляется в их поведении в достаточно сильном магнитном поле Н,когда размеры орбиты электрона (~ 1/ Н) значительно меньше длины его свободного пробега. Проекция траектории электрона на плоскость, перпендикулярную Н,подобна плоскому сечению поверхности Ферми, и, если между двумя актами рассеяния электрон многократно опишет свою траекторию, то форма поверхности Ферми проявится в его свойствах. Осцилляции магнитной восприимчивости и электросопротивления в магнитном поле позволяют измерить экстремальные площади сечений поверхности Ферми (см. Де Хааза — ван Альфена эффект, Шубникова — Де Хааза эффект) .По поглощению ультразвука в магнитном поле можно измерить экстремальные диаметры поверхности Ферми; гальваномагнитные явления дают возможность установить общие контуры поверхности Ферми. Циклотронный резонанс — метод определения частоты обращения электрона в магнитном поле Н,которая зависит от его эффективной массы m*,связанной с законом дисперсии электронов. Перечисленные эксперименты производятся при низкой температуре на монокристаллических сверхчистых образцах и дают возможность исследовать электронный энергетический спектр.
Одной из важнейших характеристик металла является его удельная электропроводность ( ,которую для изотропного металла можно записать в виде , где S F— площадь поверхности Ферми, а l p— длина свободного пробега электронов, учитывающая рассеяние электронов с изменением квазиимпульса. Температурная зависимость s и удельного сопротивления r = 1/s ( рис. 3 ) определяется температурной зависимостью длины свободного пробега l p.При Т³ q механизм рассеяния обусловлен столкновениями с фононами ; при Т<< q из-за уменьшения числа фононов «проявляются» др. механизмы: столкновения со статическими дефектами кристалла, в частности с поверхностью образца, электрон-электронные столкновения и др. ( рис. 4 ). В металлах большая часть теплоты переносится электронами проводимости. В широком диапазоне температур существует простое соотношение между электропроводностью s и электронной частью теплопроводности c c( Видемана — Франца закон ) :
',
где — число Лоренца. Наблюдающиеся при ТЈ q отклонения от закона Видемана — Франца отражают особенности взаимодействия электронов проводимости с фононами (при Т< q длина свободного пробега, входящая в выражение для c и учитывающая изменение потока энергии электронов за счёт столкновений, не равна l p) . Термоэлектрические явления( термоэдс, Пельтье эффекти др.) также являются следствием участия электронов в переносе тепла. Магнитное поле изменяет электропроводность и теплопроводность и служит причиной гальваномагнитных и термомагнитных явлений (см. Холла эффект, Нернста — Эттингсхаузена эффект).
Коэффициент отражения электромагнитных волн металлом близок к 1. Электромагнитная волна благодаря скин-эффекту практически не проникает в металл; глубина d проникновения в радиодиапазоне равна (w — частота волны). В оптическом диапазоне d = с/w 0х» 10 -5 см, с— скорость света; w 0» 1015 сек –1— плазменная, или ленгмюровская, частота электронов металла ( — энергия плазмона ) .При низких температурах взаимодействие металла с электромагнитной волной обладает особенностями, связанными с аномальным характером скин-эффекта (d Ј l, см. Металлооптика ) .На характер распространения электромагнитных волн в металле влияет магнитное поле Н:в некоторых металлах при Н¹ 0 и при низких температурах могут распространяться слабозатухающие электромагнитные волны (магнитоплазменные волны, см. Плазма твёрдых тел ).
Сверхпроводимость. У многих металлов и сплавов при охлаждении ниже некоторой температуры T cнаблюдается полная потеря электросопротивления — металл переходит в сверхпроводящее состояние. Такой переход — фазовый переход 2-го рода, если Н= 0, и 1-го рода, если Н¹ 0. T cзависит от Н.В достаточно больших магнитных полях [ Н > Нкр(Т)] сверхпроводящего состояния не существует. Сверхпроводники обладают аномальными магнитными свойствами, по которым делятся на два класса — сверхпроводники 1-го и 2-го родов. В толще сверхпроводника 1-го рода при Н < Нкрмагнитное поле равно 0 ( Мейснера эффект ) .В сверхпроводник 2-го рода магнитное поле может проникать в виде сложной вихревой структуры.
Явление сверхпроводимости объясняется притяжением между электронами, обусловленным обменом фононами. При этом образуются электронные (куперовские) пары, возникает «конденсат», способный двигаться без сопротивления. Устойчивость сверхпроводящего состояния обеспечена наличием энергии связи электронов в паре, благодаря чему зона энергий элементарных возбуждений отделена энергетической щелью от энергии основного состояния (см.