реактивный двигатель,работающий на твёрдом ракетном топливе ( порохах ) .В РДТТ всё топливо в виде заряда помещается в камеру сгорания;двигатель обычно работает непрерывно до полного выгорания топлива.
     РДТТ были первыми ракетными двигателями, нашедшими практическое применение. Ракеты с РДТТ (пороховые ракеты) известны уже около 1000 лет; они использовались как сигнальные, фейерверочные, боевые. Описания «огненных стрел» — прототипов пороховых ракет — содержатся в китайских и индийских рукописях 10 в. Это оружие представляло собой обычные стрелы, к которым прикреплялись бамбуковые трубки, заполненные порохом. В 1-й половине 17 в. в «Уставе» Онисима Михайлова описываются первые русские ракеты —  артиллерийские ядра с каналом, в котором помещался пороховой заряд. В 1799 индийцы применяли боевые ракеты против английских колонизаторов, а в 1807 англичане использовали подобные ракеты в войне с Данией (при осаде Копенгагена). Первоначально топливом для РДТТ служил дымный порох.В конце 19 в. был разработан бездымный порох,превосходивший дымный по устойчивости горения и работоспособности. В дальнейшем были получены новые высокоэффективные виды твёрдых топлив, что позволило конструировать боевые ракеты с РДТТ самой различной дальности, вплоть до межконтинентальных баллистических ракет.
     РДТТ применяются (1976) главным образом в реактивной артиллерии,а также в космонавтике в качестве тормозных двигателей космических летательных аппаратов и двигателей первых ступеней ракет-носителей.
     РДТТ состоит из корпуса (камеры сгорания), в котором размещен весь запас топлива, и реактивного сопла. Корпус РДТТ обычно стальной, но иногда выполняется из стеклопластика. Околокритическая (наиболее теплонапряжённая) часть сопла РДТТ делается из графита, тугоплавких металлов и их сплавов, закритическая — из стали, пластических масс, графита.
     Твёрдое ракетное топливо обычно заливается в корпус РДТТ в полувязком текучем состоянии; после отверждения топливо плотно примыкает к стенкам, защищая их от горячих газов. Иногда (в РДТТ неуправляемых ракет) топливо закладывается в камеру в виде спрессованных из порошка зёрен и шашек. Для зажигания топлива служит воспламенительное устройство, которое может входить непосредственно в конструкцию РДТТ или быть автономным (например, специальный пусковой двигатель). В простейшем случае воспламенительное устройство представляет собой навеску дымного пороха в оболочке из материи или металла. Навеска поджигается с помощью электрозапала или пиросвечи с пиропатроном.
     Регулирование тяги РДТТ может производиться изменением (увеличением или уменьшением) поверхности горения заряда или площади критического сечения сопла; впрыскиванием жидкости, например воды, в камеру РДТТ. Направление тяги РДТТ меняется с помощью газовых рулей; отклоняющейся цилиндрической насадки (дефлектора); вспомогательных управляющих двигателей; качающихся сопел основных двигателей и т. д. Для обеспечения заданной скорости ракеты в конце активного участка траектории применяется «отсечка» РДТТ (гашение заряда путём быстрого снижения давления в камере двигателя, отклонение реактивной струи и др. способы).
     Диапазон тяг РДТТ—от сотых долей к для микроракетных двигателей до 10—15 Мндля мощных двигателей, устанавливаемых на ракетах-носителях (тяга экспериментального РДТТ, разработанного в США, составляет около 16 Мн) .Для лучших РДТТ (1975) удельный импульс достигает 2,5—3 ( кнЧсек)/кг.
     РДТТ характеризуются высокой надёжностью (99,96—99,99%); возможностью длительного хранения, то есть постоянной готовностью к запуску; значительной тягой за счёт очень короткого времени горения; безопасностью в обращении из-за отсутствия токсичных материалов; большой плотностью топлива (1,5— 2 г/см 3) .Недостатки РДТТ: большая масса конструкции из-за высоких давлений в камере сгорания; чувствительность большинства видов топлива к удару и изменениям температуры; неудобство транспортировки снаряженных РДТТ; малое время работы; трудности, связанные с регулированием вектора тяги; малый удельный импульс по сравнению с жидкостными ракетными двигателями.
     Лит.:Сокольский В. Н., Ракеты на твердом топливе в России, М., 1963; Рожков В. В,, Двигатели ракет на твердом топливе, М., 1971; Виницкий А. М., Ракетные двигатели на твердом топливе, М., 1973.
     Г. А. Назаров.

диметилглиоксима и (NH 4) 2CO 3, в результате чего по является красный диметилглиоксимин Ni (C 4H 7O 2N) 2. Соли Pb 2=дают с KI жёлтый PbI 2, соли Fe 3+и K 4Fe (CN) 6— синий Fe 4,[Fe (CN 6) 3(берлинская лазурь) и т. п. Т. р. могут быть использованы в полевых условиях для идентификации минералов, руд, химических удобрений, проверки лекарств. препаратов и др.
     Лит.:Воскресенский П. И., Аналитические реакции между твердыми веществами и полевой химический анализ, М., 1963.
     С. А. Погодин.

фазы переменного состава, в которых атомы раз личных элементов смешаны в известных пределах или неограниченно в общей кристаллической решётке.Растворимость в твёрдом состоянии свойственна всем кристаллическим твёрдым телам. Б большинстве случаев эта растворимость ограничена узкими пределами, но известны системы с непрерывным рядом Т. р. (например, Cu — Au, Ti — Zr, Ge — Si, GaAs — GaP). По существу все кристаллические вещества, известные как «чистые» или «особо чистые», являются Т. р. с очень малым содержанием примесей, поскольку абсолютная чистота практически недостижима. В природе широко распространены Т. р. минералов (см. Изоморфизм ) .Наличие широкой области Т. р. на основе соединений или главным образом металлов имеет громадное значение в технике, так как образующиеся при этом сплавы отличаются более высокими механическими, физическими и др. свойствами, чем исходные компоненты. При распаде Т. р. сплавы при обретают новые, часто особые свойства (см. Термическая обработка, Закалка, Отпуск).
     Примесные атомы или атомы легирующих элементов могут образовывать с матрицей основного кристалла либо Т. р. замещения, либо Т. р. внедрения; это зависит в основном от двух факторов: размерного и электрохимического. Известны два полуэмпирических правила Юм-Розери, согласно которым Т. р. замещения образуются лишь теми атомами, которые, во-первых, имеют близкие по размерам радиусы (отличающиеся не более чем на 15%, а в случае Т. р. на основе Fe — не более чем на 8%) и, во-вторых, электрохимически подобны (находятся не слишком далеко друг от друга в ряду напряжении ) .Т. р. внедрения образуются в тех случаях, когда размеры атомов компонентов существенно отличаются друг от друга и возможно внедрение атомов одного сорта в пустоты (междоузлия) кристаллической решётки, образованной атомами другого сорта. Образование подобных Т. р. типично для растворения в металлах таких неметаллов, как бор, кислород, азот и углерод (см., например, Аустенит, Мартенсит) .Т. р. как замещения, так и внедрения могут быть либо неупорядоченными — со статистическим распределением атомов в решётке, либо частично или полностью упорядоченными — с определённым расположением атомов разного сорта относительно друг друга. Полностью упорядоченные Т. р. принято называть сверхструктурными. В некоторых случаях в Т. р. атомы одного сорта могут стремиться к объединению, образуя скопления, которые, в свою очередь, могут определённым образом ориентироваться или упорядоченно распределяться. Экспериментальные данные об упорядочении Т. р. получают в основном при изучении диффузного рассеяния рентгеновских лучей (см. Рентгеновский структурный анализ ) .Т. р., находящиеся в термодинамическом равновесии, в макроскопическом масштабе можно считать истинно гомогенными; однако при этом они не обязательно гомогенны при рассмотрении в атомном масштабе. Наряду с двумя основными типами Т. р. — замещения и внедрения —  может быть выделен и третий тип — Т. р. вычитания, образованные вакантными узлами кристаллической решётки (см. Вакансия и Дефекты в кристаллах ) .Существуют и неметаллические системы, которые относят к Т. р., обладающие весьма ценными свойствами и широко используемые в современной технике, например полупроводники и ферриты.
     Лит.см. при ст. Сплавы.
      Г. В. Инденбаум.

Скарификация семян ) нормализует их прорастание.

Спечённые материалы ) и литые Т. с.
     Спечённые Т. с. — композиционные материалы,состоящие из металлоподобного соединения, цементированного металлом или сплавом. Их основой чаще всего являются карбиды вольфрама или титана, сложные карбиды вольфрама и титана (часто также и тантала), карбонитрид титана, реже — др. карбиды, бориды и т. п. В качестве цементирующих металлов обычно используют кобальт, реже — никель, его сплав с молибденом, сталь.
     Впервые спечённый Т. с. получен из карбида вольфрама и кобальта в Германии в 1923—25, промышленное производство начато в 1926 (сплав «видиа»: 94% WC и 6% Со). В СССР первый Т. с. из карбида вольфрама (90%) и кобальта (10%) — сплав «победит» — создан в 1929, а в 1935 организовано производство Т. с. «альфа» из смесей карбидов вольфрама и титана (21, 15 и 5% TiC в сплаве) и кобальта (соответственно 8, 6 и 8% Со). В 1975
     в СССР производили изделия более 1300 форморазмеров из Т. с. более 20 марок. Основу выпуска Т. с. составляют вольфрамовые (вольфрамо-кобальтовые) с 3—25% Со, титано-вольфрамовые с 4—40% TiC и 4—12% Со и титано-тантало-вольфрамовые Т. с. Эти группы Т. с. обозначают буквами ВК, ТК и ТТК с цифрами: после Т —  содержание (%) карбида титана, после ТТ — суммы карбидов титана и тантала, а после К — кобальта; в сплавах ВК после цифры иногда добавляют буквы В, М или ОМ, указывающие на крупность зёрен карбида вольфрама (крупно-, мелко-, особомелкозернистые сплавы). Например, ВК6М — сплав на основе карбида вольфрама с 6% Со, мелкозернистый. Эти сплавы характеризуются большой твёрдостью (86—92 HRA), прочностью (у сплавов ВК разных марок пределы прочности при изгибе 1—2,5 Гн/м 2 ,или 100— 250 кгс/мм 2 ,при сжатии 3,2—5,9 Гн/м 2 ,или 320—590 кгс/мм 2 ,в зависимости от содержания кобальта; у сплавов ТК — соответственно 1,15—1,6 Гн/ м 2, или 115— 160 кгс/мм 2 ,и 3,8—6,5 Гн/ м 2, или 380— 650 кгс/мм 2) ,износостойкостью (эти свойства сохраняются на достаточно высоком уровне даже при нагреве до 800—900 °С), а также электро- и теплопроводностью; сплавы ВК имеют плотность в пределах 13 000—15 100 кг/м 3 ,ТК и ТТК — 9 600—15 000 кг/м 3
     Всё большее значение приобретает производство безвольфрамовых Т. с. Их выпуск позволяет заменить относительно дорогой вольфрам более дешёвыми металлами, расширить номенклатуру Т. с. со специфическими свойствами, создать Т. с. с более высокими эксплуатационными характеристиками. Очень перспективны, в частности, Т. с. на основе карбонитрида титана с никель-молибденовым сплавом в качестве связующего металла и Т. с. на основе карбида титана с тем же или со стальным связующим. Чрезвычайно важное направление развития производства Т. с. — быстро возрастающий выпуск неперетачиваемых режущих пластинок из Т. с. с тонкими (толщиной 5—15 мкм) покрытиями из карбонитрида, карбида или нитрида титана либо др. соединений, обеспечивающими повышение стойкости при резании в 3—10 раз. Применение режущего инструмента с такими пластинками особенно перспективно на автоматических линиях обработки резанием деталей машин в автомобильной и др. отраслях промышленности.
     Спечённые Т. с. производят методами порошковой металлургии в виде многогранных пластинок и фасонных цельнотвердосплавных изделий. Их с большой эффективностью применяют для обработки металлов, сплавов и неметаллических материалов резанием, для бесстружковой обработки (волочение, прокатка, штамповка и т. п.), для оснащения рабочих частей буровых инструментов и как конструкционные материалы. Благодаря применению Т. с. достигается существенная интенсификация процессов в машиностроении и металлообработке, в добыче руд, каменного угля, нефти, газа и др. полезных ископаемых. Заменив инструментальные стали, Т. с. способствовали технической революции в металлообрабатывающей и горной промышленности, где стойкость инструмента, оснащенного Т. с., повысилась в 15—100 раз, что обусловило рост производительности труда в 3—5 раз.
     Литые Т. с. получают методом плавки и литья. Примером литых Т. с. служит рэлитный сплав WC — W 2C (содержит 3,7—4,0% С) с твёрдостью 91—92 HRA. Его получают в виде крупных зёрен плавкой с последующим дроблением слитков или разбрызгиванием расплавов; применяют рэлит главным образом для наварки на соприкасающиеся с породой части работающего с большими усилиями бурового инструмента; для тех же целей разработаны безвольфрамовые Т. с. на основе боридов и др. износостойких твёрдых соединений. К литым Т. с. относится большая группа Т. с., напыляемых или наплавляемых на детали механизмов и машин, подверженные абразивному износу, эрозии или коррозии, например стеллиты (Cr, W, Ni, С; основа Со), сормайты (Cr, Ni, С; основа Fe), стеллитоподобные (основа Ni) и многие др. износостойкие Т. с. Их применение позволяет в 2—4 (иногда в 10—20) раз увеличить срок службы быстроизнашивающихся деталей механизмов и машин, в том числе автомашин, тракторов, комбайнов и т. д.
     Лит.:Металлокерамическне твёрдые сплавы. М., 1970; Креймер Г. С., Прочность твёрдых сплавов, 2 изд., М., 1971; Туманов В. И., Свойства сплавов системы карбид вольфрама — кобальт, М., 1971; его же, Свойства сплавов системы карбид вольфрама — карбид титана — карбид тантала — карбид ниобия — кобальт, М., 1973; Третьяков В. И., Основы металловедения и технологии производства спечённых твёрдых сплавов, 2 изд., М., 1976.
      О. П. Колчин.

сублимации водяного пара на холодных поверхностях, подверженных действию ветра. Это наветренные поверхности каменных стен, колонн, скал и т. п. массивных предметов с большой теплоёмкостью и довольно хорошей теплопроводностью. Т. н. возникает при отрицательных температурах воздуха, но при ослаблении морозов, когда указанные предметы, сильно охладившиеся в предшествующую холодную погоду, ещё не успели принять температуру притекающего к ним более тёплого воздуха. Толщина Т. н. не превышает нескольких мм.Т. н. следует отличать от гололёда.

Яворским начало против Т. и его единомышленников следственное дело по обвинению в ереси. Благодаря заступничеству петербургских вельмож и самого Петра I, после отречения от своих воззрений Т. в 1718 был освобожден на поруки. В 1723 Синод снял с него церковное проклятие.
     Лит.:Корецкий В. И., Вольнодумец XVIII в. Д. Тверитинов, в кн.: Вопросы истории религии и атеизма, в. 12, М., 1964, с. 244—66.

мировых посредников,выразивших протест против крепостнических сторон Крестьянской реформы 1861.В феврале 1862 губернское дворянское собрание обратилось к императору Александру II с адресом, в котором указывалось на необходимость немедленного обязательного для помещиков предоставления крестьянам земель на выкуп, то есть прекращения временнообязанных отношений. В адресе предлагались также гласность судопроизводства и созыв от всех сословий центрального представительного собрания. Группа мировых посредников (13 человек во главе с братьями А. А. и Н. А. Бакуниными) заявила губернатору о своей солидарности с адресом н отказалась руководствоваться в своей деятельности « Положениями» 19 февраля 1861.Правительство расправилось с «легально действовавшими дворянами — помещиками» (Ленин В. И., Полное собрание соч., том 5, страница 27): они были приговорены к двухлетнему заключению в Петропавловскую крепость, однако вскоре освобождены как лица, не представлявшие особой опасности самодержавию. Протест тверских посредников явился одним из выражений складывавшегося либерализма в России.
     Лит.:Попов И. П., Либеральное движение провинциального дворянства в период подготовки и проведения реформы 1861 г., «Вопросы истории». 1973, № 3.

Ярослав Всеволодович выделил Т. к. из состава Переяславского (Залесского) княжества своему сыну Александру Невскому.В 1247 его получил др. сын Ярослава — Ярослав Ярославич и с тех пор Т. к. находилось в руках его потомков. Т. к. менее др. княжеств Северо-восточной Руси было доступно для набегов татар, поэтому сюда стекалось население из др. районов Руси. Во 2-й половине 13 в. происходит быстрый рост Т. к. и усиление политического влияния его князей. В 60-е гг. 13 в. князь Ярослав Ярославич, заняв владимирский великокняжеский стол, стремился проводить широкую объединительную политику. Её продолжил Михаил Ярославич (правил в 1285—1318), занявший в 1305 владимирский стол. Возвышение Т. к. вызвало опасения у ханов Золотой Орды. Хан Узбек поддержал московских князей, соперников Твери. В Орде были казнены тверские князья Михаил Ярославич, затем его сын Дмитрий, а в 1339 — Александр Михайлович с сыном Федором. Стремление тверских князей возглавить процесс объединения русских земель сделало Т. к. на время центром освободительной борьбы против монголо-татарского ига. В 1327 в Твери и др. городах вспыхнуло восстание, которое Орда жестоко подавила. Тверь была разграблена и сожжена, население перебито или уведено в рабство. От этого удара Т. к. не смогло оправиться. Его ослаблению способствовал и процесс феодального раздробления. Во 2-й половине 14 в. из Т. к. выделяются Кашинское, Холмское, Микулинское и Дорогобужское княжества. Три последних в 15 в. делятся на ещё более мелкие. Внутреннее дробление Т. к. мешало его князьям собирать русские земли под своей властью. Они были вынуждены маневрировать между Золотой Ордой, Москвой и Литвой. В 70-х гг. 14 в. кн. Михаил Александрович с помощью Орды пытался соперничать с Москвой, но безуспешно. Стремясь ослабить Т. к., московские князья старались обострить отношения между тверскими и кашинскими князьями. Лишь в 1-й четверти 15 в. тверскому князю Ивану Михайловичу удалось сломить сопротивление Кашина. Влияние Т. к. усилилось в 30—50-е гг. 15 в., когда между московскими князьями вспыхнула феодальная война. Союза с тверским князем Борисом Александровичем искали великие князья Москвы и Литвы, византийский император и сын Тамерлана — Шахрух. Но после окончания феодальной войны Василия II Тёмного с Шемякой Т. к. начало быстро терять свою самостоятельность. Михаил Борисович был вынужден заключить ряд неравноправных договоров с Иваном III. Попытка Михаила переориентироваться на Литву привела к походу на Тверь московских войск, которые 12 сентября 1485 захватили город, и Т. к. перестало существовать как независимое государство. Т. к. внесло значительный вклад в сокровищницу русской культуры. Сохранились фрагменты больших тверских летописных памятников 15 в. В Твери были написаны Повести о Михаиле Ярославиче и Михаиле Александровиче, «Похвальное слово» инока Фомы, создавались замечательные памятники архитектуры и живописи (см. Тверская школа