ГИРОСКÓП, быстровращающееся симметричное твёрдое тело (ротор), ось вращения (ось симметрии) которого может изменять своё направление в пространстве. Ротор устанавливают в рамках (кольцах) карданова подвеса (см. рис.), позволяющего оси ротора занимать любое положение в пространстве. Такой гироскоп имеет три степени свободы: он может совершать независимые повороты вокруг осей АВ, DЕ и GK, пересекающихся в центре подвеса О. Если центр тяжести гироскопа совпадает с центром О, то гироскоп называется уравновешенным. Такой гироскоп обладает двумя основными свойствами. Первое свойство гироскопа состоит в том, что его ось стремится устойчиво сохранять в пространстве приданное ей первоначальное направление. Если, напр., эта ось вначале направлена на какую-либо звезду, то при любых перемещениях основания прибора и случайных толчках она будет продолжать указывать на эту звезду, меняя свою ориентацию относительно земных осей. Впервые это свойство гироскопа использовал французский физик Ж. Фуко для экспериментального доказательства вращения Земли вокруг её оси (1852).
   Гироскоп в кардановом подвесе
 
   Второе свойство гироскопа: если на ось (или рамку) гироскопа начинает действовать сила, стремящаяся привести ось во вращение, то возникает прецессия (движение) гироскопа с постоянной угловой скоростью в направлении, перпендикулярном этой силе. В момент прекращения действия силы мгновенно прекращается прецессия гироскопа.
   На основе гироскопа создаются приборы для автоматического управления движением самолётов, ракет, морских судов и т. д., прибор, определяющий направление географического меридиана (гирокомпас), прибор для определения направления истинной вертикали (гировертикаль) и др.
 
   ГЛИССÁДА, прямолинейная траектория движения самолёта, планёра при заходе на посадку. Снижение по глиссаде под углом 0.046—0.087 рад (2.64—5.0 град.) к горизонтальной плоскости обеспечивает самолёту плавное, скользящее приземление и существенно уменьшает динамическую нагрузку на шасси в момент касания взлётной полосы. Это особенно важно для больших пассажирских авиалайнеров и тяжёлых транспортных самолётов. На аэродромах глиссада задаётся при помощи двух радиомаяков – глиссадного и курсового, которые посылают в направлении заходящего на посадку самолёта радиолучи, обозначающие границы глиссады в наклонно-горизонтальной и вертикальной плоскостях. Самолёт начинает снижаться по глиссаде с высоты 200–400 м, высота глиссады над торцом взлётно-посадочной полосы 15 м. При отклонении траектории снижения самолёта от глиссады больше допустимого пилот обязан прекратить снижение и набрать высоту для повторного захода на посадку.
 
   ГЛУБÓКАЯ ПЕЧÁТЬ, способ получения полиграфического изображения на бумаге (или ином материале) с использованием печатных форм, на которых печатающие элементы углублены по отношению к пробельным (непечатающим) элементам. Глубина печатающих элементов на форме различается соответственно насыщенности оттенков воспроизводимого изображения. На бумаге такая форма оставляет оттиск, на котором слои краски имеют разную толщину, что создаёт тончайшие градации и переходы тонов. Формы для глубокой печати изготовляют фотомеханическим способом. В результате получают форму с выпуклым рельефом изображения, полностью воспроизводящим градацию тонов. На поверхность формы в печатной машине наносится жидкая краска, которая заполняет углубления; излишки краски с пробельных участков удаляются специальным устройством – ракелем. Глубокая печать применяется обычно для печатания иллюстрированных журналов, фотоальбомов, портретов и т. п.
   Схема формы и оттиска глубокой печати:
   1 – форма (а – непечатающие участки, б – углублённые печатающие участки формы); 2 – форма с краской; 3 – форма с очищенными пробельными участками, краска осталась в углублённых участках (в); 4 – бумага с оттиском краски
 
   ГЛУБÓКОЕ ОХЛАЖДÉНИЕ в технике, охлаждение вещества для получения и практического применения температур, лежащих ниже 170 К (–103 °C). Основное назначение глубокого охлаждения – сжижение газов и разделение газовых смесей. Разделение газовых смесей на составляющие основано на разнице их температур кипения. Напр., при охлаждении воздуха кислород переходит в жидкую фазу (сжижается) при 90 К (–183 °C – его температура кипения), а азот – при 77 К (–196 °C). Одним из основных способов достижения температур, при которых газ переходит в жидкую фазу, является дросселирование, т. е. пропускание сжатого газа через дроссель – сужение трубопровода, кран, вентиль или иное препятствие на пути газового потока. При дросселировании давление и температура газа изменяются (эффект Джоуля – Томсона); напр., для углекислого газа при перепаде давления на дросселе на 1 атм. температура газа падает на 1.25 °C.
   Жидкие газы находят широкое применение в технике, науке, медицине. Напр., жидкие кислород и водород используются в качестве окислителя и топлива в ракетной технике; жидкие гелий, водород, неон, азот используются для охлаждения лазеров, чувствительных полупроводниковых приборов, антенн радиотелескопов, сверхпроводящих линий связи и электропередачи; жидкий азот широко применяют для консервации и длительного хранения крови, костного мозга, кровеносных сосудов и пр. Охлаждение обмоток электрических машин, трансформаторов, магнитов позволяет в 5–6 раз уменьшить массу и габаритные размеры этих устройств. Использование соленоидов, сделанных из материалов, сопротивление которых при криогенных температурах падает до нуля (сверхпроводников), позволяет создавать сверхсильные магнитные поля, необходимые для многих физических экспериментов.
 
   ГÓДДАРД (goddard) Роберт (1882–1945), американский учёный в области ракетной техники. Впервые в мире произвёл запуск ракеты с жидкостным двигателем (1926). Ракета взлетела на 12.5 м и упала в 56 м от места старта; время полёта – 2.5 с. Деятельность Годдарда в области разработки и испытания ряда экспериментальных ракет и жидкостных двигателей для них способствовала развитию космонавтики 20 в. Помимо конструирования ракет, Годдард занимался исследованиями, связанными с использованием электромагнитной энергии в наземном транспорте, и др. На свои изобретения при жизни получил 83 патента; после его смерти на основании архивных материалов был зарегистрирован ещё 131 патент.
   Р. Годдард
 
   ГОЛОВНЫ́Е ТЕЛЕФÓНЫ (наушники), электроакустические приборы для индивидуального прослушивания как стереофонических, так и монофонических звуковых программ от магнитофонов, радиоприёмников, телевизоров. Состоят из двух телефонов (правого и левого), которые удерживаются на голове слушателя при помощи гибкой пластины (держателя) или вставляются непосредственно в ушные раковины. По принципу действия телефоны подобны громкоговорителям. Но в их работе есть существенное различие. Головные телефоны возбуждают упругие колебания воздуха (звук) внутри небольшого объёма ушной раковины. В этих условиях для достижения желаемой громкости звучания достаточна мощность 0.001—0.1 Вт. Чтобы обеспечить такую же громкость звучания в помещении посредством обычных громкоговорителей, требуется мощность в 100—1000 раз большая. Эта особенность телефонов позволяет создавать приборы с полосой воспроизводимых частот 20–20 000 Гц, т. е. обладающие такими же акустическими характеристиками, как самые высококачественные акустические системы. Кроме того, головные телефоны полностью исключают влияние акустических свойств помещения на слышимость воспроизводимых звуков. Высокое качество звучания телефонов вполне компенсирует некоторый дискомфорт, обусловленный наличием наушников на голове слушателя.
   Плеер с головными телефонами
 
   ГОНДÓЛА, 1) венецианская одновёсельная плоскодонная лодка с несимметричным поперечным сечением, поднятыми украшенными оконечностями; иногда на них устанавливают каюты.
   2) Обтекатель для размещения движителя, двигателя, шасси и прочих устройств на судах, самолётах и вертолётах.
   3) Кабина аэростата или стратостата.
   Гондола
 
   ГОРН, печь для нагрева заготовок, выплавки и переплавки металлов, а также обжига керамических изделий (посуды, художественных и декоративных украшений). Горном называют также нижнюю часть доменной печи. Гончарные горны были известны в Древнем Египте, Двуречье уже в 3-м тыс. до н. э. Найденные на территории России печи такого типа, использовавшиеся для плавления железной руды, относятся к 1-му тыс. до н. э. В них непосредственно из руды получали тестообразное железо (т. н. сыродутное). Такой горн выглядел как очаг, обложенный (теперь сказали бы – футерованный) огнеупорной глиной. Для поддержания тяги в нижней части горна устраивалось открытое отверстие (фурма). Способ выплавки металла в горнах просуществовал до нач. 20 в. В горнах можно было и нагревать металл перед ковкой или закалкой. Конструкция горнов совершенствовалась со временем, приобретая черты промышленной печи. Однако широкого распространения в металлургии горны не получили и ныне ограниченно применяются лишь в литейных цехах для плавки цветных металлов и сплавов, в кузницах, ремонтных мастерских, а также для получения свинца из рудных концентратов.
   Плавильная печь с передним горном.
   Гравюра из книги Г. Агриколы «О горном деле и металлургии» (1557)
 
   ГÓРНЫЙ КОМБÁЙН, комбинированная машина, выполняющая комплекс операций начиная с отделения от массива полезного ископаемого или породы и кончая погрузкой их в транспортные средства. Различают проходческие комбайны, предназначенные для разрушения горных пород, образования выработок (тоннелей); добычные комбайны, которые используются для отделения полезного ископаемого от массива с одновременным навалом на конвейер; стволопроходческие комбайны для разработки вертикальных стволов и горизонтальных тоннелей. Применяют проходческие комбайны избирательного и сплошного разрушения. Комбайны избирательного разрушения, оснащённые стреловидным исполнительным органом со сменной фрезерной коронкой, образуют выработки сечением 20–45 мІ, обеспечивают проходку до 1500 м в месяц. Комбайн сплошного разрушения наиболее часто применяется при проходке тоннелей в крепких горных породах, имеет исполнительный орган роторного типа с буровой коронкой, снабжённой выгребными ковшами. Комбайн осуществляет одновременное разрушение породы по всему периметру забоя и загрузку в транспортные средства. Добычные комбайны используются гл. обр. в угольных шахтах в длинных забоях (лавах) и коротких (камерах) на горизонтальных и наклонных выработках. Исполнительными органами служат буровые коронки и буровые устройства, работающие одновременно с погрузочными конвейерами. Стволопроходческий комбайн снабжён двухдисковым исполнительным органом (эжекторным или элеваторным) для подъёма на поверхность породы из забоя и перегрузки её в приёмный бункер. Управление горным комбайном автоматизировано на всех операциях; осуществляется с помощью переносного пульта.
   Проходческий горный комбайн
 
   ГРАДИ́РНЯ, сооружение для охлаждения воды атмосферным воздухом. Применяется гл. обр. в системах циркуляционного (оборотного) водоснабжения тепловых электростанций и промышленных предприятий для понижения температуры воды, отводящей тепло от теплообменных аппаратов, компрессоров, тепловых конденсаторов и т. п. Охлаждение происходит в основном за счёт испарения части воды под действием потока воздуха (испарение 1 % воды понижает её температуру примерно на 6 °C). Воздушный поток создаётся вентилятором либо образуется вследствие естественной тяги, возникающей в высокой башне (см. рис.). Охлаждаемая вода разбрызгивается в потоке воздуха и под действием силы тяжести стекает в резервуар охлаждённой.
   Схема башенной градирни:
   1 – ороситель; 2 – водораспределитель; 3 – резервуар (бассейн); 4 – подвод горячей воды; 5 – отвод охлаждённой воды; 6 – подача воздуха
 
   ГРАДОСТРОИ́ТЕЛЬСТВО, теория и практика планировки и застройки городов; область архитектуры, комплексно решающая функционально-практические (строительно-технические, санитарно-гигиенические) и эстетические (архитектурно-художественные) задачи.
   Попытки упорядочить города и поселения предпринимались ещё в сер. 3-го тыс. до н. э. В Древнем Египте и Двуречье города разбивали на геометрически правильные квадраты, выделяли главную улицу (для ритуальных процессий), создавали простые системы водопровода и канализации. В 5 в. до н. э. древнегреческий архитектор Гипподам из Милета разработал принципы регулярной городской планировки (разбивка города прямоугольной сетью улиц, комплексная застройка жилых кварталов равновеликими домами и т. д.). Эта градостроительная система называется гипподамовой (древние города Милет и Пирей). Она стала господствующей при планировке городов Древнего Рима (Помпеи, Остия и др.). В средневековых городах, опоясанных мощными крепостными стенами, преобладающей стала естественная радиально-кольцевая (реже веерная) структура, когда вокруг замка, собора или торговой площади стихийно создавалась сеть кривых и узких улочек, а на месте прежних тесных для растущего города стен образовывались кольцевые улицы. В русских городах роль такого центра играли древние кремли (детинцы). Со временем средневековые города становились тесными, узкие улочки расширялись, прокладывались проспекты, создавались городские ансамбли вокруг больших парадных площадей. Однако многие европейские города сохранили свою радиально-кольцевую структуру (Москва, Париж и др.). Начиная с 18 в. новые города Европы и Америки строили преимущественно с прямоугольной планировкой.
   В сложившихся городах градостроительство решает две на первый взгляд взаимоисключающие задачи: сохранение исторического облика города и его модернизация, без которой просто невозможно функционирование больших городов. Имеется в виду не только модернизация жилого фонда, водопроводных и канализационных сетей, но и строительство в условиях сложившейся застройки новых культурно-зрелищных и торговых сооружений, транспортных развязок, подземных автостоянок. Очень важно создание и плотное следование единой градостроительной концепции, потому что строительство неуместного для данных построек здания или инженерного сооружения может разрушить существующий городской ландшафт. По этой причине новое строительство в центрах городов всё чаще уходит под землю, создание подземных сооружений не разрушает облик древнего города. Бурный рост населения городов ставит проблему выбора площадок для нового жилищного строительства. Создаются спальные районы, которые связываются с центром города транспортными артериями, строятся города-спутники, пригородные коттеджные посёлки и таун-хаусы. В процессе развития цивилизации человек противопоставил природе город как форму пространственной организации общества. Но оказалось, что комфортно себя человек ощущает в городском ландшафте, сходном с природным. Мы теряемся на слишком широких улицах и бескрайних площадях; новые безликие районы, где не нашлось места небольшим, камерным площадям, тоже ощущаются неудобными для жизни. Современный город часто подавляет человека высотными зданиями, большими скоростями, скученностью населения. Поэтому основная задача современного градостроительства – создание гармоничной городской среды, удобной для жизни человека.
   Вид на площадь Святого Петра в Риме, Италия
 
   ГРАММОФÓН, аппарат для воспроизведения звука с граммофонной пластинки. Записанный на грампластинке звук воспроизводится с помощью механического звукоснимателя – иглы и мембраны. Колебания иглы, возникающие при её движении по звуковой канавке вращающейся грампластинки, передаются мембране, которая преобразует их в упругие колебания воздуха – звук, усиливаемый рупором. Граммофон имел пружинный привод, который заводился вращением ручки. Изобретён в 1888 г. немецким инженером Э. Берлинером, создавшим первую в мире граммофонную пластинку – цинковый диск, покрытый тонким слоем воска. В нач. 20 в. появился портативный вариант граммофона – патефон, ставший особенно популярным в 30—40-х гг. 20 в.; в 50-х гг. вытеснен более совершенным электрофоном (электропроигрывателем).
   Граммофон
 
   ГРАММОФÓННАЯ ПЛАСТИ́НКА (грампластинка), пластмассовый диск, на поверхности которого расположена спиральная канавка (дорожка) с записью звука, воспроизводимого с помощью граммофона, патефона, электрофона (электропроигрывателя). Воспроизведение звука осуществляется с помощью звукоснимателя, превращающего механические колебания иглы, движущейся по звуковой канавке грампластинки, в электрические колебания звуковой частоты, которые после усиления преобразуются громкоговорителем в звук. Частота вращения грампластинки со временем изменялась – от 90—100 об/мин до 78.45 и 33 1/3 об/мин. Первая граммофонная пластинка изготовлена немецким инженером Э. Берлинером в 1888 г. До 1903 г. выпускались только односторонние граммофонные пластинки. Первые грампластинки делали из целлулоида, эбонита, шеллачных смол; они легко бились и не обеспечивали высокого качества звука. Современные грампластинки изготовляют из синтетического материала; они не бьются, воспроизводят полосу частот 20–20 000 Гц, практически не вносят искажений. Выпускаются с монофоническими и стереофоническими записями.
 
   ГРАНÁТА, 1) боеприпас для поражения живой силы и техники противника в ближнем бою. Различают гранаты ручные (ручного метания) и гранатомётные (выстреливаются из гранатомёта). Как оружие пехоты ручные гранаты стали применяться с 17 в. Первоначально для их метания подбирались физически сильные солдаты – гренадеры. Современные ручные гранаты являются оружием каждого пехотинца, т. к. их масса вполне приемлема для броска. По назначению гранаты подразделяются на: противопехотные наступательные и оборонительные (соответственно РГН и РГО – масса 310 и 530 г, дальность броска 50 и 40 м, радиус разлёта убойных осколков 25 и 200 м); противотанковые (РКГ-3 – масса 1070 г, дальность броска 20 м, бронепробиваемость 200 мм); специальные (зажигательные, дымовые, сигнальные и др.). Гранатомётные гранаты могут быть: активными, т. е. выстреливаться из гранатомёта с помощью метательного порохового заряда; реактивными, имеющими в корпусе реактивный двигатель; активно-реактивными. Деление по назначению аналогично ручным гранатам.
   Ручная противотанковая граната в разрезе
 
   2) Устаревшее название артиллерийского разрывного снаряда массой до 1 пуда (16.38 кг); снаряд большей массы назывался бомбой.
 
   ГРАНАТОМЁТ, оружие ближнего боя, стреляющее гранатами. По калибру (мощность боеприпасов) гранатомёты близки к артиллерийским орудиям, а по размерам, массе и способам применения – к стрелковому оружию. Подразделяются на: ручные – для стрельбы с плеча, рук или сошки (калибр 30—100 мм, масса до 8 кг, дальность стрельбы до 500 м); станковые – размещаются на пехотных станках и специальных установках боевых машин, вертолётов, кораблей (калибр 30–90 мм, масса до 30 кг, дальность стрельбы до 2000 м; могут быть автоматическими); винтовочные (ружейные) – надеваются на ствол либо закрепляются под стволом винтовки или автомата; граната выстреливается с помощью холостого или боевого патрона (калибр 40 мм, масса 1–2 кг, дальность стрельбы до 400 м). Бронепробиваемость противотанковой гранаты 350–650 мм, темп стрельбы автоматического гранатомёта – до 400 выстрелов в минуту. Винтовочные гранатомёты стали широко применяться с 1-й мировой войны (русская 16-линейная ружейная мортирка), ручные – со 2-й мировой войны (американская базука, немецкий фаустпатрон), станковые – в послевоенное время.
   Ручной гранатомёт РПГ-7 с гранатой
 
   ГРАФОПОСТРОИ́ТЕЛЬ, то же, что плоттер.
 
   ГРАФОПРОÉКТОР (кодоскоп), аппарат для показа на проекционном экране увеличенных (в 10–20 раз) изображений с прозрачного или непрозрачного листового оригинала (напр., фотоплёнки или листа бумаги). Размеры проецируемого поля (у отечественных графопроекторов до 350 5 350 мм) позволяют наносить изображение на плёнку (бумагу) с помощью, напр., шариковой ручки или фломастера, в т. ч. непосредственно во время проецирования. Графопроекторами пользуются лекторы, преподаватели, докладчики на научных конференциях. Устанавливают графопроектор вблизи экрана, его конструкция и оптическая схема позволяют докладчику (преподавателю, лектору) во время демонстрации стоять лицом к аудитории и не отвлекаться для наблюдения за изображением на экране у себя за спиной.
   Оптическая схема зеркального графопроектора:
   1 – асферическая линза; 2 – источник света; 3 – сферический зеркальный отражатель; 4 – поворотное зеркало; 5 – проекционный объектив; 6 – экран; 7 – проецируемый оригинал; 8 – конденсор
 
   ГРЕБНЫ́Е СУДÁ, суда, приводимые в движение с помощью вёсел. Первыми простейшими средствами, использованными первобытным человеком для передвижения по воде, был плот, связанный из брёвен, позднее – чёлн, выжженный или выдолбленный из ствола дерева. Первые лодки, построенные в Древнем Египте (5300–5000 гг. до н. э.), были сделаны из папируса, позднее – из дерева (3200–2200 гг. до н. э.). Гребцы на папирусных лодках вооружались гребковыми вёслами, лодки управлялись одним или несколькими большими вёслами – рулями. Финикийцы в 1200—700 гг. до н. э. строили прочные деревянные суда, имевшие киль со шпангоутами и два ряда вёсел, расположенных друг над другом. Во времена Древней Греции появились гребные военные суда – биремы и триремы (триеры) с гребцами, расположенными в два или три ряда с каждого борта. Длина трирем достигала 40 м, ширина – 6 м при вместимости до 200 человек. Военный флот Рима состоял из галер (пентер), триер и либурн. Римские галеры имели длину 70 м при ширине корпуса 8 м, на них размещалось до 300 гребцов и до 100 вооружённых воинов.
   Греческие бирема и трирема
 
   В северных морях и у восточных славян в течение многих веков использовались ладьи. Они достигали 30–40 м в длину и имели до 60 вёсел с каждого борта. Венецианская галера имела длину 40–50 м, ширину корпуса ок. 5 м, высоту борта 1.8 м. По бортам галеры располагалось по 26–30 гребцов, каждый со своим веслом. Крупные галеры оснащались парусами, а вёсла использовались как вспомогательные движители. Гребные суда сыграли большую роль в истории российского флота. На гребных судах, построенных Петром I на подмосковных и воронежских верфях, была одержана Азовская победа 1696 г. Позднее с учётом венецианского опыта в России был создан крупнейший в Европе галерный флот. С кон. 18 в. строительство гребных судов военного назначения прекратилось.
   Палубное боевое судно Киевской Руси
 
   Многочисленную группу гребных судов ныне составляют малые суда, которые используются для перевозки людей и грузов, в качестве спасательных средств, в спортивных целях, для отдыха и туризма. К ним относятся разнообразные лодки, различающиеся мореходными качествами, размерами, конструкцией, типом гребных вёсел, способом гребли.
   Большая группа судовых лодок имеет общее название – шлюпки. Для работы в море используют самые крупные 14—22-вёсельные беспалубные высокобортные шлюпки – баркасы (полубаркасы). Распространены шлюпки среднего размера, используемые для перевозки грузов, – ялы, широкие, короткие шлюпки с 2–8 вёслами. Самой маленькой шлюпкой является тузик (туз), на два посадочных места. К быстроходным шлюпкам относят вельбот – лодку с относительно большим удлинением корпуса и острыми носом и кормой игичку – лёгкую, узкую, обычно шестивёсельную лодку для распашной гребли. Спасательные шлюпки вмещают от 10 до 150 человек. Для обеспечения плавучести в случае попадания в них воды спасательные шлюпки снабжают встроенными в корпус воздушными ящиками. Спасательные шлюпки имеют разную длину: на малых судах – не меньше 4.9 м, на больших – не менее 7.3 м.
   Помимо шлюпок, существует множество менее мореходных, обычно плоскодонных лодок различного назначения. Среди них широко известная одновёсельная венецианская гондола и разнообразные лодки без названия – цельные, надувные или разборные. К спортивным гребным лодкам относят лодки с уключинами – академические суда, лодки без уключин – байдарки и каноэ, а также спортивные лодки для народной гребли. Академические суда берут начало от гички, байдарки – от лодки хозяйственного назначения эскимосов и исландцев (байдарка-каяк), каноэ – от лодок североамериканских индейцев (каноэ-пирога).