Страница:
Байдарки делятся на гоночные – одноместные, двухместные и четырёхместные; туристические – одноместные и двухместные; слаломные – одноместная. Для посадки гребца в палубе байдарки делается вырез с деревянным бортиком – кокпитом. В кормовой части байдарки устанавливается рулевое управление. Для водного слалома применяют байдарки, обладающие высокой манёвренностью и остойчивостью. Вёсла байдарок двухлопастные, лопасти развёрнуты под углом 90° одна относительно другой.
Каноэ делятся на гоночные – на одно, два и десять посадочных мест, каноэ для слалома – на одно и два места – и каноэ для скоростного спуска – на одно и два места. Корпус состоит из выклеенной обшивки, киля и привальных брусьев. На дне устанавливают полик с упорами для ног. Рулевого устройства у каноэ нет. Гоночные каноэ беспалубные, слаломные имеют палубу и кокпит, как у байдарки. Для опорной ноги имеется подушка из водонепроницаемого брезента. На каноэ применяется однолопастное весло, подбираемое индивидуально.
К спортивным лодкам для народной гребли относятся шлюпки-одиночки, шлюпки-двойки, ялы (двух-, четырёх – и шестивёсельные), тузики (тузы) и вельботы (одиннадцати – и шестивёсельные). При спортивной гребле используются лишь четырёх – и шестивёсельные ялы со специальными распашными академическими вёслами.
Шестивесельный ял
ГРÉЙФЕР, 1) грузозахватное приспособление в виде ковша, имеющего поворотные челюсти для захвата грузов. Служит рабочим органом погрузчиков, грузоподъёмных кранов, экскаваторов, талей и других подъёмных машин. Применяется для перегрузки и транспортирования на небольшие расстояния различных грузов. Для сыпучих грузов (песка, гравия, щебня) используют двухчелюстные грейферы, челюсти которых снабжены зубьями для подгребания и забора материалов. Штучные грузы (гл. обр. лесоматериалы) захватывают и перемещают грейферами, имеющими специальные когти. Применение грейферов позволяет полностью автоматизировать операции погрузки и выгрузки грузов.
Грейфер
2) Звено грейферного механизма киносъёмочного или кинопроекционного аппаратов, обеспечивающее скачкообразное движение киноплёнки в фильмовом канале.
ГРИЛЬ электрический, жарочный шкаф для приготовления мясных и рыбных блюд с нагревом инфракрасным излучением (от электронагревательного элемента). Мясо или тушку птицы насаживают на вертел и закрепляют на нём с помощью зажимов. При медленном вращении вертела с помощью электродвигателя происходит равномерное обжаривание мяса или тушки птицы со всех сторон. Для жарки котлет, рыбы и приготовления гренок используются решётки, устанавливаемые на различном расстоянии от нагревательных элементов. Электрические грили снабжаются подсветкой, регуляторами мощности или температуры и таймерами или программаторами для задания продолжительности тепловой обработки того или иного блюда.
ГРОЗОЗАЩИ́ТНЫЙ ТРОС, дополнительный заземлённый провод в воздушной линии электропередачи, служащий для защиты основных проводов от прямых ударов молнии. Грозозащитный трос подвешивают над токонесущими проводами и надёжно заземляют у каждой опоры. Обычно грозозащитный трос делают из стальных оцинкованных проволок; сечение его от 50 до 70 ммІ.
В линиях электропередачи на металлических опорах с напряжением 110 кВ и выше грозозащитный трос подвешивают обычно по всей длине линии; на линиях более низкого напряжения – только на подходах к электрическим станциям и подстанциям.
ГРОМКОГОВОРИ́ТЕЛЬ, устройство для преобразования электрических колебаний звуковой частоты в звуковые. Используется в радиоприёмниках, электрофонах, магнитофонах, музыкальных центрах, акустических системах для громкого воспроизведения речи и музыки. По способу преобразования делятся на громкоговорители электродинамические, электростатические и др. Наиболее распространены электродинамические громкоговорители (динамики), основанные на взаимодействии магнитного поля постоянного магнита с током в подвижной катушке, в которую подаются электрические колебания звуковой частоты. Катушка и жёстко соединённый с ней диффузор образуют подвижную систему громкоговорителя. Механические колебания катушки и соответственно диффузора сопровождаются излучением звуковых волн либо непосредственно, либо через рупор.
Схема электродинамического громкоговорителя прямого излучения:
1 – магнит; 2 – подвижная система (диффузор); 3 – звуковая катушка; 4 – центрирующая шайба
В обиходе громкоговорителем часто называют также приёмник абонентской сети проводного вещания для приёма одной или трёх программ. В 1930—50-х гг. такие громкоговорители называли тарелками из-за их большого диффузора.
Громкоговоритель
ГРОМООТВÓД, широко распространённое неправильное название молниеотвода.
ГРÓХОТ, устройство или машина для механического разделения (сортировки) сыпучих материалов по крупности кусков (зёрен). Один из основных видов технологического оборудования дробильно-сортировочных заводов и обогатительных фабрик. В качестве рабочих органов используют сита, колосники, решётки и т. п. с отверстиями, через которые просыпаются куски материала. Рабочий орган может быть неподвижным либо совершать колебательные движения (вибрационный грохот) или вращаться (барабанный), может располагаться горизонтально или наклонно. Отверстия (ячейки) грохота имеют различные размеры в зависимости от исходного материала. При сортировке (грохочении) материал, двигаясь по ситу (колосникам, решётке), расслаивается; чем крупнее частицы, тем выше слой, в котором они собираются. Частицы, размер которых в поперечнике меньше размера отверстия сита, достигнув его поверхности, проваливаются (просеиваются) через отверстия, а крупные частицы скатываются по ситу. Наиболее эффективны грохоты с колеблющимися инерционными или вибрационными рабочими органами. Грохоты применяются в горно-добывающей промышленности для сортировки угля, руд, щебня и других сыпучих материалов, а также с целью обезвоживания полезных ископаемых на обогатительных фабриках. С помощью грохотов разделяют по крупности семена, зёрна, клубни, плоды и т. п.
ГРУЗОВÓЙ АВТОМОБИ́ЛЬ, автомобиль для перевозки различных грузов или установленного на нём оборудования. Классификация грузовых автомобилей характеризуется их грузоподъёмностью, типом кузова, компоновкой и назначением. По грузоподъёмности грузовые автомобили различают особо малой (до 1 т), малой (1–2 т), средней (2–5 т), большой (5—20 т) и особо большой грузоподъёмности (св. 20 т). Наибольшая грузоподъёмность у карьерных самосвалов: серийно выпускаются машины грузоподъёмностью 200 т, а экспериментальные образцы имеют и более значительные показатели. Из кузовов наиболее распространены платформы с открывающимися бортами. Часто применяются специализированные кузова: самосвальный, цистерна, фургон, изотермический кузов, контейнеровоз, цементовоз и т. п. К грузовым автомобилям с установленным оборудованием относятся пожарные машины, передвижные электростанции, автокраны, бетономешалки и т. п.
Различия схем компоновки грузовых автомобилей заключаются в основном во взаимном расположении кабины и двигателя. Традиционная схема с расположением кабины позади двигателя – капотная – обеспечивает оптимальное распределение веса по осям автомобиля, доступность двигателя и удобный вход в кабину. Однако такой автомобиль имеет сравнительно большую длину и ограниченный передний обзор. Схема с кабиной, частично надвинутой на двигатель, существенно улучшает передний обзор, но уменьшает ширину дверного проёма и внутренний объём кабины. Автомобиль с кабиной, расположенной над двигателем, имеет наименьшую длину и хорошую манёвренность. Но это преимущество в сочетании с хорошим обзором достигается немалой ценой. Кожух двигателя, торчащий в центре кабины, ограничивает её внутренний объём и не позволяет разместить трёхместное сиденье. Водитель, сидящий на колесе, испытывает большую вибрацию и тряску. Требуются специальные устройства, компенсирующие этот вредный фактор. Доступ к двигателю совсем неудобен, приходится делать кабину откидывающейся вперёд, что усложняет её конструкцию. Вход в кабину расположен слишком высоко. Компоновочная схема с кабиной впереди двигателя даёт возможность вернуться к плоскому полу кабины и трёхместному сиденью, да и входить в кабину удобнее.
Компоновка грузовых автомобилей:
а – капотная; б – кабина частично надвинута на двигатель; в – кабина над двигателем; г – кабина перед двигателем
По назначению грузовики делятся на универсальные (общего назначения) с кузовом в виде платформы с открывающимися бортами и специализированные. Как правило, на грузовых автомобилях малой и средней грузоподъёмности устанавливают бензиновые двигатели внутреннего сгорания, на большегрузных автомобилях – дизельные. Трансмиссия грузовых автомобилей может быть механической, автоматической, электромеханической. В ходовой части всё большее распространение получают автоматизированное рулевое и тормозное управление, совершенные системы подрессоривания с пневматическими и гидропневматическими регулируемыми упругими элементами, модифицирующиеся схемы компоновки (напр., у порожнего трёхосного автомобиля приподнимается задняя ось, и он превращается в двухосный). Широко применяется также вторичное подрессоривание, при котором кабина, а зачастую и сиденье водителя устанавливаются на собственных упругих элементах, что обеспечивает необходимые комфортные условия на рабочем месте. Кабины тягачей, предназначенных для дальних перевозок, оборудуются спальными местами, установками микроклимата, навигационными системами.
ГРУЗОЗАХВÁТНОЕ ПРИСПОСОБЛÉНИЕ, устройство или механизм для захвата и перемещения грузов; навешивается на рабочий орган грузоподъёмной машины. Различают грузозахватные приспособления для штучных грузов – чалочные стропы, скобы, траверсы, клещи; для насыпных – грейферы, ковши, кюбели; для наливных – бадьи, специальные ёмкости. Разновидностью грузозахватных приспособлений являются подъёмные электромагниты, вакуумные грузозахваты. К грузозахватным приспособлениям относятся также автостропы.
ГРУЗОПОДЪЁМНЫЙ КРАН, машина прерывного (цикличного) действия, предназначенная для подъёма и перемещения груза на небольшое расстояние. Несущая конструкция крана – башня, ферма, мачта, мост или стрела; главные подъёмные механизмы – лебёдка илиталь. Груз захватывается и переносится крюком, грейфером, электромагнитом либо загружается в ковш, кюбель, бадью и т. п. Выбор грузозахватных приспособлений зависит от вида груза – штучный, сыпучий, кусковой, жидкий. Для крепления грузозахватных приспособлений и грузов используют канаты, цепи, стропы. Грузоподъёмные краны могут быть стационарные (мостовые, портальные, кран-балки и др.) и передвижные (на автомобильном и тракторном ходу – самоходные, на рельсовом ходу – железнодорожные и катучие, а также плавучие). Энергоснабжение крана обеспечивают силовая установка и электрооборудование. Первые грузоподъёмные краны имели ручной привод; в 30-е гг. 19 в. был применён механический привод. В 1847 г. в Великобритании построен паровой кран. Двигатель внутреннего сгорания впервые использовали на кране в 1895 г.; почти одновременно в США и Германии в 1880—85 гг. начали выпускать краны с электроприводом. Грузоподъёмные краны широко применяются на складах, контейнерных площадках, в цехах промышленных предприятий, в портах, на электростанциях, при аварийно-спасательных работах и т. д.
Грузоподъёмный кран
ГУ́ТЕНБЕРГ (gutenberg) Иоганн (ок. 1400–1468), немецкий изобретатель книгопечатания. Разработал новый способ печатания книг, заменив деревянные доски, на которых прежде гравировали целые страницы рукописи, печатными формами, состоявшими, подобно мозаике, из отдельных одинаковых по форме кубиков – литер с рельефным изображением букв. Сконструировал приспособление для массового изготовления литер и пресс для получения оттисков с печатной формы, разработал состав сплава для литер и рецепт типографской краски. Первой книгой, отпечатанной в Майнце новым способом (сер. 1450-х гг.), стала т. н. 42-строчная Библия, повторявшая рисунком шрифта готические средневековые рукописные книги, но превосходившая их качеством печати. Это издание Библии признано шедевром раннего книгопечатания.
И. Гутенберг
Д
Каноэ делятся на гоночные – на одно, два и десять посадочных мест, каноэ для слалома – на одно и два места – и каноэ для скоростного спуска – на одно и два места. Корпус состоит из выклеенной обшивки, киля и привальных брусьев. На дне устанавливают полик с упорами для ног. Рулевого устройства у каноэ нет. Гоночные каноэ беспалубные, слаломные имеют палубу и кокпит, как у байдарки. Для опорной ноги имеется подушка из водонепроницаемого брезента. На каноэ применяется однолопастное весло, подбираемое индивидуально.
К спортивным лодкам для народной гребли относятся шлюпки-одиночки, шлюпки-двойки, ялы (двух-, четырёх – и шестивёсельные), тузики (тузы) и вельботы (одиннадцати – и шестивёсельные). При спортивной гребле используются лишь четырёх – и шестивёсельные ялы со специальными распашными академическими вёслами.
Шестивесельный ял
ГРÉЙФЕР, 1) грузозахватное приспособление в виде ковша, имеющего поворотные челюсти для захвата грузов. Служит рабочим органом погрузчиков, грузоподъёмных кранов, экскаваторов, талей и других подъёмных машин. Применяется для перегрузки и транспортирования на небольшие расстояния различных грузов. Для сыпучих грузов (песка, гравия, щебня) используют двухчелюстные грейферы, челюсти которых снабжены зубьями для подгребания и забора материалов. Штучные грузы (гл. обр. лесоматериалы) захватывают и перемещают грейферами, имеющими специальные когти. Применение грейферов позволяет полностью автоматизировать операции погрузки и выгрузки грузов.
Грейфер
2) Звено грейферного механизма киносъёмочного или кинопроекционного аппаратов, обеспечивающее скачкообразное движение киноплёнки в фильмовом канале.
ГРИЛЬ электрический, жарочный шкаф для приготовления мясных и рыбных блюд с нагревом инфракрасным излучением (от электронагревательного элемента). Мясо или тушку птицы насаживают на вертел и закрепляют на нём с помощью зажимов. При медленном вращении вертела с помощью электродвигателя происходит равномерное обжаривание мяса или тушки птицы со всех сторон. Для жарки котлет, рыбы и приготовления гренок используются решётки, устанавливаемые на различном расстоянии от нагревательных элементов. Электрические грили снабжаются подсветкой, регуляторами мощности или температуры и таймерами или программаторами для задания продолжительности тепловой обработки того или иного блюда.
ГРОЗОЗАЩИ́ТНЫЙ ТРОС, дополнительный заземлённый провод в воздушной линии электропередачи, служащий для защиты основных проводов от прямых ударов молнии. Грозозащитный трос подвешивают над токонесущими проводами и надёжно заземляют у каждой опоры. Обычно грозозащитный трос делают из стальных оцинкованных проволок; сечение его от 50 до 70 ммІ.
В линиях электропередачи на металлических опорах с напряжением 110 кВ и выше грозозащитный трос подвешивают обычно по всей длине линии; на линиях более низкого напряжения – только на подходах к электрическим станциям и подстанциям.
ГРОМКОГОВОРИ́ТЕЛЬ, устройство для преобразования электрических колебаний звуковой частоты в звуковые. Используется в радиоприёмниках, электрофонах, магнитофонах, музыкальных центрах, акустических системах для громкого воспроизведения речи и музыки. По способу преобразования делятся на громкоговорители электродинамические, электростатические и др. Наиболее распространены электродинамические громкоговорители (динамики), основанные на взаимодействии магнитного поля постоянного магнита с током в подвижной катушке, в которую подаются электрические колебания звуковой частоты. Катушка и жёстко соединённый с ней диффузор образуют подвижную систему громкоговорителя. Механические колебания катушки и соответственно диффузора сопровождаются излучением звуковых волн либо непосредственно, либо через рупор.
Схема электродинамического громкоговорителя прямого излучения:
1 – магнит; 2 – подвижная система (диффузор); 3 – звуковая катушка; 4 – центрирующая шайба
В обиходе громкоговорителем часто называют также приёмник абонентской сети проводного вещания для приёма одной или трёх программ. В 1930—50-х гг. такие громкоговорители называли тарелками из-за их большого диффузора.
Громкоговоритель
ГРОМООТВÓД, широко распространённое неправильное название молниеотвода.
ГРÓХОТ, устройство или машина для механического разделения (сортировки) сыпучих материалов по крупности кусков (зёрен). Один из основных видов технологического оборудования дробильно-сортировочных заводов и обогатительных фабрик. В качестве рабочих органов используют сита, колосники, решётки и т. п. с отверстиями, через которые просыпаются куски материала. Рабочий орган может быть неподвижным либо совершать колебательные движения (вибрационный грохот) или вращаться (барабанный), может располагаться горизонтально или наклонно. Отверстия (ячейки) грохота имеют различные размеры в зависимости от исходного материала. При сортировке (грохочении) материал, двигаясь по ситу (колосникам, решётке), расслаивается; чем крупнее частицы, тем выше слой, в котором они собираются. Частицы, размер которых в поперечнике меньше размера отверстия сита, достигнув его поверхности, проваливаются (просеиваются) через отверстия, а крупные частицы скатываются по ситу. Наиболее эффективны грохоты с колеблющимися инерционными или вибрационными рабочими органами. Грохоты применяются в горно-добывающей промышленности для сортировки угля, руд, щебня и других сыпучих материалов, а также с целью обезвоживания полезных ископаемых на обогатительных фабриках. С помощью грохотов разделяют по крупности семена, зёрна, клубни, плоды и т. п.
ГРУЗОВÓЙ АВТОМОБИ́ЛЬ, автомобиль для перевозки различных грузов или установленного на нём оборудования. Классификация грузовых автомобилей характеризуется их грузоподъёмностью, типом кузова, компоновкой и назначением. По грузоподъёмности грузовые автомобили различают особо малой (до 1 т), малой (1–2 т), средней (2–5 т), большой (5—20 т) и особо большой грузоподъёмности (св. 20 т). Наибольшая грузоподъёмность у карьерных самосвалов: серийно выпускаются машины грузоподъёмностью 200 т, а экспериментальные образцы имеют и более значительные показатели. Из кузовов наиболее распространены платформы с открывающимися бортами. Часто применяются специализированные кузова: самосвальный, цистерна, фургон, изотермический кузов, контейнеровоз, цементовоз и т. п. К грузовым автомобилям с установленным оборудованием относятся пожарные машины, передвижные электростанции, автокраны, бетономешалки и т. п.
Различия схем компоновки грузовых автомобилей заключаются в основном во взаимном расположении кабины и двигателя. Традиционная схема с расположением кабины позади двигателя – капотная – обеспечивает оптимальное распределение веса по осям автомобиля, доступность двигателя и удобный вход в кабину. Однако такой автомобиль имеет сравнительно большую длину и ограниченный передний обзор. Схема с кабиной, частично надвинутой на двигатель, существенно улучшает передний обзор, но уменьшает ширину дверного проёма и внутренний объём кабины. Автомобиль с кабиной, расположенной над двигателем, имеет наименьшую длину и хорошую манёвренность. Но это преимущество в сочетании с хорошим обзором достигается немалой ценой. Кожух двигателя, торчащий в центре кабины, ограничивает её внутренний объём и не позволяет разместить трёхместное сиденье. Водитель, сидящий на колесе, испытывает большую вибрацию и тряску. Требуются специальные устройства, компенсирующие этот вредный фактор. Доступ к двигателю совсем неудобен, приходится делать кабину откидывающейся вперёд, что усложняет её конструкцию. Вход в кабину расположен слишком высоко. Компоновочная схема с кабиной впереди двигателя даёт возможность вернуться к плоскому полу кабины и трёхместному сиденью, да и входить в кабину удобнее.
Компоновка грузовых автомобилей:
а – капотная; б – кабина частично надвинута на двигатель; в – кабина над двигателем; г – кабина перед двигателем
По назначению грузовики делятся на универсальные (общего назначения) с кузовом в виде платформы с открывающимися бортами и специализированные. Как правило, на грузовых автомобилях малой и средней грузоподъёмности устанавливают бензиновые двигатели внутреннего сгорания, на большегрузных автомобилях – дизельные. Трансмиссия грузовых автомобилей может быть механической, автоматической, электромеханической. В ходовой части всё большее распространение получают автоматизированное рулевое и тормозное управление, совершенные системы подрессоривания с пневматическими и гидропневматическими регулируемыми упругими элементами, модифицирующиеся схемы компоновки (напр., у порожнего трёхосного автомобиля приподнимается задняя ось, и он превращается в двухосный). Широко применяется также вторичное подрессоривание, при котором кабина, а зачастую и сиденье водителя устанавливаются на собственных упругих элементах, что обеспечивает необходимые комфортные условия на рабочем месте. Кабины тягачей, предназначенных для дальних перевозок, оборудуются спальными местами, установками микроклимата, навигационными системами.
ГРУЗОЗАХВÁТНОЕ ПРИСПОСОБЛÉНИЕ, устройство или механизм для захвата и перемещения грузов; навешивается на рабочий орган грузоподъёмной машины. Различают грузозахватные приспособления для штучных грузов – чалочные стропы, скобы, траверсы, клещи; для насыпных – грейферы, ковши, кюбели; для наливных – бадьи, специальные ёмкости. Разновидностью грузозахватных приспособлений являются подъёмные электромагниты, вакуумные грузозахваты. К грузозахватным приспособлениям относятся также автостропы.
ГРУЗОПОДЪЁМНЫЙ КРАН, машина прерывного (цикличного) действия, предназначенная для подъёма и перемещения груза на небольшое расстояние. Несущая конструкция крана – башня, ферма, мачта, мост или стрела; главные подъёмные механизмы – лебёдка илиталь. Груз захватывается и переносится крюком, грейфером, электромагнитом либо загружается в ковш, кюбель, бадью и т. п. Выбор грузозахватных приспособлений зависит от вида груза – штучный, сыпучий, кусковой, жидкий. Для крепления грузозахватных приспособлений и грузов используют канаты, цепи, стропы. Грузоподъёмные краны могут быть стационарные (мостовые, портальные, кран-балки и др.) и передвижные (на автомобильном и тракторном ходу – самоходные, на рельсовом ходу – железнодорожные и катучие, а также плавучие). Энергоснабжение крана обеспечивают силовая установка и электрооборудование. Первые грузоподъёмные краны имели ручной привод; в 30-е гг. 19 в. был применён механический привод. В 1847 г. в Великобритании построен паровой кран. Двигатель внутреннего сгорания впервые использовали на кране в 1895 г.; почти одновременно в США и Германии в 1880—85 гг. начали выпускать краны с электроприводом. Грузоподъёмные краны широко применяются на складах, контейнерных площадках, в цехах промышленных предприятий, в портах, на электростанциях, при аварийно-спасательных работах и т. д.
Грузоподъёмный кран
ГУ́ТЕНБЕРГ (gutenberg) Иоганн (ок. 1400–1468), немецкий изобретатель книгопечатания. Разработал новый способ печатания книг, заменив деревянные доски, на которых прежде гравировали целые страницы рукописи, печатными формами, состоявшими, подобно мозаике, из отдельных одинаковых по форме кубиков – литер с рельефным изображением букв. Сконструировал приспособление для массового изготовления литер и пресс для получения оттисков с печатной формы, разработал состав сплава для литер и рецепт типографской краски. Первой книгой, отпечатанной в Майнце новым способом (сер. 1450-х гг.), стала т. н. 42-строчная Библия, повторявшая рисунком шрифта готические средневековые рукописные книги, но превосходившая их качеством печати. Это издание Библии признано шедевром раннего книгопечатания.
И. Гутенберг
Д
ДАГÉР (daguerre) Луи Жак Манде (1787–1851), французский художник, один из изобретателей фотографии. Дагер – автор первой в мире диорамы (1822). Познакомившись с Ж. Ньепсом, увлёкся его опытами по получению неисчезающего «солнечного рисунка». В 1837 г. Дагер, продолжая после смерти Ньепса начатую совместно с ним работу, предложил первый практически приемлемый способ фотографии, названный им дагеротипией. Сообщение о работе Дагера было сделано на заседании Французской академии 7 января 1839 г. С тех пор эта дата считается датой изобретения фотографии.
Л.Дагер
ДАЛЬНОМÉР, прибор для определения расстояний до наблюдаемых объектов без непосредственных измерений на местности, в пространстве. По принципу действия дальномеры подразделяются на две основные группы: первую составляют оптические дальномеры; во вторую входят радиодальномеры, акустические и электрооптические дальномеры.
Измерения с помощью оптических дальномеров сводятся к определению высоты равнобедренного треугольника (искомое расстояние) по известному основанию (базе дальномера) и противоположному (т. н. параллактическому) углу. Такие дальномеры применяются в нивелирах, теодолитах, дальномерных фотоаппаратах, артиллерийских дальномерах и др.
Действие акустического дальномера основано на определении интервала времени, которое затрачивает излучаемый дальномером ультразвуковой сигнал на прохождение расстояния от дальномера до объекта и обратно (искомое расстояние равно произведению скорости распространения сигнала в среде на половину измеренного интервала времени).
Радиодальномер использует для измерения расстояний радиоволны. Бывают импульсные и фазовые радиодальномеры. Действие импульсных радиодальномеров аналогично действию акустических, только вместо ультразвуковых они используют короткие радиоимпульсы. Работа фазовых дальномеров основана на определении числа длин радиоволн, укладывающихся вдоль измеряемого расстояния.
Электрооптический, или светодальномер, измеряет расстояния при помощи световых сигналов, промодулированных по фазе, частоте или длительности. Светодальномер содержит источник света (обычно твердотельный, газовый или полупроводниковый лазер), модулятор, передающее и приёмное устройства. Наиболее распространены импульсные и фазовые светодальномеры. Импульсные светодальномеры излучают короткие (0.1—10 нс) импульсы света; искомое расстояние, как и в акустических дальномерах, определяется по времени прохождения светового сигнала до объекта и обратно. Применяются в космической дальнометрии и навигации. В фазовых светодальномерах используются гл. обр. лазеры непрерывного излучения; расстояние определяется по разности фаз излучаемого и принимаемого отражённого световых сигналов. Применяются преимущественно в геодезии, спорте.
ДÁМБА, гидротехническое сооружение, аналогичное по устройству земляной плотине. Различают дамбы: напорные оградительные (ограждающие валы или защитные дамбы), предназначенные для защиты низменностей в долинах крупных рек и морских побережий от затопления, и сопрягающие – для соединения сооружений гидроузла с берегами; безнапорные – для регулирования русел рек. Безнапорные дамбы сооружают для направления потока с целью регулирования и выправления русел, для улучшения условий судоходства и работы водопропускных и водозаборных гидротехнических сооружений (ГЭС, водосливных плотин, отверстий мостов, насосных станций и т. п.). Безнапорные дамбы бывают незатопляемыми и затопляемыми. В зависимости от расположения дамбы относительно направления потока они могут быть продольными или поперечными. Дамбы строят из местных материалов (гл. обр. каменной наброски), а небольшие дамбы – из земли, хворостяной, фашинной кладки и т. п.
ДÁТЧИК, то же, что измерительный преобразователь.
ДВИ́ГАТЕЛЬ, энергосиловая машина, преобразующая какую-либо энергию в механическую работу. Двигатели бывают первичные и вторичные. Первичные двигатели преобразуют энергию природных ресурсов (воды, ветра, топлива и др.) в механическую энергию. Такими двигателями являются двигатели внутреннего сгорания, гидравлические турбины, ветродвигатели и др. К вторичным двигателям относятся двигатели, которые получают энергию от первичных двигателей (электрический двигатель) или от преобразователей и накопителей энергии (инерционные двигатели, пружинные механизмы и др.).
Первыми двигателями были водяное колесо и ветровое колесо, или ветряк. Они применялись на мукомольных мельницах, в оросительных системах, в мануфактурном производстве в странах Древнего Востока, Египте, Китае, Индии, позднее и в европейских странах. Изобретённая в 18 в. паровая машина открыла эру тепловых двигателей. Использование в паровых машинах химической энергии топлива обусловило независимость их размещения от природных источников энергии (ветра, воды), что способствовало быстрому развитию промышленности на новой энергетической основе. Во 2-й пол. 19 в. появились два новых тепловых двигателя – паровая турбина и двигатель внутреннего сгорания. Они сразу же получили повсеместное признание. Уже в нач. 20 в. паровые турбины использовались в качестве главных судовых двигателей на военных кораблях, но преимущественное распространение они получили как первичные двигатели для привода электрогенераторов на крупных тепловых электростанциях. Двигатели внутреннего сгорания, в том числе и дизельные, наиболее мобильные и энергонезависимые источники механической энергии. Благодаря этому они стали основным типом двигателя практически на всех видах транспорта, и особенно в автомобилях. В 70-х гг. 19 в. появились первые двигатели электрические, сначала постоянного тока, а с 80-х гг. – переменного. Применение электродвигателей существенно изменило энергетическую базу промышленности, создало условия для механизации и автоматизации производства. В 1-й пол. 20 в. созданы новые типы тепловых двигателей – газовая турбина и реактивный двигатель. Газовые турбины пришли на смену паровым на боевых кораблях, их устанавливают на локомотивах, применяют в авиационных реактивных двигателях, используют в сочетании с паровыми турбинами на парогазотурбинных электростанциях. Реактивные двигатели делятся на две группы: воздушно-реактивные и ракетные двигатели. Воздушно-реактивные двигатели, в т. ч. турбореактивные и турбовинтовые, – основной тип авиационных двигателей, применяются на самолётах и вертолётах гражданской и военной авиации. Благодаря им современные самолёты способны летать со скоростью, в 2–3 раза превышающей скорость звука. Ракетные двигатели на жидком или твёрдом топливе используются практически в ракетах, а также в качестве ускорительных (стартовых) двигателей на боевых самолётах.
ДВИ́ГАТЕЛЬ ВНУ́ТРЕННЕГО СГОРÁНИЯ (ДВС), тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые ДВС; по рабочему циклу – непрерывного действия, двух – и четырёхтактные; по способу приготовления горючей смеси – с внешним (напр., карбюраторные) и внутренним (напр., дизели) смесеобразованием; по виду преобразователя энергии – поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0.4–0.5.
Первый поршневой двигатель внутреннего сгорания сконструирован французским изобретателем Э. Ленуаром в 1860 г. Традиционно термин «двигатели внутреннего сгорания» применяют преимущественно к поршневым двигателям. Во всех тепловых двигателях сжигают топливо и преобразуют выделившееся тепло в механическую работу. Для сжигания топлива необходим окислитель – кислород. Поставщиком кислорода во всех двигателях внутреннего сгорания, кроме ракетных, служит сжатый воздух. Рабочим телом в них являются продукты сгорания топлива. Для сжигания топлива в двигателе готовят рабочую смесь, смешивая топливо с воздухом. В двигателях с внешним смесеобразованием рабочую смесь готовят в смесителе и подают в цилиндр, где её принудительно поджигают электрической искрой. Такие двигатели работают с низкой степенью сжатия рабочей смеси. В двигателях с внутренним смесеобразованием топливо и воздух не смешивают заранее, а отдельно подают в рабочий цилиндр. Там они смешиваются и образуют рабочую смесь.
В четырёхтактных двигателях каждый рабочий цикл совершается один раз за четыре такта (или за два оборота вала), а в двухтактных – один раз за два такта (или за один оборот вала).
Рис. 1. Четырёхтактный карбюраторный двигатель внутреннего сгорания:
1 – коленчатый вал; 2 – кривошипно-шатунный механизм; 3 – впускной клапан; 4 – свеча зажигания; 5 – выпускной клапан; 6 – поршень; 7 – цилиндр
Главная деталь четырёхтактного двигателя внутреннего сгорания (рис. 1) – цилиндр 7, в головке которого расположены впускной 3 и выпускной 5 клапаны и свеча 4 для зажигания рабочей смеси. В цилиндре движется поршень 6. Его возвратно-поступательное движение преобразуется во вращательное движение коленчатого вала 1 с помощью кривошипно-шатунного механизма 2. Для обеспечения наиболее полного сгорания топлива его перемешивают с воздухом в пропорции 1: 15 (на одну часть паров бензина должно приходиться 15 частей воздуха). В такте I рабочего цикла происходит всасывание рабочей смеси в цилиндр (рис. 2). В такте II рабочая смесь сжимается. В такте III сгорает рабочая смесь и образующиеся при этом газы давят на поршень и совершают механическую работу, перемещая его сверху вниз. Движение поршня передаётся валу двигателя через кривошипно-шатунный механизм. В такте IV продукты сгорания выталкиваются в атмосферу через выпускной клапан. Работу четырёхтактного карбюраторного двигателя обеспечивает система газораспределения, состоящая из впускных и выпускных клапанов, открывающих их кулачков и закрывающих пружин.
Рис. 2. Работа четырёхтактного карбюраторного двигателя внутреннего сгорания:
I – всасывание; II – сжатие; III – зажигание, рабочий ход; IV – выпуск
Двухтактные двигатели устроены проще (рис. 3). В них всасывание горючей смеси и предварительное её сжатие до небольшого давления происходит вне цилиндра двигателя.
Рис. 3. Двухтактный карбюраторный двигатель внутреннего сгорания:
1 – коленчатый вал; 2 – кривошипно-шатунный механизм; 3 – цилиндр; 4 – насос; 5 – топливо, воздух; 6 – впускные окна; 7 – свеча зажигания; 8 – продувочные окна; 9 – продукты сгорания; 10 – поршень
Сложную систему газораспределения в этих двигателях заменяют три ряда окон 6.8 на боковой поверхности цилиндра 3. Через эти окна выпускаются отработанные газы, всасывается рабочая смесь в картер двигателя и продувается цилиндр от остатков продуктов сгорания. Окна открывает и закрывает сам поршень 10 (своей образующей поверхностью) при движении в цилиндре. В такте I (рис. 4) при движении поршня снизу вверх сначала происходит сжатие порции горючей смеси в цилиндре, а затем и засасывание свежей порции горючей смеси из карбюратора в картер двигателя. Когда сжатие рабочей смеси заканчивается, её воспламеняют электрической искрой. В такте II происходит расширение продуктов сгорания 9. Они толкают поршень вниз, т. е. происходит рабочий ход. В конце хода поршня сверху вниз отработанные газы выпускают в атмосферу. В карбюраторных двигателях, работающих на лёгком жидком топливе (бензине), смесеобразование осуществляется в специальном устройстве – карбюраторе. Двигатели внутреннего сгорания широко применяются в промышленности, на автомобильном, авиационном, морском и железнодорожном транспорте.
Рис. 4. Работа двухтактного карбюраторного двигателя внутреннего сгорания:
I – сжатие; II – зажигание, рабочий ход
ДВИ́ГАТЕЛЬ ЭЛЕКТРИ́ЧЕСКИЙ, машина электрическая, преобразующая электрическую энергию в механическую. Различают электрические двигатели постоянного и переменного тока. Основное преимущество двигателей постоянного тока заключается в возможности экономной и плавной регулировки частоты вращения, вследствие чего они получили распространение на рельсовом и безрельсовом электрифицированном транспорте, в подъёмных кранах, на прокатных станах, в устройствах автоматики и т. п. В системах автоматического регулирования и в электроприборах бытового назначения получили распространение электроприводы с микродвигателями постоянного тока. Основное их достоинство – значительно большие, чем у микродвигателей переменного тока, диапазон и точность регулирования.
Л.Дагер
ДАЛЬНОМÉР, прибор для определения расстояний до наблюдаемых объектов без непосредственных измерений на местности, в пространстве. По принципу действия дальномеры подразделяются на две основные группы: первую составляют оптические дальномеры; во вторую входят радиодальномеры, акустические и электрооптические дальномеры.
Измерения с помощью оптических дальномеров сводятся к определению высоты равнобедренного треугольника (искомое расстояние) по известному основанию (базе дальномера) и противоположному (т. н. параллактическому) углу. Такие дальномеры применяются в нивелирах, теодолитах, дальномерных фотоаппаратах, артиллерийских дальномерах и др.
Действие акустического дальномера основано на определении интервала времени, которое затрачивает излучаемый дальномером ультразвуковой сигнал на прохождение расстояния от дальномера до объекта и обратно (искомое расстояние равно произведению скорости распространения сигнала в среде на половину измеренного интервала времени).
Радиодальномер использует для измерения расстояний радиоволны. Бывают импульсные и фазовые радиодальномеры. Действие импульсных радиодальномеров аналогично действию акустических, только вместо ультразвуковых они используют короткие радиоимпульсы. Работа фазовых дальномеров основана на определении числа длин радиоволн, укладывающихся вдоль измеряемого расстояния.
Электрооптический, или светодальномер, измеряет расстояния при помощи световых сигналов, промодулированных по фазе, частоте или длительности. Светодальномер содержит источник света (обычно твердотельный, газовый или полупроводниковый лазер), модулятор, передающее и приёмное устройства. Наиболее распространены импульсные и фазовые светодальномеры. Импульсные светодальномеры излучают короткие (0.1—10 нс) импульсы света; искомое расстояние, как и в акустических дальномерах, определяется по времени прохождения светового сигнала до объекта и обратно. Применяются в космической дальнометрии и навигации. В фазовых светодальномерах используются гл. обр. лазеры непрерывного излучения; расстояние определяется по разности фаз излучаемого и принимаемого отражённого световых сигналов. Применяются преимущественно в геодезии, спорте.
ДÁМБА, гидротехническое сооружение, аналогичное по устройству земляной плотине. Различают дамбы: напорные оградительные (ограждающие валы или защитные дамбы), предназначенные для защиты низменностей в долинах крупных рек и морских побережий от затопления, и сопрягающие – для соединения сооружений гидроузла с берегами; безнапорные – для регулирования русел рек. Безнапорные дамбы сооружают для направления потока с целью регулирования и выправления русел, для улучшения условий судоходства и работы водопропускных и водозаборных гидротехнических сооружений (ГЭС, водосливных плотин, отверстий мостов, насосных станций и т. п.). Безнапорные дамбы бывают незатопляемыми и затопляемыми. В зависимости от расположения дамбы относительно направления потока они могут быть продольными или поперечными. Дамбы строят из местных материалов (гл. обр. каменной наброски), а небольшие дамбы – из земли, хворостяной, фашинной кладки и т. п.
ДÁТЧИК, то же, что измерительный преобразователь.
ДВИ́ГАТЕЛЬ, энергосиловая машина, преобразующая какую-либо энергию в механическую работу. Двигатели бывают первичные и вторичные. Первичные двигатели преобразуют энергию природных ресурсов (воды, ветра, топлива и др.) в механическую энергию. Такими двигателями являются двигатели внутреннего сгорания, гидравлические турбины, ветродвигатели и др. К вторичным двигателям относятся двигатели, которые получают энергию от первичных двигателей (электрический двигатель) или от преобразователей и накопителей энергии (инерционные двигатели, пружинные механизмы и др.).
Первыми двигателями были водяное колесо и ветровое колесо, или ветряк. Они применялись на мукомольных мельницах, в оросительных системах, в мануфактурном производстве в странах Древнего Востока, Египте, Китае, Индии, позднее и в европейских странах. Изобретённая в 18 в. паровая машина открыла эру тепловых двигателей. Использование в паровых машинах химической энергии топлива обусловило независимость их размещения от природных источников энергии (ветра, воды), что способствовало быстрому развитию промышленности на новой энергетической основе. Во 2-й пол. 19 в. появились два новых тепловых двигателя – паровая турбина и двигатель внутреннего сгорания. Они сразу же получили повсеместное признание. Уже в нач. 20 в. паровые турбины использовались в качестве главных судовых двигателей на военных кораблях, но преимущественное распространение они получили как первичные двигатели для привода электрогенераторов на крупных тепловых электростанциях. Двигатели внутреннего сгорания, в том числе и дизельные, наиболее мобильные и энергонезависимые источники механической энергии. Благодаря этому они стали основным типом двигателя практически на всех видах транспорта, и особенно в автомобилях. В 70-х гг. 19 в. появились первые двигатели электрические, сначала постоянного тока, а с 80-х гг. – переменного. Применение электродвигателей существенно изменило энергетическую базу промышленности, создало условия для механизации и автоматизации производства. В 1-й пол. 20 в. созданы новые типы тепловых двигателей – газовая турбина и реактивный двигатель. Газовые турбины пришли на смену паровым на боевых кораблях, их устанавливают на локомотивах, применяют в авиационных реактивных двигателях, используют в сочетании с паровыми турбинами на парогазотурбинных электростанциях. Реактивные двигатели делятся на две группы: воздушно-реактивные и ракетные двигатели. Воздушно-реактивные двигатели, в т. ч. турбореактивные и турбовинтовые, – основной тип авиационных двигателей, применяются на самолётах и вертолётах гражданской и военной авиации. Благодаря им современные самолёты способны летать со скоростью, в 2–3 раза превышающей скорость звука. Ракетные двигатели на жидком или твёрдом топливе используются практически в ракетах, а также в качестве ускорительных (стартовых) двигателей на боевых самолётах.
ДВИ́ГАТЕЛЬ ВНУ́ТРЕННЕГО СГОРÁНИЯ (ДВС), тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые ДВС; по рабочему циклу – непрерывного действия, двух – и четырёхтактные; по способу приготовления горючей смеси – с внешним (напр., карбюраторные) и внутренним (напр., дизели) смесеобразованием; по виду преобразователя энергии – поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0.4–0.5.
Первый поршневой двигатель внутреннего сгорания сконструирован французским изобретателем Э. Ленуаром в 1860 г. Традиционно термин «двигатели внутреннего сгорания» применяют преимущественно к поршневым двигателям. Во всех тепловых двигателях сжигают топливо и преобразуют выделившееся тепло в механическую работу. Для сжигания топлива необходим окислитель – кислород. Поставщиком кислорода во всех двигателях внутреннего сгорания, кроме ракетных, служит сжатый воздух. Рабочим телом в них являются продукты сгорания топлива. Для сжигания топлива в двигателе готовят рабочую смесь, смешивая топливо с воздухом. В двигателях с внешним смесеобразованием рабочую смесь готовят в смесителе и подают в цилиндр, где её принудительно поджигают электрической искрой. Такие двигатели работают с низкой степенью сжатия рабочей смеси. В двигателях с внутренним смесеобразованием топливо и воздух не смешивают заранее, а отдельно подают в рабочий цилиндр. Там они смешиваются и образуют рабочую смесь.
В четырёхтактных двигателях каждый рабочий цикл совершается один раз за четыре такта (или за два оборота вала), а в двухтактных – один раз за два такта (или за один оборот вала).
Рис. 1. Четырёхтактный карбюраторный двигатель внутреннего сгорания:
1 – коленчатый вал; 2 – кривошипно-шатунный механизм; 3 – впускной клапан; 4 – свеча зажигания; 5 – выпускной клапан; 6 – поршень; 7 – цилиндр
Главная деталь четырёхтактного двигателя внутреннего сгорания (рис. 1) – цилиндр 7, в головке которого расположены впускной 3 и выпускной 5 клапаны и свеча 4 для зажигания рабочей смеси. В цилиндре движется поршень 6. Его возвратно-поступательное движение преобразуется во вращательное движение коленчатого вала 1 с помощью кривошипно-шатунного механизма 2. Для обеспечения наиболее полного сгорания топлива его перемешивают с воздухом в пропорции 1: 15 (на одну часть паров бензина должно приходиться 15 частей воздуха). В такте I рабочего цикла происходит всасывание рабочей смеси в цилиндр (рис. 2). В такте II рабочая смесь сжимается. В такте III сгорает рабочая смесь и образующиеся при этом газы давят на поршень и совершают механическую работу, перемещая его сверху вниз. Движение поршня передаётся валу двигателя через кривошипно-шатунный механизм. В такте IV продукты сгорания выталкиваются в атмосферу через выпускной клапан. Работу четырёхтактного карбюраторного двигателя обеспечивает система газораспределения, состоящая из впускных и выпускных клапанов, открывающих их кулачков и закрывающих пружин.
Рис. 2. Работа четырёхтактного карбюраторного двигателя внутреннего сгорания:
I – всасывание; II – сжатие; III – зажигание, рабочий ход; IV – выпуск
Двухтактные двигатели устроены проще (рис. 3). В них всасывание горючей смеси и предварительное её сжатие до небольшого давления происходит вне цилиндра двигателя.
Рис. 3. Двухтактный карбюраторный двигатель внутреннего сгорания:
1 – коленчатый вал; 2 – кривошипно-шатунный механизм; 3 – цилиндр; 4 – насос; 5 – топливо, воздух; 6 – впускные окна; 7 – свеча зажигания; 8 – продувочные окна; 9 – продукты сгорания; 10 – поршень
Сложную систему газораспределения в этих двигателях заменяют три ряда окон 6.8 на боковой поверхности цилиндра 3. Через эти окна выпускаются отработанные газы, всасывается рабочая смесь в картер двигателя и продувается цилиндр от остатков продуктов сгорания. Окна открывает и закрывает сам поршень 10 (своей образующей поверхностью) при движении в цилиндре. В такте I (рис. 4) при движении поршня снизу вверх сначала происходит сжатие порции горючей смеси в цилиндре, а затем и засасывание свежей порции горючей смеси из карбюратора в картер двигателя. Когда сжатие рабочей смеси заканчивается, её воспламеняют электрической искрой. В такте II происходит расширение продуктов сгорания 9. Они толкают поршень вниз, т. е. происходит рабочий ход. В конце хода поршня сверху вниз отработанные газы выпускают в атмосферу. В карбюраторных двигателях, работающих на лёгком жидком топливе (бензине), смесеобразование осуществляется в специальном устройстве – карбюраторе. Двигатели внутреннего сгорания широко применяются в промышленности, на автомобильном, авиационном, морском и железнодорожном транспорте.
Рис. 4. Работа двухтактного карбюраторного двигателя внутреннего сгорания:
I – сжатие; II – зажигание, рабочий ход
ДВИ́ГАТЕЛЬ ЭЛЕКТРИ́ЧЕСКИЙ, машина электрическая, преобразующая электрическую энергию в механическую. Различают электрические двигатели постоянного и переменного тока. Основное преимущество двигателей постоянного тока заключается в возможности экономной и плавной регулировки частоты вращения, вследствие чего они получили распространение на рельсовом и безрельсовом электрифицированном транспорте, в подъёмных кранах, на прокатных станах, в устройствах автоматики и т. п. В системах автоматического регулирования и в электроприборах бытового назначения получили распространение электроприводы с микродвигателями постоянного тока. Основное их достоинство – значительно большие, чем у микродвигателей переменного тока, диапазон и точность регулирования.