Страница:
Операнды не обязаны иметь один и тот же тип, но каждый из них должен иметь один из основных типов или быть указатлем. Результат всегда имеет тип int.
7.13 Условная Операция
7.14 Операции Присваивания
7.15 Операция Запятая
7.16 Перегруженные Операции
7.16.1 Унарные Операции
7.16.2 Бинарные Операции
7.16.3 Особые Операции
8. Описания
8.1 Спецификаторы Класса Памяти
8.2 Спецификаторы Типа
8.3 Описатели
8.4 Смысл описателей
8.4.1 Примеры
8.4.2 Массивы, Указатели и Индексирование
8.5 Описания Классов
8.5.1 Статические Члены
8.5.2 Функции Члены
8.5.3 Производные Классы
8.5.4 Виртуальные Функции
7.13 Условная Операция
условное_выражение: выражение ? выражение : выражение
Условная операция группирует слева направо. Вычисляется первое выражение, и если оно не 0, то результатом является значение второго выражения, в противном случае значение третьего выражения. Если это возможно, то выполняются обычные арифметические преобразования для приведения второго и третего выражения к общему типу. Если это возможно, то выполняюся преобразования указателей для приведения второго и третего выражения к общему типу. Вычисляется только одно из второго и третьего выражений.
Условная операция группирует слева направо. Вычисляется первое выражение, и если оно не 0, то результатом является значение второго выражения, в противном случае значение третьего выражения. Если это возможно, то выполняются обычные арифметические преобразования для приведения второго и третего выражения к общему типу. Если это возможно, то выполняюся преобразования указателей для приведения второго и третего выражения к общему типу. Вычисляется только одно из второго и третьего выражений.
7.14 Операции Присваивания
Есть много операций присваивания, все группируют слева направо. Все в качестве левого операнда требуют lvalue, и тип выражения присваивания тот же, что и у его левого операнда. Это lvalue не может ссылаться на константу (имя массива, имя функции или const). Значением является значение, хранящееся в левом операнде просле выполнения присваивания.
выражение_присваивания:
выражение операция_присваивания выражение
операция_присваивания: одна из
= += -= *= /= %= »»= ««= amp;= ~= !=
В простом присваивании с = значение выражения замещает собой значение объекта, на который ссылается операнд в левой части. Если оба операнда имеют арифметический тип, то при подготовке к присваиванию правый операнд преобразуется к типу левого. Если аргумент в левой части имеет указательный тип, аргумент в правой части должен быть того же типа или типа, который может быть преобразован к нему, см. #6.7. Оба операда могут быть объектами одного класса. Могут присваиваться объекты некоторых производных классов, см. #8.5.3.
Присваивание объекту типа «указатель на ...» выполнит присваивание объекту, денотируемому ссылкой.
Выполнение выражения вида E1 op= E2 можно представить себе как эквивалентное E1 = E1 op (E2); но E1 вычисляется только один раз. В += и -= левый операнд может быть указатлем, и в этом случае (целочисленный) правый операнд преобрзуется так, как объяснялось в #7.4; все правые операнды и не являющиеся указателями левые должны иметь арифметический тип.
выражение_присваивания:
выражение операция_присваивания выражение
операция_присваивания: одна из
= += -= *= /= %= »»= ««= amp;= ~= !=
В простом присваивании с = значение выражения замещает собой значение объекта, на который ссылается операнд в левой части. Если оба операнда имеют арифметический тип, то при подготовке к присваиванию правый операнд преобразуется к типу левого. Если аргумент в левой части имеет указательный тип, аргумент в правой части должен быть того же типа или типа, который может быть преобразован к нему, см. #6.7. Оба операда могут быть объектами одного класса. Могут присваиваться объекты некоторых производных классов, см. #8.5.3.
Присваивание объекту типа «указатель на ...» выполнит присваивание объекту, денотируемому ссылкой.
Выполнение выражения вида E1 op= E2 можно представить себе как эквивалентное E1 = E1 op (E2); но E1 вычисляется только один раз. В += и -= левый операнд может быть указатлем, и в этом случае (целочисленный) правый операнд преобрзуется так, как объяснялось в #7.4; все правые операнды и не являющиеся указателями левые должны иметь арифметический тип.
7.15 Операция Запятая
запятая_выражение: выражение , выражение
Пара выражений, разделенных запятой, вычисляется слева направо, значение левого выражения теряется. Тип и значение результата являются типом и значением правого операнда. Эта операция группирует слева направо. В контексте, где запятая имеет специальное значение, как например в списке фактических параметров функции (#7.1) и в списке инициализаторов (#8.6), операция запятая, как она описана в этом разделе, может пояляться только в скобках; например,
f (a,(t=3,t+2),c)
имеет три параметра, вторым из которых является значение 5.
Пара выражений, разделенных запятой, вычисляется слева направо, значение левого выражения теряется. Тип и значение результата являются типом и значением правого операнда. Эта операция группирует слева направо. В контексте, где запятая имеет специальное значение, как например в списке фактических параметров функции (#7.1) и в списке инициализаторов (#8.6), операция запятая, как она описана в этом разделе, может пояляться только в скобках; например,
f (a,(t=3,t+2),c)
имеет три параметра, вторым из которых является значение 5.
7.16 Перегруженные Операции
Большинство операций может быть перегружено, то есть, описано так, чтобы они получали в качестве операндов объекты классов (см. #8.5.11). Изменить приоритет операций невозмоно. Невозможно изменить смысл операций при применении их к неклассовым объектам. Предопределенный смысл операций = и amp; (унарной) при применении их к объектам классов может быть именен.
Эквивалентность операций, применяемых к основным типам (например, ++a эквивалентно a+=1), не обязательно выполняется для операций, применяемых к классовым типам. Некоторые оперции, например, присваивание, в случае применения к основным типам требуют, чтобы операнд был lvalue; это не требуется для операций, описанных для классовых типов.
Эквивалентность операций, применяемых к основным типам (например, ++a эквивалентно a+=1), не обязательно выполняется для операций, применяемых к классовым типам. Некоторые оперции, например, присваивание, в случае применения к основным типам требуют, чтобы операнд был lvalue; это не требуется для операций, описанных для классовых типов.
7.16.1 Унарные Операции
Унарная операция, префиксная или постфиксная, может быть определена или с помощью функции члена (см. #8.5.4), не получающей параметров, или с помощью функции друга (см. #8.5.10), получающей один параметр, но не двумя способами одновременно. Так, для любой унарной операции @, x@ и @x могут интерпретроваться как x.операция@() или операция@(x). При перегрузке операций ++ и – невозможно различить префиксное и постфикное использование.
7.16.2 Бинарные Операции
Бинарная операция может быть определена или с помощью функции члена (см. #8.5.4), получающей один параметр, или с помощью функции друга (см. #8.5.9), получающей два параметра, но не двумя способами одновременно. Так, для любой бинарной операции @, x@y может быть проинтерпретировано как x.operator @(y) или operator@(x,y).
7.16.3 Особые Операции
Вызов функции первичное_выражение ( список_выражений opt )
и индексирование
первичное_выражение [ выражение ]
считаются бинарными операциями. Именами определяющей функции являются соответсвенно operator() и operator[]. Обрщение x(arg) интерпретируется как x.operator()(arg) для класового объекта x. Индексирование x[y] интерпретируется как x. operator[](y).
и индексирование
первичное_выражение [ выражение ]
считаются бинарными операциями. Именами определяющей функции являются соответсвенно operator() и operator[]. Обрщение x(arg) интерпретируется как x.operator()(arg) для класового объекта x. Индексирование x[y] интерпретируется как x. operator[](y).
8. Описания
Описания используются для определения интерпретации, дваемой каждому идентификатору. Они не обязательно резервируют память, связанную с идентификатором. Описания имеют вид:
описание: спецификаторы_описания opt список_описателей opt ; описание_имени asm_описание
Описатели в списке_описателей содержат идентификаторы, подлежащие описанию. Спецификаторы_описания могут быть опущны только в определениях внешних функций (#10) или в описанях внешних функций. Список описателей может быть пустым толко при описании класса (#8.5) или перечисления (#8.10), то есть, когда спецификаторы_описания – это class_спецификатор или enum_спецификатор. Описания имен описываются в #8.8; опсания asm описаны в #8.11.
спецификатор_описания: спецификатор_класса_памяти спецификатор_типа спецификатор_функции friend typedef
спецификаторы_описания: спецификатор_описания спецификатор_описания opt
Список должен быть внутренне непротиворечив в описывамом ниже смысле.
описание: спецификаторы_описания opt список_описателей opt ; описание_имени asm_описание
Описатели в списке_описателей содержат идентификаторы, подлежащие описанию. Спецификаторы_описания могут быть опущны только в определениях внешних функций (#10) или в описанях внешних функций. Список описателей может быть пустым толко при описании класса (#8.5) или перечисления (#8.10), то есть, когда спецификаторы_описания – это class_спецификатор или enum_спецификатор. Описания имен описываются в #8.8; опсания asm описаны в #8.11.
спецификатор_описания: спецификатор_класса_памяти спецификатор_типа спецификатор_функции friend typedef
спецификаторы_описания: спецификатор_описания спецификатор_описания opt
Список должен быть внутренне непротиворечив в описывамом ниже смысле.
8.1 Спецификаторы Класса Памяти
Спецификаторы – это:
спецификатор_класса_памяти: auto static extern register
Описания, использующие спецификаторы auto, static и register также служат определениями тем, что они вызывают рзервирование соответствующего объема памяти. Если описание extern не является определением (#4.2), то где-то еще должно быть определение для данных идентификаторов.
Описание register лучше всего представить как описание auto (автоматический) с подсказкой компилятору, что описанные переменные усиленно используются. Подсказка может быть проинорирована. К ним не может применяться операция получения ареса amp;.
Спецификаторы auto или register могут применяться только к именам, описанным в блоке, или к формальным параметрам. Внутри блока не может быть описаний ни статических функций, ни статических формальных параметров.
В описании может быть задан максимум один sc_спецификтор. Если в описании отсутсвует спецификатор_класса_памяти, то класс памяти принимается автоматическим внутри функции и статическим вне. Исключение: функции не могут быть автоматческими.
Спецификаторы static и extern могут использоваться толко для имен объектов и функций.
Некоторые спецификаторы могут использоваться только в описаниях функций:
спецификатор_функции: overload inline virtual
Спецификатор перегрузки overload делает возможным ипользование одного имени для обозначения нескольких функций, см. #8.9.
Спецификатор inline является только подсказкой компилтору, не влияет на смысл программы и может быть проигнорирван. Он используется, чтобы указать на то, что при вызове функции inline-подстановка тела функции предпочтительнее обычной реализацци вызова функции. Функция (#8.5.2 и #8.5.10), определенная внутри описания класса, является inline по умолчанию.
Спецификатор virtual может использоваться только в опсаниях членов класса, см. #8.5.4.
Спецификатор friend используется для отмены правил сорытия имени для членов класса и может использоваться только внутри описаний классов, см. #8.5.9.
С помощью спецификатора typedef вводится имя для типа, см. #8.8.
спецификатор_класса_памяти: auto static extern register
Описания, использующие спецификаторы auto, static и register также служат определениями тем, что они вызывают рзервирование соответствующего объема памяти. Если описание extern не является определением (#4.2), то где-то еще должно быть определение для данных идентификаторов.
Описание register лучше всего представить как описание auto (автоматический) с подсказкой компилятору, что описанные переменные усиленно используются. Подсказка может быть проинорирована. К ним не может применяться операция получения ареса amp;.
Спецификаторы auto или register могут применяться только к именам, описанным в блоке, или к формальным параметрам. Внутри блока не может быть описаний ни статических функций, ни статических формальных параметров.
В описании может быть задан максимум один sc_спецификтор. Если в описании отсутсвует спецификатор_класса_памяти, то класс памяти принимается автоматическим внутри функции и статическим вне. Исключение: функции не могут быть автоматческими.
Спецификаторы static и extern могут использоваться толко для имен объектов и функций.
Некоторые спецификаторы могут использоваться только в описаниях функций:
спецификатор_функции: overload inline virtual
Спецификатор перегрузки overload делает возможным ипользование одного имени для обозначения нескольких функций, см. #8.9.
Спецификатор inline является только подсказкой компилтору, не влияет на смысл программы и может быть проигнорирван. Он используется, чтобы указать на то, что при вызове функции inline-подстановка тела функции предпочтительнее обычной реализацци вызова функции. Функция (#8.5.2 и #8.5.10), определенная внутри описания класса, является inline по умолчанию.
Спецификатор virtual может использоваться только в опсаниях членов класса, см. #8.5.4.
Спецификатор friend используется для отмены правил сорытия имени для членов класса и может использоваться только внутри описаний классов, см. #8.5.9.
С помощью спецификатора typedef вводится имя для типа, см. #8.8.
8.2 Спецификаторы Типа
Спецификаторами типов (спецификатор_типа) являются:
спецификатор_типа:
простое_имя_типа спецификатор_класса enum-спецификатор сложный_спецификатор_типа const
Слово const можно добавлять к любому допустимому спецфикатору_типа. В остальных случаях в описании может быть дано не более одного спецификатора_типа. Объект типа const не яляется lvalue. Если в описании опущен спецификатор типа, он принимается int.
простое_имя_типа: char short int long unsigned float double const void
Слова long, short и unsigned можно рассматривать как прилагательные. Они могут применяться к типу int; unsigned может также применяться к типам char, short и long.
Спецификаторы класса и перечисления обсуждаются в #8.5 и #8.10 соответственно.
сложный_спецификатор_типа: ключ typedef-имя ключ идентификатор
ключ: class struct union enum
Сложный спецификатор типа можно использовать для ссылки на имя класса или перечисления там, где имя может быть скрыто локальным именем. Например:
class x (* ... *);
void f(int x) (* class x a; // ... *)
Если имя класса или перечисления ранее описано не было, сложный_спецификатор_типа работает как описание_имени, см. #8.8.
спецификатор_типа:
простое_имя_типа спецификатор_класса enum-спецификатор сложный_спецификатор_типа const
Слово const можно добавлять к любому допустимому спецфикатору_типа. В остальных случаях в описании может быть дано не более одного спецификатора_типа. Объект типа const не яляется lvalue. Если в описании опущен спецификатор типа, он принимается int.
простое_имя_типа: char short int long unsigned float double const void
Слова long, short и unsigned можно рассматривать как прилагательные. Они могут применяться к типу int; unsigned может также применяться к типам char, short и long.
Спецификаторы класса и перечисления обсуждаются в #8.5 и #8.10 соответственно.
сложный_спецификатор_типа: ключ typedef-имя ключ идентификатор
ключ: class struct union enum
Сложный спецификатор типа можно использовать для ссылки на имя класса или перечисления там, где имя может быть скрыто локальным именем. Например:
class x (* ... *);
void f(int x) (* class x a; // ... *)
Если имя класса или перечисления ранее описано не было, сложный_спецификатор_типа работает как описание_имени, см. #8.8.
8.3 Описатели
Список_описателей, появляющийся в описании, есть раздленная запятыми последовательность описателей, каждый из кторых может иметь инициализатор.
список_описателей: иниц_описатель иниц_описатель , список_описателей
иниц_описатель:
описатель инициализатор opt
Инициализаторы обсуждаются в #8.6. Спецификатор в описнии указывает тип и класс памяти объектов, к которым относятся описатели. Описатели имеют синтаксис:
описатель: оп_имя ( описатель ) * const opt описатель amp; const opt описатель описатель ( список_описаний_параметров ) описатель [ константное_выражение opt ]
оп-имя: простое_оп_имя typedef-имя :: простое_оп_имя
простое_оп_имя: идентификатор typedef-имя ~ typedef-имя имя_функции_операции имя_функции_преобразования
Группировка та же, что и в выражениях.
список_описателей: иниц_описатель иниц_описатель , список_описателей
иниц_описатель:
описатель инициализатор opt
Инициализаторы обсуждаются в #8.6. Спецификатор в описнии указывает тип и класс памяти объектов, к которым относятся описатели. Описатели имеют синтаксис:
описатель: оп_имя ( описатель ) * const opt описатель amp; const opt описатель описатель ( список_описаний_параметров ) описатель [ константное_выражение opt ]
оп-имя: простое_оп_имя typedef-имя :: простое_оп_имя
простое_оп_имя: идентификатор typedef-имя ~ typedef-имя имя_функции_операции имя_функции_преобразования
Группировка та же, что и в выражениях.
8.4 Смысл описателей
Каждый описатель считается утверждением того, что если в выражении возникает конструкция, имеющаяя ту же форму, что и описатель, то она дает объект указанного типа и класса памти. Каждый описатель содержит ровно одно оп_имя; оно опредляет описываемый идентификатор. За исключением описаний некторых специальных функций (см. #8.5.2) , оп_имя будет простым идентификатором.
Если в качестве описателя возникает ничем не снабженный идентификатор, то он имеет тип, указанный спецификатором, возглавляющим описание.
Описатель в скобках эквивалентен описателю без скобок, но связку сложных описателей скобки могут изменять.
Теперь представим себе описание
T D1
где T – спецификатор типа (как int и т.д.), а D1 – опсатель. Допустим, что это описание заставляет идентификатор иметь тип «... T», где «...» пусто, если идентификатор D1 есть просто обычый идентификатор (так что тип x в «int x» есть просто int). Тогда, если D1 имеет вид
*D
то тип содержащегося идентификатора есть «...указатель на T.»
Если D1 имеет вид
* const D
то тип содержащегося идентификатора есть «... констанный указатель на T», то есть, того же типа, что и *D, но не lvalue.
Если D1 имеет вид
amp;D
или
amp; const D
то тип содержащегося идентификатора есть «... ссылка на T.» Поскольку ссылка по определению не может быть lvalue, ипользование const излишне. Невозможно иметь ссылку на void (void amp;).
Если D1 имеет вид
D (список_описаний_параметров)
то содержащийся идентификатор имеет тип «... функция, принимающая параметр типа список_описаний_параметров и возращающая T.»
список_описаний_параметров: список_описаний_парам opt ... opt
список_описаний_парам: список_описаний_парам , описание_параметра описание_параметра
описание_параметра: спецификаторы_описания описатель спецификаторы_описания описатель = выражение спецификаторы_описания абстракт_описатель спецификаторы_описания абстракт_описатель = выражение
Если список_описаний_параметров заканчивается многоточем, то о числе параметров известно лишь, что оно равно или больше числа специфицированных типов параметров; если он пуст, то функция не получает ни одного параметра. Все описния для функции должны согласовываться и в типе возвращаемого значения, а также в числе и типе параметров.
Список_описаний_параметров используется для проверки и преобразования фактических параметров и для контроля присвавания указателю на функцию. Если в описании параметра указано выражение, то это выражение используется как параметр по умолчанию. Параметры по умолчанию будут использоваться в взовах, где опущены стоящие в хвосте параметры. Параметр по умолчанию не может переопределяться более поздними описаними. Однако, описание может добавлять параметры по умолчанию, не заданные в предыдущих описаниях.
По желанию можно задать идентификатор как имя параметра. Если он присутствует в описании функции, его использовать нельзя, поскольку он сразу выходит из области видимости. Если он присутствует в определении функции (#10), то он именует фармальный параметр.
Если D1 имеет вид
D[ константное_выражение ]
или
D[]
то тип содержащегося идентификатора есть «... массив объектов типа T». В первом случае константное выражение есть выражение, значение которого может быть определено во время компиляции, и тип которого int. (Константные выражения определены в #12.) Если подряд идут несколько спецификаций «масив из», то создается многомерный массив; константное выражние, определяющее границы массива, может быть опущено только для первого члена последовательности. Этот пропуск полезен, когда массив является внешним, и настоящее определение, котрое резервирует память, находится в другом месте. Первое константное выражение может также быть опущено, когда за опсателем следует инициализация. В этом случае используется размер, вычисленный исходя из числа начальных элементов.
Массив может быть построен из одного из основных типов, из указателей, из структуры или объединения или из другого массива (для получения многомерного массива).
Не все возможности, которые позволяет приведенный выше синтаксис, допустимы. Ограничения следующие: функция не может возвращать массив или функцию, хотя она может возвращать укзатели на эти объекты; не существует массивов функций, хотя могут быть массивы указателей на функции.
Если в качестве описателя возникает ничем не снабженный идентификатор, то он имеет тип, указанный спецификатором, возглавляющим описание.
Описатель в скобках эквивалентен описателю без скобок, но связку сложных описателей скобки могут изменять.
Теперь представим себе описание
T D1
где T – спецификатор типа (как int и т.д.), а D1 – опсатель. Допустим, что это описание заставляет идентификатор иметь тип «... T», где «...» пусто, если идентификатор D1 есть просто обычый идентификатор (так что тип x в «int x» есть просто int). Тогда, если D1 имеет вид
*D
то тип содержащегося идентификатора есть «...указатель на T.»
Если D1 имеет вид
* const D
то тип содержащегося идентификатора есть «... констанный указатель на T», то есть, того же типа, что и *D, но не lvalue.
Если D1 имеет вид
amp;D
или
amp; const D
то тип содержащегося идентификатора есть «... ссылка на T.» Поскольку ссылка по определению не может быть lvalue, ипользование const излишне. Невозможно иметь ссылку на void (void amp;).
Если D1 имеет вид
D (список_описаний_параметров)
то содержащийся идентификатор имеет тип «... функция, принимающая параметр типа список_описаний_параметров и возращающая T.»
список_описаний_параметров: список_описаний_парам opt ... opt
список_описаний_парам: список_описаний_парам , описание_параметра описание_параметра
описание_параметра: спецификаторы_описания описатель спецификаторы_описания описатель = выражение спецификаторы_описания абстракт_описатель спецификаторы_описания абстракт_описатель = выражение
Если список_описаний_параметров заканчивается многоточем, то о числе параметров известно лишь, что оно равно или больше числа специфицированных типов параметров; если он пуст, то функция не получает ни одного параметра. Все описния для функции должны согласовываться и в типе возвращаемого значения, а также в числе и типе параметров.
Список_описаний_параметров используется для проверки и преобразования фактических параметров и для контроля присвавания указателю на функцию. Если в описании параметра указано выражение, то это выражение используется как параметр по умолчанию. Параметры по умолчанию будут использоваться в взовах, где опущены стоящие в хвосте параметры. Параметр по умолчанию не может переопределяться более поздними описаними. Однако, описание может добавлять параметры по умолчанию, не заданные в предыдущих описаниях.
По желанию можно задать идентификатор как имя параметра. Если он присутствует в описании функции, его использовать нельзя, поскольку он сразу выходит из области видимости. Если он присутствует в определении функции (#10), то он именует фармальный параметр.
Если D1 имеет вид
D[ константное_выражение ]
или
D[]
то тип содержащегося идентификатора есть «... массив объектов типа T». В первом случае константное выражение есть выражение, значение которого может быть определено во время компиляции, и тип которого int. (Константные выражения определены в #12.) Если подряд идут несколько спецификаций «масив из», то создается многомерный массив; константное выражние, определяющее границы массива, может быть опущено только для первого члена последовательности. Этот пропуск полезен, когда массив является внешним, и настоящее определение, котрое резервирует память, находится в другом месте. Первое константное выражение может также быть опущено, когда за опсателем следует инициализация. В этом случае используется размер, вычисленный исходя из числа начальных элементов.
Массив может быть построен из одного из основных типов, из указателей, из структуры или объединения или из другого массива (для получения многомерного массива).
Не все возможности, которые позволяет приведенный выше синтаксис, допустимы. Ограничения следующие: функция не может возвращать массив или функцию, хотя она может возвращать укзатели на эти объекты; не существует массивов функций, хотя могут быть массивы указателей на функции.
8.4.1 Примеры
Описание
int i; int *pi; int f (); int *fpi (); int (*pif) ();
описывает целое i, указатель pi на целое, функцию f, возвращающую целое, функцию fpi , возвращающую указатель на целое, и указатель pif на функцию, возвращающую целое. Осбенно полезно сравнить последние две. Цепочка *fpi() есть *(fpi()), как предполагается в описании, и та же конструкция требуется в выражении, вызов функции fpi, и затем использовние косвенного обращения через (указательный) результ, чтобы получить целое. В описателе (*pif)() дополнительные скобки необходимы для указания того, что косвенность через указатель на функцию дает функцию, которая затем вызывается. Функции f и fpi описаны как не получающие параметров, а pif как указвающая на функцию, не получающую параметров.
Описание
const a = 10, *pc = amp;a, *const cpc = pc; int b, *const cp = amp;b;
описывает a: целую константу, pc: указатель на целую константу, cpc: константный указатель на целую константу, b: целое и cp: константный указатель на целое. Значения a, cpc и cp не могут быть изменены после инициализации. Значение pc может быть изменено, как и объект, указываемый cp. Примеры недопустимых выражений:
a = 1; a++; *pc = 2; cp = amp;a; cpc++;
Примеры допустимых выражений:
b = a; *cp = a; pc++; pc = cpc; Описание
fseek (FILE*,long,int);
описывает функцию, получающую три параметра указанных типов. Поскольку тип возвращаемого значения не задан, он прнимается int (#8.2). Описание
point (int = 0,int = 0);
описывает функцию, которая может вызываться без парамеров, с одним или с двумя параметрами типа int. Ее можно вызвать одним из следующих способов:
point (1,2); point (1); point ();
Описание
printf (char* ... );
описывает функцию, которая может вызываться с различными числом и типами параметров. Например
printf («hello, world»); printf («a=%d b=%d»,a,b);
Однако, всегда ее первым параметром должен быть char*.
Описание
float fa[17], *afp[17];
описывает массив чисел с плавающей точкой и массив укзателей на числа с плавающей точкой. И, наконец,
static int x3d[3][5][7];
описывает массив целых, размером 3x6x7. Совсем подробно: x3d является массивом из трех элементов данных; каждый из элементов данных является массивом из пяти массивов; каждый из последних массивов является массивом из семи целых. Пояление каждое из выражений x3d, x3d[i], x3d[i][j], x3d[i][j][k] может быть приемлемо в выражении.
int i; int *pi; int f (); int *fpi (); int (*pif) ();
описывает целое i, указатель pi на целое, функцию f, возвращающую целое, функцию fpi , возвращающую указатель на целое, и указатель pif на функцию, возвращающую целое. Осбенно полезно сравнить последние две. Цепочка *fpi() есть *(fpi()), как предполагается в описании, и та же конструкция требуется в выражении, вызов функции fpi, и затем использовние косвенного обращения через (указательный) результ, чтобы получить целое. В описателе (*pif)() дополнительные скобки необходимы для указания того, что косвенность через указатель на функцию дает функцию, которая затем вызывается. Функции f и fpi описаны как не получающие параметров, а pif как указвающая на функцию, не получающую параметров.
Описание
const a = 10, *pc = amp;a, *const cpc = pc; int b, *const cp = amp;b;
описывает a: целую константу, pc: указатель на целую константу, cpc: константный указатель на целую константу, b: целое и cp: константный указатель на целое. Значения a, cpc и cp не могут быть изменены после инициализации. Значение pc может быть изменено, как и объект, указываемый cp. Примеры недопустимых выражений:
a = 1; a++; *pc = 2; cp = amp;a; cpc++;
Примеры допустимых выражений:
b = a; *cp = a; pc++; pc = cpc; Описание
fseek (FILE*,long,int);
описывает функцию, получающую три параметра указанных типов. Поскольку тип возвращаемого значения не задан, он прнимается int (#8.2). Описание
point (int = 0,int = 0);
описывает функцию, которая может вызываться без парамеров, с одним или с двумя параметрами типа int. Ее можно вызвать одним из следующих способов:
point (1,2); point (1); point ();
Описание
printf (char* ... );
описывает функцию, которая может вызываться с различными числом и типами параметров. Например
printf («hello, world»); printf («a=%d b=%d»,a,b);
Однако, всегда ее первым параметром должен быть char*.
Описание
float fa[17], *afp[17];
описывает массив чисел с плавающей точкой и массив укзателей на числа с плавающей точкой. И, наконец,
static int x3d[3][5][7];
описывает массив целых, размером 3x6x7. Совсем подробно: x3d является массивом из трех элементов данных; каждый из элементов данных является массивом из пяти массивов; каждый из последних массивов является массивом из семи целых. Пояление каждое из выражений x3d, x3d[i], x3d[i][j], x3d[i][j][k] может быть приемлемо в выражении.
8.4.2 Массивы, Указатели и Индексирование
Всякий раз, когда в выражении появляется идентификатор типа массива, он преобразуется в указатель на первый элемент массива. Из-за преобразований массивы не являются lvalue. По определению операция индексирования [] интерпретируется таким образом, что E1[E2] идентично *((E1)+(E2)). В силу правил преобразования, применяемых к +, если E1 массив и E2 целое, то E1[E2] отностится к E2-ому члену E1. Поэтому, несмотря на такое проявление асимметрии, индексирование является коммуттивной операцией.
Это правило сообразным образом применяется в случае мнгомерного массива. Если E является n-мерным массивом ранга i* j*...*k, то возникающее в выражении E преобразуется в указтель на (n-1)-мерный массив ранга j*...*k. Если к этому укзателю, явно или неявно, как результат индексирования, примняется операция *, ее результатом является (n-1)-мерный массив, на который указывалось, который сам тут же преобразется в указатель.
Рассмотрим, например,
int x[3][5];
Здесь x – массив целых размером 3*5. Когда x возникает в выражении, он преобразуется в указатель на (первый из трех) 5 – элементный массив из целых. В выражении x[i], которое экввалентно *(x+i), x сначала преобразуется, как было сказано, в указатель, затем i преобразуется к типу x, что включает в сбя умножение i на длину объекта, на который указывает указтель, а именно объект из 5 целых. Результаты складываются, и используется косвенная адресация для получения массива (из 5 целых), который в свою очередь преобразуется в указатель на первое из целых. Если есть еще один индекс, снова используеся тот же параметр; на этот раз результатом является целое.
Именно из всего этого проистекает то, что массивы в С++ хранятся строкообразно (быстрее всего изменяется последний индекс), и что в описании первый индекс помогает определить объем памяти, поглощаемый массивом, но не играет никакой дргой роли в вычислениях индекса.
Это правило сообразным образом применяется в случае мнгомерного массива. Если E является n-мерным массивом ранга i* j*...*k, то возникающее в выражении E преобразуется в указтель на (n-1)-мерный массив ранга j*...*k. Если к этому укзателю, явно или неявно, как результат индексирования, примняется операция *, ее результатом является (n-1)-мерный массив, на который указывалось, который сам тут же преобразется в указатель.
Рассмотрим, например,
int x[3][5];
Здесь x – массив целых размером 3*5. Когда x возникает в выражении, он преобразуется в указатель на (первый из трех) 5 – элементный массив из целых. В выражении x[i], которое экввалентно *(x+i), x сначала преобразуется, как было сказано, в указатель, затем i преобразуется к типу x, что включает в сбя умножение i на длину объекта, на который указывает указтель, а именно объект из 5 целых. Результаты складываются, и используется косвенная адресация для получения массива (из 5 целых), который в свою очередь преобразуется в указатель на первое из целых. Если есть еще один индекс, снова используеся тот же параметр; на этот раз результатом является целое.
Именно из всего этого проистекает то, что массивы в С++ хранятся строкообразно (быстрее всего изменяется последний индекс), и что в описании первый индекс помогает определить объем памяти, поглощаемый массивом, но не играет никакой дргой роли в вычислениях индекса.
8.5 Описания Классов
Класс есть тип. Его имя становится typedef-имя (см. #8.8), которое может быть использовано даже внутри самого спецификатора класса. Объекты класса состоят из последовтельности членов.
спецификатор_класса: заголовок_класса (* список_членов opt *) заголовок_класса (* список_членов opt public : спсок_членов opt *)
заголовок_класса: сост идентификатор opt сост идентификатор opt : public opt typedef-имя
сост: class struct union
Объекты классов могут присваиваться, передаваться как параметры и возвращаться функциями (за исключением объектов некоторых производных типов, см. #8.5.3). Прочие действия, которые могут быть удобны, может определить пользователь, см. #8.5.11.
Структура является классом, все члены которого общие, см. #8.5.9. Объединение является структурой, содержащей в каждый момент только один член, см. #8.5.13. Список_членов может описывать друзей (8.5.10) и члены вида: данные, фунция, класс, перечисление, поле(#8.5.13). Список_членов может также содержать описания, регулирующие видимость имен членов, см. #8.5.9.
список_членов: описание_члена список_членов opt описание_члена: спецификаторы_описания opt описатель_члена ; определение_функции ; opt описатель_члена: описатель идентификатор opt : константное_выражение
Члены, являющиеся классовыми объектами, должны быть обектами предварительно описанных классов. В частности, класс cl не может содержать объект класса cl, но он может содержать указатель на объект класса cl. Вот простой пример описания структуры:
struct tnode (* char tword[20]; int count; tnode *left; tnode *right; *);
содержащей массив из 20 символов, целое и два указателя на такие же структуры. Если было дано такое описание, то опсание
tnode s, *sp
описывает s как структуру данного сорта и sp как указатель на структуру данного сорта. При наличии этих описаний выражение
sp-»count
ссылается на поле count структуры, на которую указывает sp;
s.left
ссылается на указатель левого поддерва структуры s; а
s.right-»tword[0]
ссылается на первый символ члена tword правого поддерва стрктуры s.
спецификатор_класса: заголовок_класса (* список_членов opt *) заголовок_класса (* список_членов opt public : спсок_членов opt *)
заголовок_класса: сост идентификатор opt сост идентификатор opt : public opt typedef-имя
сост: class struct union
Объекты классов могут присваиваться, передаваться как параметры и возвращаться функциями (за исключением объектов некоторых производных типов, см. #8.5.3). Прочие действия, которые могут быть удобны, может определить пользователь, см. #8.5.11.
Структура является классом, все члены которого общие, см. #8.5.9. Объединение является структурой, содержащей в каждый момент только один член, см. #8.5.13. Список_членов может описывать друзей (8.5.10) и члены вида: данные, фунция, класс, перечисление, поле(#8.5.13). Список_членов может также содержать описания, регулирующие видимость имен членов, см. #8.5.9.
список_членов: описание_члена список_членов opt описание_члена: спецификаторы_описания opt описатель_члена ; определение_функции ; opt описатель_члена: описатель идентификатор opt : константное_выражение
Члены, являющиеся классовыми объектами, должны быть обектами предварительно описанных классов. В частности, класс cl не может содержать объект класса cl, но он может содержать указатель на объект класса cl. Вот простой пример описания структуры:
struct tnode (* char tword[20]; int count; tnode *left; tnode *right; *);
содержащей массив из 20 символов, целое и два указателя на такие же структуры. Если было дано такое описание, то опсание
tnode s, *sp
описывает s как структуру данного сорта и sp как указатель на структуру данного сорта. При наличии этих описаний выражение
sp-»count
ссылается на поле count структуры, на которую указывает sp;
s.left
ссылается на указатель левого поддерва структуры s; а
s.right-»tword[0]
ссылается на первый символ члена tword правого поддерва стрктуры s.
8.5.1 Статические Члены
Член данные класса может быть static; члены функции не могут. Члены не могут быть auto, register или extern. Есть единственная копия статического члена, совместно используемая всеми членами класса в программе. На статический член mem класса cl можно ссылаться cl:mem, то есть без ссылки на обект. Он существует, даже если не было создано ни одного обекта класса cl. Для статического члена не может задаваться никакой инициализатор, и он не может быть членом класса с конструктором.
8.5.2 Функции Члены
Функция, описанная как член, (без спецификатора friend (#8.5.10)) называется функцией членом и вызывается с исползованием синтаксиса члена класса (#7.1). Например:
struct tnode (* char tword[20]; int count; tnode *left; tnode *right; void set (char* w,tnode* l,tnode* r); *);
tnode n1, n2; n1.set («asdf», amp;n2,0); n2.set («ghjk»,0,0);
Определение функции члена рассматривается как находящеся в области видимости ее класса. Это значит, что она может непосредственно использовать имена ее класса. Если определние функции члена лексически находится вне описания класса, то имя функции члена должно быть уточнено именем класса с пмощью операции ::. Определения функций обсуждаются в #10.
Например:
void tnode.set (char* w,tnode* l,tnode* r) (* count = strlen (w); if (sizeof (tword)«=count) error („tnode string too long“); strcpy (tword,w); left = l; right = r; *)
Запись tnode.set определяет то, что функция set является членом класса tnode и принадлежит его области видисости. Имна членов tword, count, left и right относятся к объекту, для которого была вызвана функция. Так, в вызове n1.set(«abc»,0,0) tword ссылается на n1.tword, а в вызове n2. set(«def»,0,0) оно ссылается на n2.tword. Предполагается, что функции strlen, error и strcpy описаны где-то в другом месте, см. #10.
В функции члене ключевое слово this является указателем на объект, для которого вызвана функция.
Функция член может быть определена (#10) в описании класса, и в этом случак она является inline (#8.1). Например:
int b; struct x (* int f () (* return b; *) int f () (* return b; *) int b; *);
означает
int b; struct x (* int f (); int b; *); inline x::f () (* return b; *)
Применение операции получения адреса к функциям членам допустимо. Однако, тип параметра результирующего указателя на функцию неопределн, поэтому любое использование его является зависимым от реализации.
struct tnode (* char tword[20]; int count; tnode *left; tnode *right; void set (char* w,tnode* l,tnode* r); *);
tnode n1, n2; n1.set («asdf», amp;n2,0); n2.set («ghjk»,0,0);
Определение функции члена рассматривается как находящеся в области видимости ее класса. Это значит, что она может непосредственно использовать имена ее класса. Если определние функции члена лексически находится вне описания класса, то имя функции члена должно быть уточнено именем класса с пмощью операции ::. Определения функций обсуждаются в #10.
Например:
void tnode.set (char* w,tnode* l,tnode* r) (* count = strlen (w); if (sizeof (tword)«=count) error („tnode string too long“); strcpy (tword,w); left = l; right = r; *)
Запись tnode.set определяет то, что функция set является членом класса tnode и принадлежит его области видисости. Имна членов tword, count, left и right относятся к объекту, для которого была вызвана функция. Так, в вызове n1.set(«abc»,0,0) tword ссылается на n1.tword, а в вызове n2. set(«def»,0,0) оно ссылается на n2.tword. Предполагается, что функции strlen, error и strcpy описаны где-то в другом месте, см. #10.
В функции члене ключевое слово this является указателем на объект, для которого вызвана функция.
Функция член может быть определена (#10) в описании класса, и в этом случак она является inline (#8.1). Например:
int b; struct x (* int f () (* return b; *) int f () (* return b; *) int b; *);
означает
int b; struct x (* int f (); int b; *); inline x::f () (* return b; *)
Применение операции получения адреса к функциям членам допустимо. Однако, тип параметра результирующего указателя на функцию неопределн, поэтому любое использование его является зависимым от реализации.
8.5.3 Производные Классы
В конструкции
сост идентификатор : public opt typedef-имя
typedef-имя должно означать ранее описанный класс, назваемый базовым классом для описываемого класса. Говорится, что последний выводится из предшествующего (является проиводным от него). По поводу смысла public см. #8.5.9. На члены базового класса можно ссылаться так, как если бы они были членами производного класса, за исключением тех случаев, кода имя базового члена было переопределено в производном класе; в этом случае для ссылки на скрытое имя можно использвать операцию :: (#7.1). Производный класс сам может использоваться в качестве базового класса. Невозможно стристь производные от union (#8.5.13). Указатель на производный класс может неявно преобразовываться в указатель на открытый
базовый класс (#6.7).
Для объектов класса, производного от класса, для которго была определена operator= (#8.5.11), присваивание неявно не определено (#7.14 и #8.5)
Например:
class base (* int a, b; *);
class derived : public base (* int b, c; *);
derived d;
d.a = 1; d.base::b = 2; d.b = 3; d.c = 4;
осуществляет присваивание четырем членам d.
сост идентификатор : public opt typedef-имя
typedef-имя должно означать ранее описанный класс, назваемый базовым классом для описываемого класса. Говорится, что последний выводится из предшествующего (является проиводным от него). По поводу смысла public см. #8.5.9. На члены базового класса можно ссылаться так, как если бы они были членами производного класса, за исключением тех случаев, кода имя базового члена было переопределено в производном класе; в этом случае для ссылки на скрытое имя можно использвать операцию :: (#7.1). Производный класс сам может использоваться в качестве базового класса. Невозможно стристь производные от union (#8.5.13). Указатель на производный класс может неявно преобразовываться в указатель на открытый
базовый класс (#6.7).
Для объектов класса, производного от класса, для которго была определена operator= (#8.5.11), присваивание неявно не определено (#7.14 и #8.5)
Например:
class base (* int a, b; *);
class derived : public base (* int b, c; *);
derived d;
d.a = 1; d.base::b = 2; d.b = 3; d.c = 4;
осуществляет присваивание четырем членам d.
8.5.4 Виртуальные Функции
Если базовый класс base содержит virtual (виртуальную) (#8.1) функцию vf, а производный класс derived также содержит функцию vf, то обе функции должны иметь один и тот же тип, и вызов vf для объекта класса derived вызывает derived::vf. Например:
struct base (* virtual void vf (); void f (); *);
class derived : public base (* void vf (); void f (); *);
derived d; base* bp = amp;d; bp-»vf(); bp-»f();
Вызовы вызывают, соответственно, derived::vf и base::f для объекта класса derived, именованного d. Так что интерпртация вызова виртуальной функции зависит от типа объекта, для которого она вызвана, в то время как интерпретация вызова нвиртуальной функции зависит только от типа указателя, обознчающего объект.
Виртуальная функция не может быть другом (friend) (#8.5. 10). Функция f в классе, выведенном из класса, который имеет виртуальную функцию f, сама считается виртуальной. Виртуалная функция в базовом классе должна быть определена. Виртальная функция, которая была определена в базовом классе, не обязательно должна определяться в производном классе. В этом случае во всех вызовах используется функция, определенная для базового класса.
struct base (* virtual void vf (); void f (); *);
class derived : public base (* void vf (); void f (); *);
derived d; base* bp = amp;d; bp-»vf(); bp-»f();
Вызовы вызывают, соответственно, derived::vf и base::f для объекта класса derived, именованного d. Так что интерпртация вызова виртуальной функции зависит от типа объекта, для которого она вызвана, в то время как интерпретация вызова нвиртуальной функции зависит только от типа указателя, обознчающего объект.
Виртуальная функция не может быть другом (friend) (#8.5. 10). Функция f в классе, выведенном из класса, который имеет виртуальную функцию f, сама считается виртуальной. Виртуалная функция в базовом классе должна быть определена. Виртальная функция, которая была определена в базовом классе, не обязательно должна определяться в производном классе. В этом случае во всех вызовах используется функция, определенная для базового класса.