Страница:
Естественно, такая организация имеет свои ограничения. В частности, множество понятий иногда лучше организуется в виде ациклического графа, в котором понятие может непосредственно зависеть от более чем одного другого понятия, например, «A есть B и C и ...». В С++ нет непосредственной поддержки этого, но подобные связи можно представить, немного потеряв в элегантности и проделав малость дополнительной работы (#7.2.5).
Иногда для организации понятий некоторой программы оказывается непригоден даже ациклический граф, некоторые понятия оказываются взаимозависимыми по своей природе. Если множество взаимозависимых классов настолько мало, что его легко себе представить, то циклические зависимости не должны вызвать сложностей. Для представления множеств взаимозависимых классов с С++ можно использовать идею friend классов (#5.4.1).
Если вы можете организовать понятия программы только в виде общего графа (не дерева или ациклического направленного графа), и если вы не можете локализовать взаимные зависимости, то вы, по всей видимости, попали в затруднительное положение, из которого вас не выручит ни один язык программирования. Если вы не можете представить какой-либо просто формулируемой зависимости между основными понятиями, то скорее всего справиться с программой не удастся.
Напомню, что большую часть программирования можно легко и очевидно выполнять, используя только простые типы, структуры данных, обычные функции и небольшое число классов из стандартной библиотеки. Весь аппарат, входящий в определение новых типов, не следует использовать за исключением тех случаев, когда он действительно нужен.
Вопрос «Как пишут хорошие программы на С++» очень похож на вопрос «Как пишут хорошую английскую прозу?» Есть два вида ответов: «Знайте, что вы хотите сказать» и «Практикуйтесь. Подражайте хорошему языку.» Оба совета оказываются подходящими к С++ в той же мере, сколь и для английского – и им столь же трудно следовать.
Правила Правой Руки*
Здесь приводится набор правил, которых вам хорошо бы придерживаться изучая С++. Когда вы станете более опытны, вы можете превратить их в то, что будет подходить для вашего рода деятельности и вашего стиля программирования. Они умышлено сделаны очень простыми, поэтому подробности в них опущены. Не воспринимайте их чересчур буквально. Написание хороших программ требует ума, вкуса и терпения. Вы не собираетесь как следует понять это с самого начала, поэкспериментируйте!
1. Когда вы программируете, вы создаете конкретное представление идей вашего решения некоторой задачи. Пусть структура отражает эти идеи настолько явно, насколько это возможно:
a) Если вы считаете «это» отдельным понятием, сделайте его классом.
b) Если вы считаете «это» отдельным объектом, сделайте его объектом некоторого класса.
c) Если два класса имеют общим нечто существенное, сделайте его базовым классом. Почти все классы в вашей программе будут иметь нечто общее. Заведите (почти) универсальный базовый класс, и разработайте его наиболее тщательно.
2. Когда вы определяете класс, который не реализует некоторый математический объект, вроде матрицы или комплексного числа, или тип низкого уровня, вроде связанного списка, то:
a) Не используйте глобальные данные.
b) Не используйте глобальные функции (не члены).
c) Не используйте открытые данные-члены.
d) Не используйте друзей, кроме как для того, чтобы избежать [a], [b] или [c].
e) Не обращайтесь к данным-членам или другим объектам непосредственно.
f) Не помещайте в класс «поле типа», используйте виртуальные функции.
g) Не используйте inline-функции, кроме как средство существенной оптимизации.
1. Когда вы программируете, вы создаете конкретное представление идей вашего решения некоторой задачи. Пусть структура отражает эти идеи настолько явно, насколько это возможно:
a) Если вы считаете «это» отдельным понятием, сделайте его классом.
b) Если вы считаете «это» отдельным объектом, сделайте его объектом некоторого класса.
c) Если два класса имеют общим нечто существенное, сделайте его базовым классом. Почти все классы в вашей программе будут иметь нечто общее. Заведите (почти) универсальный базовый класс, и разработайте его наиболее тщательно.
2. Когда вы определяете класс, который не реализует некоторый математический объект, вроде матрицы или комплексного числа, или тип низкого уровня, вроде связанного списка, то:
a) Не используйте глобальные данные.
b) Не используйте глобальные функции (не члены).
c) Не используйте открытые данные-члены.
d) Не используйте друзей, кроме как для того, чтобы избежать [a], [b] или [c].
e) Не обращайтесь к данным-членам или другим объектам непосредственно.
f) Не помещайте в класс «поле типа», используйте виртуальные функции.
g) Не используйте inline-функции, кроме как средство существенной оптимизации.
Замечания для Программистов на C
Чем лучше кто-нибудь знает C, тем труднее окажется избежать писания на С++ в стиле C, теряя, тем самым, некоторые возможные выгоды С++. Поэтому проглядите, пожалуйста, раздел «Отличия от C» в справочном руководстве (#с.15). Там указываются области, в которых С++ позволяет делать что-то лучше, чем C. Макросы (#define) в С++ почти никогда не бывают необходимы, чтобы определять провозглашаемые константы, используйте const (#2.4.6) или enum (#2.4.7), и inline (#1.12) – чтобы избежать лишних расходов на вызов функции. Старайтесь описывать все функции и типы всех параметров – есть очень мало веских причин этого не делать. Аналогично, практически нет причин описывать локальную переменную не инициализируя ее, поскольку описание может появляться везде, где может стоять оператор, – не описывайте переменную, пока она вам не нужна. Не используйте malloc() – операция new (#3.2.6) делает ту же работу лучше. Многие объединения не нуждаются в имени – используйте безымянные объединения (#2.5.2).
Библиографические Ссылки
В тексте мало прямых ссылок на литературу, но здесь приведен короткий список книг и статей, которые прямо или косвенно упоминаются.
[1] A.V. Aho, J.E. Hopcroft, and J.D. Ulman: Data Structures and Algorithms. Addison-Wesley, Reading, Massachusetts. 1983.
[2] O-J. Dahl, B. Myrhaug, and K. Nygaard: SIMULA Common Base Language. Norwegian Computer Center S-22, Oslo, Norsay. 1970
[3] O-J. Dahl and C.A.R. Hoare: Hierarchical Program Construction in «Structured Programming.» Academic Press, New York. 1972. pp 174-220.
[4] A. Goldberg and D. Robson: SMALLTALK-80 The Language and Its Implementation. Addison-Wesley, Reading, Massachusetts. 1983.
[5] R.E. Griswold et.al. The Snobol4 Programming Language. Prentice-Hall, Englewood Cliffs, New Jersey. 1970.
[6] R.E. Griswold and M.T. Griswold: The ICON Programming Language. Prentice-Hall, Englewood Cliffs, New Jersey. 1983.
[7] Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language. Prentice-Hall, Englewood Cliffs, New Jersey. 1978. Русский перевод в: Б.В. Керниган, Д. Ритчи, А. Фьюэр. Язык программирования Си. М.: Финансы и Статитика. 1985.
[8] George Orwell: 1984. Secker and Warburg, London. 1949. Русский перевод: Дж. Оруэлл. 1984. ...
[9] Martin Richards and Colin Whitby-Strevens: BCPL – The Language and Its Compiler. Cambridge University Press. 1980.
[10] L. Rosler (Chairman, ANSI X3J11 Language Subcommittee): Preliminary Draft Proposed Standard – The C Language. X3 Secretariat: Computer and Busineess Equipment Manufacturers Association, 311 First Street, N.W, Suite 500, Washington, DC 20001, USA.
[11] L.Rosler: The Evolution of C – Past and Future. AT amp;T Bell Laboratories Technical Journal. Vol.63 No.8 Part 2. October 1984. pp 1685-1700.
[12] Ravi Sethi: Uniform Syntax for Type Expressions and Declarations. Software Practice amp; Experience, Vol 11 (1981), pp 623-628.
[13] Bjarne Stroustrup: Adding Classes to C: An Exercise in Language Evolution. Software Practice amp; Experience, 13 (1981), pp 139-61.
[14] P.M. Woodward and S.G. Bond: Algol 68-R Users Guide. Her Majesty's Stationery Office, London. 1974.
[15] UNIX System V Release 2.0 User Reference Manual. AT amp;T Bell Laboratories, Murray Hill, New Jersey. December 1983.
[16] UNIX Time-Sharing System: Programmer's Manual. Research Version, Eighth Edition. AT amp;T Bell Laboratories, Murray Hill, New Jersey. February 1985.
[17] UNIX Programmer's Manual. 4.2 Berkeley Software Distribution University of California, Berkeley, California. March 1984.
[1] A.V. Aho, J.E. Hopcroft, and J.D. Ulman: Data Structures and Algorithms. Addison-Wesley, Reading, Massachusetts. 1983.
[2] O-J. Dahl, B. Myrhaug, and K. Nygaard: SIMULA Common Base Language. Norwegian Computer Center S-22, Oslo, Norsay. 1970
[3] O-J. Dahl and C.A.R. Hoare: Hierarchical Program Construction in «Structured Programming.» Academic Press, New York. 1972. pp 174-220.
[4] A. Goldberg and D. Robson: SMALLTALK-80 The Language and Its Implementation. Addison-Wesley, Reading, Massachusetts. 1983.
[5] R.E. Griswold et.al. The Snobol4 Programming Language. Prentice-Hall, Englewood Cliffs, New Jersey. 1970.
[6] R.E. Griswold and M.T. Griswold: The ICON Programming Language. Prentice-Hall, Englewood Cliffs, New Jersey. 1983.
[7] Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language. Prentice-Hall, Englewood Cliffs, New Jersey. 1978. Русский перевод в: Б.В. Керниган, Д. Ритчи, А. Фьюэр. Язык программирования Си. М.: Финансы и Статитика. 1985.
[8] George Orwell: 1984. Secker and Warburg, London. 1949. Русский перевод: Дж. Оруэлл. 1984. ...
[9] Martin Richards and Colin Whitby-Strevens: BCPL – The Language and Its Compiler. Cambridge University Press. 1980.
[10] L. Rosler (Chairman, ANSI X3J11 Language Subcommittee): Preliminary Draft Proposed Standard – The C Language. X3 Secretariat: Computer and Busineess Equipment Manufacturers Association, 311 First Street, N.W, Suite 500, Washington, DC 20001, USA.
[11] L.Rosler: The Evolution of C – Past and Future. AT amp;T Bell Laboratories Technical Journal. Vol.63 No.8 Part 2. October 1984. pp 1685-1700.
[12] Ravi Sethi: Uniform Syntax for Type Expressions and Declarations. Software Practice amp; Experience, Vol 11 (1981), pp 623-628.
[13] Bjarne Stroustrup: Adding Classes to C: An Exercise in Language Evolution. Software Practice amp; Experience, 13 (1981), pp 139-61.
[14] P.M. Woodward and S.G. Bond: Algol 68-R Users Guide. Her Majesty's Stationery Office, London. 1974.
[15] UNIX System V Release 2.0 User Reference Manual. AT amp;T Bell Laboratories, Murray Hill, New Jersey. December 1983.
[16] UNIX Time-Sharing System: Programmer's Manual. Research Version, Eighth Edition. AT amp;T Bell Laboratories, Murray Hill, New Jersey. February 1985.
[17] UNIX Programmer's Manual. 4.2 Berkeley Software Distribution University of California, Berkeley, California. March 1984.
Глава 1 Турне по С++
Единственный способ изучать новый язык программирования – писать на нем программы.
Брайэн Керниган
Эта глава представляет собой краткий обзор основных черт языка программирования С++. Сначала приводится программа на С ++, затем показано, как ее откомпилировать и запустить, и как такая программа может выводить выходные данные и считывать входные. В первой трети этой главы после введения описаны наиболее обычные черты С++: основные типы, описания, выражения, операторы, функции и структура программы. Оставшаяся часть главы посвящена возможностям С++ по определению новых типов, сокрытию данных, операциям, определяемым пользователем, и иерархии определяемых пользователем типов.
1.1 Введение
Это турне проведет вас через ряд программ и частей программ на С++. К концу у вас должно сложиться общее представление об основных особенностях С++, и будет достаточно информации, чтобы писать простые программы. Для точного и полного объяснения понятий, затронутых даже в самом маленьком законченном примере, потребовалось бы несколько страниц определений. Чтобы не превращать эту главу в описание или в осуждение общих понятий, примеры снабжены только самыми короткими определениями используемых терминов. Термины рассматриваются позже, когда будет больше примеров, способствующих обсуждению.
1.1.1 Вывод
Прежде всего, давайте напишем программу, выводящую строку выдачи:
#include «stream.h»
main() (* cout «„ «Hello, world\n“; *)
Строка #include «stream.h» сообщает компилятору, чтобы он включил стандартные возможности потока ввода и вывода, находящиеся в файле stream.h. Без этих описаний выражение cout «„ „Hello, world\n“ не имело бы смысла. Операция „« («пометить в“*) пишет свой первый аргумент во второй (в данном случае, строку «Hello, world\n“ в стандартный поток вывода cout). Строка – это последовательность символов, заключенная в двойные кавычки. В строке символ обратной косой \, за которым следует другой символ, обозначает один специальный символ, в данном случае, \n является символом новой строки. Таким образом выводимые символы состоят из Hello, world и перевода строки.
– * Программирующим на C «« известно как операция сдвига влево для целых. Такое использование «« не утеряно, просто в дальнейшем «« было определено для случая, когда его левый операнд является потоком вывода. Как это делается, описано в #1.8. (прим. автора)
Остальная часть программы
main() (* ... *)
определяет функцию, названную main. Каждая программа должна содержать функцию с именем main, и работа программы начинается с выполнения этой функции.
#include «stream.h»
main() (* cout «„ «Hello, world\n“; *)
Строка #include «stream.h» сообщает компилятору, чтобы он включил стандартные возможности потока ввода и вывода, находящиеся в файле stream.h. Без этих описаний выражение cout «„ „Hello, world\n“ не имело бы смысла. Операция „« («пометить в“*) пишет свой первый аргумент во второй (в данном случае, строку «Hello, world\n“ в стандартный поток вывода cout). Строка – это последовательность символов, заключенная в двойные кавычки. В строке символ обратной косой \, за которым следует другой символ, обозначает один специальный символ, в данном случае, \n является символом новой строки. Таким образом выводимые символы состоят из Hello, world и перевода строки.
– * Программирующим на C «« известно как операция сдвига влево для целых. Такое использование «« не утеряно, просто в дальнейшем «« было определено для случая, когда его левый операнд является потоком вывода. Как это делается, описано в #1.8. (прим. автора)
Остальная часть программы
main() (* ... *)
определяет функцию, названную main. Каждая программа должна содержать функцию с именем main, и работа программы начинается с выполнения этой функции.
1.1.2 Компиляция
Откуда появились выходной поток cout и код, реализующий операцию вывода ««? Для получения выполняемого кода написанная на С++ программа должна быть скомпилирована. По своей сути процесс компиляции такой же, как и для С, и в нем участвует большая часть входящих в последний программ. Производится чтение и анализ текста программы, и если не обнаружены ошибки, то генерируется код. Затем программа проверяется на наличие имен и операций, которые использовались, но не были определены (в нашем случае это cout и ««). Если это возможно, то программа делается полной посредством дополнения недостающих определений из библиотеки (есть стандартные библиотеки, и пользователи могут создавать свои собственные). В нашем случае cout и «« были описаны в stream.h, то есть, были указаны их типы, но не было дано никаких подробностей относительно их реализации. В стандартной библиотеке содержится спецификация пространства и инициализирующий код для cout и ««. На самом деле, в этой библиотеке содержится и много других вещей, часть из которых описана в stream.h, однако к скомпилированной версии добавляется только подмножество библиотеки, необходимое для того, чтобы сделать нашу программу полной.
Команда компиляции в С++ обычно называется CC. Она используется так же, как команда cc для программ на C, подробности вы можете найти в вашем руководстве. Предположим, что программа с «Hello, world» хранится в файле с именем hello.c, тогда вы можете ее скомпилировать и запустить примерно так ($ – системное приглашение):
$ CC hello.c $ a.out Hello,world $
a.out – это принимаемое по умолчанию имя исполняемого результата компиляции. Если вы хотите назвать свою программу, вы можете сделать это с помощью опции -o:
$ CC hello.c -o hello $ hello Hello,world $
Команда компиляции в С++ обычно называется CC. Она используется так же, как команда cc для программ на C, подробности вы можете найти в вашем руководстве. Предположим, что программа с «Hello, world» хранится в файле с именем hello.c, тогда вы можете ее скомпилировать и запустить примерно так ($ – системное приглашение):
$ CC hello.c $ a.out Hello,world $
a.out – это принимаемое по умолчанию имя исполняемого результата компиляции. Если вы хотите назвать свою программу, вы можете сделать это с помощью опции -o:
$ CC hello.c -o hello $ hello Hello,world $
1.1.3 Ввод
Следующая (довольно многословная) программа предлагает вам ввести число дюймов. После того, как вы это сделаете, она напечатает соответствующее число сантиметров.
#include «stream.h»
main() (* int inch = 0; // inch – дюйм cout «„ „inches“; cin “» inch; cout «„ inch; cout «« " in = "; cout «« inch*2.54; cout «« « cm\n“; *)
Первая строка функции main() описывает целую переменную inch. Ее значение считывается с помощью операции »» («взять из») над стандартным потоком ввода cin. Описания cin и »», конечно же, находятся в «stream.h». После ее запуска ваш терминал может выглядеть примерно так:
$ a.out inches=12 12 in = 30.48 cm $
В этом примере на каждую команду вывода приходится один оператор. Это слишком длинно. Операцию вывода «« можно применять к ее собственному результату, так что последние четыре команды вывода можно было записать одним оператором:
cout «„ inch «« " in = " «« inch*2.54 «« « cm\n“;
В последующих разделах ввод и вывод будут описаны гораздо более подробно. Вся эта глава фактически может рассматриваться как объяснение того, как можно написать предыдущие программы на языке, который не обеспечивает операции ввода-вывода. На самом деле, приведенные выше программы написаны на С++, «расширенном» операциями ввода-вывода посредством использования библиотек и включения файлов с помощью #include. Другими словами, язык С++ в том виде, в котором он описан в справочном руководстве, не определяет средств ввода-вывода. Вместо этого исключительно с помощью средств, доступных любому программисту, определены операции «„ и “».
#include «stream.h»
main() (* int inch = 0; // inch – дюйм cout «„ „inches“; cin “» inch; cout «„ inch; cout «« " in = "; cout «« inch*2.54; cout «« « cm\n“; *)
Первая строка функции main() описывает целую переменную inch. Ее значение считывается с помощью операции »» («взять из») над стандартным потоком ввода cin. Описания cin и »», конечно же, находятся в «stream.h». После ее запуска ваш терминал может выглядеть примерно так:
$ a.out inches=12 12 in = 30.48 cm $
В этом примере на каждую команду вывода приходится один оператор. Это слишком длинно. Операцию вывода «« можно применять к ее собственному результату, так что последние четыре команды вывода можно было записать одним оператором:
cout «„ inch «« " in = " «« inch*2.54 «« « cm\n“;
В последующих разделах ввод и вывод будут описаны гораздо более подробно. Вся эта глава фактически может рассматриваться как объяснение того, как можно написать предыдущие программы на языке, который не обеспечивает операции ввода-вывода. На самом деле, приведенные выше программы написаны на С++, «расширенном» операциями ввода-вывода посредством использования библиотек и включения файлов с помощью #include. Другими словами, язык С++ в том виде, в котором он описан в справочном руководстве, не определяет средств ввода-вывода. Вместо этого исключительно с помощью средств, доступных любому программисту, определены операции «„ и “».
1.2 Комментарии
Часто бывает полезно вставлять в программу текст, который предназначается в качестве комментария только для читающего программу человека и игнорируется компилятором в программе. В С++ это можно сделать одним из двух способов.
Символы /* начинают комментарий, заканчивающийся символами */. Вся эта последовательность символов эквивалентна символу пропуска (например, символу пробела). Это наиболее полезно для многострочных комментариев и изъятия частей программы при редактировании, однако следует помнить, что комментарии /* */ не могут быть вложенными.
Символы // начинают комментарий, который заканчивается в конце строки, на которой они появились. Опять, вся последовательность символов эквивалентна пропуску. Этот способ наиболее полезен для коротких комментариев. Символы // можно использовать для того, чтобы закомментировать символы /* или */, а символами /* можно закомментировать //.
Символы /* начинают комментарий, заканчивающийся символами */. Вся эта последовательность символов эквивалентна символу пропуска (например, символу пробела). Это наиболее полезно для многострочных комментариев и изъятия частей программы при редактировании, однако следует помнить, что комментарии /* */ не могут быть вложенными.
Символы // начинают комментарий, который заканчивается в конце строки, на которой они появились. Опять, вся последовательность символов эквивалентна пропуску. Этот способ наиболее полезен для коротких комментариев. Символы // можно использовать для того, чтобы закомментировать символы /* или */, а символами /* можно закомментировать //.
1.3 Типы и Описания
Каждое имя и каждое выражение имеет тип, определяющий операции, которые могут над ними производиться. Например, описание
int inch;
определяет, что inch имеет тип int, то есть, inch является целой переменной.
Описание – это оператор, который вводит имя в программе. Описание задает тип этого имени. Тип определяет правильное использование имени или выражения. Для целых определены такие операции, как +, -, * и /. После того, как включен файл
stream.h, объект типа int может также быть вторым операндом ««, когда первый операнд ostream. Тип объекта определяет не только то, какие операции могут к нему применяться, но и смысл этих операций. Например, оператор
cout «„ inch «« " in = " «« inch*2.54 «« « cm\n“;
правильно обрабатывает четыре входных значения различным образом. Строки печатаются буквально, тогда как целое inch и значение с плавающей точкой inch*2.54 преобразуются из их внутреннего представления в подходящее для человеческого глаза символьное представление.
В С++ есть несколько основных типов и несколько способов создавать новые. Простейшие виды типов С++ описываются в следующих разделах, а более интересные оставлены на потом.
int inch;
определяет, что inch имеет тип int, то есть, inch является целой переменной.
Описание – это оператор, который вводит имя в программе. Описание задает тип этого имени. Тип определяет правильное использование имени или выражения. Для целых определены такие операции, как +, -, * и /. После того, как включен файл
stream.h, объект типа int может также быть вторым операндом ««, когда первый операнд ostream. Тип объекта определяет не только то, какие операции могут к нему применяться, но и смысл этих операций. Например, оператор
cout «„ inch «« " in = " «« inch*2.54 «« « cm\n“;
правильно обрабатывает четыре входных значения различным образом. Строки печатаются буквально, тогда как целое inch и значение с плавающей точкой inch*2.54 преобразуются из их внутреннего представления в подходящее для человеческого глаза символьное представление.
В С++ есть несколько основных типов и несколько способов создавать новые. Простейшие виды типов С++ описываются в следующих разделах, а более интересные оставлены на потом.
1.3.1 Основные Типы
Основные типы, наиболее непосредственно отвечающие средствам аппаратного обеспечения, такие:
char short int long float double
Первые четыре типа используются для представления целых, последние два – для представления чисел с плавающей точкой. Переменная типа char имеет размер, естественный для хранения символа на данной машине (обычно, байт), а переменная типа int имеет размер, соответствующий целой арифметике на данной машине (обычно, слово). Диапазон целых чисел, которые могут быть представлены типом, зависит от его размера (sizeof). В С ++ размеры измеряются в единицах размера данных типа char, поэтому char по определению имеет размер единица. Соотношение между основными типами можно записать так:
1=sizeof(char)«=sizeof(short) «= sizeof(int) «= sizeof(long) sizeof(float) «= sizeof(double)
В целом, предполагать что-либо еще относительно основных типов неразумно. В частности, то, что целое достаточно для хранения указателя, верно не для всех машин.
К основному типу можно применять прилагательное const. Это дает тип, имеющий те же свойства, что и исходный тип, за исключением того, что значение переменных типа const не может изменяться после инициализации.
const float pi = 3.14; const char plus = '+';
Символ, заключенный в одинарные кавычки, является символьной константой. Заметьте, что часто константа, определенная таким образом, не занимает память. Просто там, где требуется, ее значение может использоваться непосредственно. Константа должна инициализироваться при описании. Для переменных инициализация необязательна, но настоятельно рекомендуется. Оснований для введения локальной переменной без ее инициализации очень немного.
К любой комбинации этих типов могут применяться арифметические операции:
+ (плюс, унарный и бинарный) – (минус, унарный и бинарный) * (умножение) / (деление)
А также операции сравнения: == (равно) != (не равно) « (меньше) » (больше) «= (меньше или равно) »= (больше или равно)
Заметьте, что целое деление дает целый результат: 7/2 есть 3. Над целыми может выполняться операция % получения остатка: 7%2 равно 1.
При присваивании и арифметических операциях С++ выполнит все осмысленные преобразования между основными типами, чтобы их можно было сочетать без ограничений:
double d = 1; int i = 1; d = d + i; i = d + i;
char short int long float double
Первые четыре типа используются для представления целых, последние два – для представления чисел с плавающей точкой. Переменная типа char имеет размер, естественный для хранения символа на данной машине (обычно, байт), а переменная типа int имеет размер, соответствующий целой арифметике на данной машине (обычно, слово). Диапазон целых чисел, которые могут быть представлены типом, зависит от его размера (sizeof). В С ++ размеры измеряются в единицах размера данных типа char, поэтому char по определению имеет размер единица. Соотношение между основными типами можно записать так:
1=sizeof(char)«=sizeof(short) «= sizeof(int) «= sizeof(long) sizeof(float) «= sizeof(double)
В целом, предполагать что-либо еще относительно основных типов неразумно. В частности, то, что целое достаточно для хранения указателя, верно не для всех машин.
К основному типу можно применять прилагательное const. Это дает тип, имеющий те же свойства, что и исходный тип, за исключением того, что значение переменных типа const не может изменяться после инициализации.
const float pi = 3.14; const char plus = '+';
Символ, заключенный в одинарные кавычки, является символьной константой. Заметьте, что часто константа, определенная таким образом, не занимает память. Просто там, где требуется, ее значение может использоваться непосредственно. Константа должна инициализироваться при описании. Для переменных инициализация необязательна, но настоятельно рекомендуется. Оснований для введения локальной переменной без ее инициализации очень немного.
К любой комбинации этих типов могут применяться арифметические операции:
+ (плюс, унарный и бинарный) – (минус, унарный и бинарный) * (умножение) / (деление)
А также операции сравнения: == (равно) != (не равно) « (меньше) » (больше) «= (меньше или равно) »= (больше или равно)
Заметьте, что целое деление дает целый результат: 7/2 есть 3. Над целыми может выполняться операция % получения остатка: 7%2 равно 1.
При присваивании и арифметических операциях С++ выполнит все осмысленные преобразования между основными типами, чтобы их можно было сочетать без ограничений:
double d = 1; int i = 1; d = d + i; i = d + i;
1.3.2 Производные Типы
Вот операции, создающие из основных типов новые типы:
* указатель на *const константный указатель на amp; ссылка на [] вектор* () функция, возвращающая
– * одномерный массив. Это принятый термин (например, вектора прерываний), и мы сочли, что стандартный перевод его как «массив» затуманит изложение. (прим. перев.)
Например:
char* p // указатель на символ char *const q // константный указатель на символ char v[10] // вектор из 10 символов
Все вектора в качестве нижней границы индекса имеют ноль, поэтому в v десять элементов: v[0]..v[9]. Функции объясняются в #1.5, ссылки в #1.9. Переменная указатель может содержать адрес объекта соответствующего типа:
char c; // ... p = amp;c; // p указывает на c
Унарное amp; является операцией взятия адреса.
* указатель на *const константный указатель на amp; ссылка на [] вектор* () функция, возвращающая
– * одномерный массив. Это принятый термин (например, вектора прерываний), и мы сочли, что стандартный перевод его как «массив» затуманит изложение. (прим. перев.)
Например:
char* p // указатель на символ char *const q // константный указатель на символ char v[10] // вектор из 10 символов
Все вектора в качестве нижней границы индекса имеют ноль, поэтому в v десять элементов: v[0]..v[9]. Функции объясняются в #1.5, ссылки в #1.9. Переменная указатель может содержать адрес объекта соответствующего типа:
char c; // ... p = amp;c; // p указывает на c
Унарное amp; является операцией взятия адреса.
1.4 Выражения и Операторы
В С++ имеется богатый набор операций, с помощью которых в выражениях образуются новые значения и изменяются значения переменных. Поток управления в программе задается с помощью операторов, а описания используются для введения в программе имен переменных, констант и т.д. Заметьте, что описания являются операторами, поэтому они свободно могут сочетаться с другими операторами.
1.4.1 Выражения
В С++ имеется большое число операций, и они будут объясняться там, где (и если) это потребуется. Следует учесть, что операции
~ (дополнение) amp; (И) ^ (исключающее ИЛИ) ! (включающее ИЛИ) «„ (логический сдвиг влево) “» (логический сдвиг вправо)
применяются к целым, и что нет отдельного типа данных для логических действий.
Смысл операции зависит от числа операндов. Унарное amp; является операцией взятия адреса, а бинарное amp; – это операция логического И. Смысл операции зависит также от типа ее операндов: + в выражении a+b означает сложение с плавающей токой, если операнды имеют тип float, но целое сложение, если они типа int. В #1.8 объясняется, как можно определить операцию для типа, определяемого пользователем, без потери ее значения, предопределенного для основных и производных типов.
В С++ есть операция присваивания =, а не оператор присваивания, как в некоторых языках. Таким образом, присваивание может встречаться в неожиданном контексте, например, x=sqrt(a =3*x). Это бывает полезно. a=b=c означает присвоение c объекту b, а затем объекту a. Другим свойством операции присваивания является то, что она может совмещаться с большинством бинарных операций. Например, x[i+3]*=4 означает x[i+3]=x[i+3]*4, за исключением того факта, что выражение x[i +3] вычисляется только один раз. Это дает привлекательную степень эффективности без необходимости обращения к оптимизирующим компиляторам. К тому же это более кратко.
В большинстве программ на С++ широко применяются указатели. Унарная операция * разыменовывает* указатель, т.е. *p есть объект, на который указывает p. Эта операция также называется косвенной адресацией. Например, если имеется char* p, то *p есть символ, на который указывает p. Часто при работе с указателями бывают полезны операция увеличения ++ и операция уменьшения –. Предположим, p указывает на элемент вектора v, тогда p++ делает p указывающим на следующий элемент.
– * англ. dereference – получить значение объекта, на который указывает данный указатель. (прим. перев.)
1.4.1 Выражения
В С++ имеется большое число операций, и они будут объясняться там, где (и если) это потребуется. Следует учесть, что операции
~ (дополнение) amp; (И) ^ (исключающее ИЛИ) ! (включающее ИЛИ) «„ (логический сдвиг влево) “» (логический сдвиг вправо)
применяются к целым, и что нет отдельного типа данных для логических действий.
Смысл операции зависит от числа операндов. Унарное amp; является операцией взятия адреса, а бинарное amp; – это операция логического И. Смысл операции зависит также от типа ее операндов: + в выражении a+b означает сложение с плавающей токой, если операнды имеют тип float, но целое сложение, если они типа int. В #1.8 объясняется, как можно определить операцию для типа, определяемого пользователем, без потери ее значения, предопределенного для основных и производных типов.
В С++ есть операция присваивания =, а не оператор присваивания, как в некоторых языках. Таким образом, присваивание может встречаться в неожиданном контексте, например, x=sqrt(a =3*x). Это бывает полезно. a=b=c означает присвоение c объекту b, а затем объекту a. Другим свойством операции присваивания является то, что она может совмещаться с большинством бинарных операций. Например, x[i+3]*=4 означает x[i+3]=x[i+3]*4, за исключением того факта, что выражение x[i +3] вычисляется только один раз. Это дает привлекательную степень эффективности без необходимости обращения к оптимизирующим компиляторам. К тому же это более кратко.
В большинстве программ на С++ широко применяются указатели. Унарная операция * разыменовывает* указатель, т.е. *p есть объект, на который указывает p. Эта операция также называется косвенной адресацией. Например, если имеется char* p, то *p есть символ, на который указывает p. Часто при работе с указателями бывают полезны операция увеличения ++ и операция уменьшения –. Предположим, p указывает на элемент вектора v, тогда p++ делает p указывающим на следующий элемент.
– * англ. dereference – получить значение объекта, на который указывает данный указатель. (прим. перев.)
1.4.2 Операторы Выражения
Самый обычный вид оператора – выражение;. Он состоит из выражения, за которым следует точка с запятой. Например:
a = b*3+c; cout «„ «go go go“; lseek(fd,0,2);
1.4.3 Пустой оператор
Простейшей формой оператора является оператор:
;
Он не делает ничего. Однако он может быть полезен в тех случаях, когда синтаксис требует наличие оператора, а вам
оператор не нужен. 1.4.4 Блоки Блок – это возможно пустой список операторов, заключенный в фигурные скобки:
(* a=b+2; b++; *)
Блок позволяет рассматривать несколько операторов как один. Область видимости имени, описанного в блоке, простирается до конца блока. Имя можно сделать невидимым с помощью описаний такого же имени во внутренних блоках.
a = b*3+c; cout «„ «go go go“; lseek(fd,0,2);
1.4.3 Пустой оператор
Простейшей формой оператора является оператор:
;
Он не делает ничего. Однако он может быть полезен в тех случаях, когда синтаксис требует наличие оператора, а вам
оператор не нужен. 1.4.4 Блоки Блок – это возможно пустой список операторов, заключенный в фигурные скобки:
(* a=b+2; b++; *)
Блок позволяет рассматривать несколько операторов как один. Область видимости имени, описанного в блоке, простирается до конца блока. Имя можно сделать невидимым с помощью описаний такого же имени во внутренних блоках.
1.4.5 Оператор if
Программа в следующем примере осуществляет преобразование дюймов в сантиметры и сантиметров в дюймы. Предполагаемся, что вы укажете единицы измерения вводимых данных, добавляя i для дюймов и c для сантиметров:
#include «stream.h»
main() (* const float fac = 2.54; float x, in, cm; char ch = 0;
cout «„ "введите длину: "; cin “» x »» ch;
if (ch == 'i') (* // inch – дюймы in = x; cm = x*fac; *) else if (ch == 'c') // cm – сантиметры in = x/fac; cm = x; *) else in = cm = 0;
cout «„ in «« " in = " «« cm «« « cm\n“; *)
Заметьте, что условие в операторе if должно быть заключено в круглые скобки.
#include «stream.h»
main() (* const float fac = 2.54; float x, in, cm; char ch = 0;
cout «„ "введите длину: "; cin “» x »» ch;
if (ch == 'i') (* // inch – дюймы in = x; cm = x*fac; *) else if (ch == 'c') // cm – сантиметры in = x/fac; cm = x; *) else in = cm = 0;
cout «„ in «« " in = " «« cm «« « cm\n“; *)
Заметьте, что условие в операторе if должно быть заключено в круглые скобки.
1.4.6 Операторы switch
Оператор switch производит сопоставление значения с множеством констант. Проверки в предыдущем примере можно записать так:
switch (ch) (* case 'i': in = x; cm = x*fac; break; case 'c': in = x/fac; cm = x; break; default: in = cm = 0; break; *) Операторы break применяются для выхода из оператора
switch. Константы в вариантах case должны быть различными, и если проверяемое значение не совпадает ни с одной из констант, выбирается вариант default. Программисту не обязательно предусматривать default.
switch (ch) (* case 'i': in = x; cm = x*fac; break; case 'c': in = x/fac; cm = x; break; default: in = cm = 0; break; *) Операторы break применяются для выхода из оператора
switch. Константы в вариантах case должны быть различными, и если проверяемое значение не совпадает ни с одной из констант, выбирается вариант default. Программисту не обязательно предусматривать default.
1.4.7 Оператор while
Рассмотрим копирование строки, когда заданы указатель p на ее первый символ и указатель q на целевую строку. По соглашению строка оканчивается символом с целым значением 0.
while (p != 0) (* *q = *p; // скопировать символ q = q+1; p = p+1; *) *q = 0; // завершающий символ 0 скопирован не был
Следующее после while условие должно быть заключено в круглые скобки. Условие вычисляется, и если его значение не ноль, выполняется непосредственно следующий за ним оператор. Это повторяется до тех пор, пока вычисление условия не даст ноль.
Этот пример слишком пространен. Можно использовать операцию ++ для непосредственного указания увеличения, и проверка упростится:
while (*p) *q++ = *p++; *q = 0;
где конструкция *p++ означает: «взять символ, на который указывает p, затем увеличить p.»
Пример можно еще упростить, так как указатель p разыменовывается дважды за каждый цикл. Копирование символа можно делать тогда же, когда производится проверка условия:
while (*q++ = *p++) ;
Здесь берется символ, на который указывает p, p увеличивается, этот символ копируется туда, куда указывает q, и q увеличивается. Если символ ненулевой, цикл повторяется. Поскольку вся работа выполняется в условии, не требуется ни оного оператора. Чтобы указать на это, используется пустой оператор. С++ (как и C) одновременно любят и ненавидят за возможность такого чрезвычайно краткого ориентированного на выразительность программирования*.
– * в оригинале expression-oriented (expression – выразительность и выражение). (прим. перев.)
while (p != 0) (* *q = *p; // скопировать символ q = q+1; p = p+1; *) *q = 0; // завершающий символ 0 скопирован не был
Следующее после while условие должно быть заключено в круглые скобки. Условие вычисляется, и если его значение не ноль, выполняется непосредственно следующий за ним оператор. Это повторяется до тех пор, пока вычисление условия не даст ноль.
Этот пример слишком пространен. Можно использовать операцию ++ для непосредственного указания увеличения, и проверка упростится:
while (*p) *q++ = *p++; *q = 0;
где конструкция *p++ означает: «взять символ, на который указывает p, затем увеличить p.»
Пример можно еще упростить, так как указатель p разыменовывается дважды за каждый цикл. Копирование символа можно делать тогда же, когда производится проверка условия:
while (*q++ = *p++) ;
Здесь берется символ, на который указывает p, p увеличивается, этот символ копируется туда, куда указывает q, и q увеличивается. Если символ ненулевой, цикл повторяется. Поскольку вся работа выполняется в условии, не требуется ни оного оператора. Чтобы указать на это, используется пустой оператор. С++ (как и C) одновременно любят и ненавидят за возможность такого чрезвычайно краткого ориентированного на выразительность программирования*.
– * в оригинале expression-oriented (expression – выразительность и выражение). (прим. перев.)
1.4.8 Оператор for
Рассмотрим копирование десяти элементов одного вектора в другой:
for (int i=0; i«10; i++) q[i]=p[i];
Это эквивалентно int i = 0; while (i«10) (* q[i] = p[i]; i++; *) но более удобочитаемо, поскольку вся информация, управляющая циклом, локализована. При применении операции ++ к целой переменной к ней просто добавляется единица. Первая часть оператора for не обязательно должна быть описанием, она может быть любым оператором. Например:
for (i=0; i«10; i++) q[i]=p[i];
тоже эквивалентно предыдущей записи при условии, что i соответствующим образом описано раньше.
for (int i=0; i«10; i++) q[i]=p[i];
Это эквивалентно int i = 0; while (i«10) (* q[i] = p[i]; i++; *) но более удобочитаемо, поскольку вся информация, управляющая циклом, локализована. При применении операции ++ к целой переменной к ней просто добавляется единица. Первая часть оператора for не обязательно должна быть описанием, она может быть любым оператором. Например:
for (i=0; i«10; i++) q[i]=p[i];
тоже эквивалентно предыдущей записи при условии, что i соответствующим образом описано раньше.
1.4.9 Описания
Описание – это оператор, вводящий имя в программе. Оно может также инициализировать объект с этим именем. Выполнение описания означает, что когда поток управления доходит до описания, вычисляется инициализирующее выражение (инициализатор) и производится инициализация. Например:
for (int i = 1; i«MAX; i++) (* int t = v[i-1]; v[i-1] = v[i]; v[i] = t; *)
При каждом выполнении оператора for i будет инициализироваться один раз, а t MAX-1 раз.
for (int i = 1; i«MAX; i++) (* int t = v[i-1]; v[i-1] = v[i]; v[i] = t; *)
При каждом выполнении оператора for i будет инициализироваться один раз, а t MAX-1 раз.