Страница:
Оставив в стороне, по существу, все другие области физики, Лейденский университет сконцентрировал свод усилия лишь на низких температурах. Исследователи этого участка науки понимали, что одной одержимости мало, что новый океан не покорится без надежных мореплавательных средств и дельных штурманов. Поэтому в 1901 году Камерлинг-Оннес основал в своей лаборатории "Лейденскую школу инструментальщиков", где готовили высококвалифицированный технический персонал и рабочих для лаборатории.
Эта школа выпустила тысячи настоящих мастеров, которые буквально расхватывались научными лабораториями и крупными предприятиями. Многие питомцы Лейденской школы инструментальщиков разбрелись по свету, но большинство осталось в Лейдене, и, в частности, в университетской лаборатории, обеспечив своими золотыми руками успех нового дела.
Мы привыкли уже к масштабным физическим исследованиям. Физики обладают сейчас сложным и дорогим оборудованием, как, например, серпуховский и дубненский синхрофазотроны, ракеты, спутники, специальные подводные лодки, самолеты и корабли. Избалованному машинами-вычислителями и уникальной техникой современному ученому трудно даже представить обычную физическую лабораторию начала века. Даже именитая Кембриджская лаборатория Резерфорда была до двадцатых - тридцатых годов "сургучно-веревочной".
Поэтому, быть может, нам труднее, чем современникам Оннеса, оценить его открытие: он одним из первых понял необходимость капитального переоборудования лабораторий. И не только понял, но и сумел осуществить свои идеи на практике.
Техническое преимущество Оннеса дало себя знать довольно быстро. Все газы ожижены, и более того, большинство доведено до твердого состояния. Лишь гелий не поддается ученым. Уже раздаются голоса о том, не занимает ли этот газ в мире какого-либо особого положения и поэтому не сжижается.
Оннес не сдается, он упорно совершенствует аппаратуру. Каждый новый градус холода дается с неимоверным трудом. Холодильные машины работают по нескольку суток. Достигнута температура 20 градусов абсолютной шкалы... 15 градусов... 10 градусов... Гелий - все тот же, кажется, нисколько не склонен к сжижению. 5 градусов... Гелий остается газообразным.
Более десятка лет прошло с начала опытов...
4,2 градуса...
Гейке Камерлинг-Оннес.
В дьюаровском сосуде появляется небольшое облачко тумана. Это блестящий признак - ведь все остальные газы и пары, которые вследствие нечистоты опыта могли бы остаться в сосуде, уже смерзлись и недвижно застыли где-то на стенках. В сосуде только один-единственный гелий, туман может быть образован лишь им. Значит, в гелии уже образовались центры конденсации, и он начинает превращаться в жидкость! Температура снижается еще немного. Эксперимент продолжается. В конце восемнадцатого часа эксперимента в сосуде возникает какой-то вихрь, бурление, и вот уже сосуд наполнен чуть ли не до краев кипящей жидкостью, настолько прозрачной, что увидеть ее почти невозможно.
Эта жидкость кажется невесомой, почти несуществующей. А может, и нет вовсе ее - жидкости, за которой Камерлинг-Оннес охотился долгие годы?
В глазах ученого помутилось. Десять лет и восемнадцать часов эксперимента, внезапное волнение при виде капель тумана и этой легчайшей волнующейся жидкости подкосили его. Оннеса в бессознательном состоянии отвезли домой. Лишь через несколько месяцев упорнейший человек смог снова вернуться к своим приборам, к письменному столу, к своим экспериментам.
Три года прошло с того дня, когда 10 июля 1908 года Гейке Камерлинг-Оннес получил первые капли жидкого гелия. Теперь можно было проводить любые измерения, любые" исследования свойств веществ при столь низких температурах. Можно, например, изучить свойства веществ при температурах жидкого гелия и указать, насколько хорошо они согласуются с той или иной физической теорией.
И Оннес с головой окунается в эти измерения. Он бесконечно проверяет других и себя, публикует в научном журнале лаборатории груды цифр, являющихся всевозможными физическими данными и константами.
Опубликованы изотермы газов при низких температурах, таблицы и кривые теплоемкостей газов и твердых тел, таблицы удельных электрических сопротивлений. Оннес измерил удельные электрические сопротивления большинства хороших электропроводников (медь, алюминий, серебро), приступил к исследованию сопротивления твердой (конечно, твердой - ведь температура всего лишь на несколько градусов выше абсолютного нуля!) ртути, которая считалась хорошим проводником электричества. И вот тут-то его ожидал сюрприз, да еще какой!
Оннеса интересовало, как будет изменяться электрическое сопротивление ртути в то время, когда ее температура снижается и достигает областей, близких к абсолютному нулю.
Господствующей в то время была следующая точка зрения: если температура образца снижается, то это в первую очередь означает, что кристаллическая решетка материала все меньше и меньше колеблется - вероятность того, что электрон - носитель электричества ударится о решетку и затормозит свое движение (грубо говоря, в этом сущность электрического сопротивления), будет становиться все меньше и меньше. Стало быть, с уменьшением температуры сопротивление образца металла должно уменьшаться и в принципе равняться нулю при нулевой абсолютной температуре.
Но в эксперименте достигнуть температуры, равной абсолютному нулю, невозможно, и поэтому ученые следили за ходом кривой электрического сопротивления при снижении температуры. Все измерения, проделанные на меди, серебре и других хороших проводниках электричества, полностью подтверждали вышеизложенную точку зрения. И вот тут-то замерзшая, отвердевшая ртуть "выкинула номер". Пока сопротивление измерялось в диапазоне 15, 10, 5 градусов Кельвина, все шло нормально, как и в других исследованных металлах. Оннес снизил температуру до 4,1° К, взглянул на прибор, с помощью которого измерялось сопротивление, и поразился: стрелка вольтметра указывала, что сопротивление образца равно нулю, хотя до температурного нуля оставалось еще больше четырех градусов!
Это было поразительно. Для физика исчезновение электрического сопротивления было равносильно исчезновению земли из-под ног. Под сомнение ставились такие ясные вещи, как закон Ома и уравнения Максвелла.
Оннес подумал, что прибор испортился, и включил вместо него запасной. Опыт повторили. Когда температура вновь была снижена до отметки 4,1°К, исследователи увидели, как стрелка прибора "прыгнула" к нулю. Это означало полное отсутствие электрического сопротивления у ртутного столбика.
Оннес и ассистировавший ему Хольст изготовили новый образец затвердевшей ртути - залили ртуть в тончайший стеклянный капилляр и затем заморозили его, получив, таким образом, необычайно тонкий и длинный ртутный столбик. Из электротехники известно, что такой образец должен иметь большое сопротивление. В новом опыте экспериментаторы решили использовать для измерений сверхчувствительный зеркальный гальванометр. Гальванометр в сочетании со специально изготовленным образцом должен был обнаружить хотя бы следы сопротивления.
Но не тут-то было. Вновь при температуре 4,1 градуса выше абсолютного нуля исследователи замечают внезапное "убегание" зайчика гальванометра. Несмотря на все предосторожности, сопротивление не появлялось - оно было равно нулю. Все говорило за то, что Камерлинг-Оннес и Хольст открыли неожиданное для них и для всех физиков мира явление.
И вот теперь Оннес опубликовал в "Сообщениях из Лейденской лаборатории" статью о своем открытии. Статья наделала много шуму. За ней последовали десятки новых сообщений, которые дополняли, подкрепляли и доказывали открытие Оннеса.
Выяснилось, что ртуть вовсе не является монопольной обладательницей свойства "сверхпроводимости". Некоторые другие металлы, такие, например, как свинец, олово, также становятся сверхпроводниками. Вопреки всеобщим ожиданиям, лучшие известные проводники электричества - медь и серебро, оказалось, вовсе не обладают таким свойством. Долгое время ни один физик не мог дать удивительному явлению теоретическое обоснование.
Факты были чрезвычайно интересны не только с точки зрения "чистой физики". Открытие сверхпроводимости сразу же вызвало к жизни множество заманчивых проектов, относящихся в первую очередь к области электротехники.
В 1911 - 1913 годах, о которых идет речь в нашем рассказе, электродвигатели, электрогенераторы были известны уже более полувека, а трансформаторы (их изобрели позже) - не один десяток лет. Срок достаточен для того, чтобы техническая идея воплотилась в довольно совершенные конструкции. Другими словами, электрооборудование было сделано по последнему слову техники того времени, и, как и в наши дни, стояла проблема его дальнейшего совершенствования, на какой-то принципиально новой основе.
И теперь, и тем более в те времена электрические машины, трансформаторы, линии электропередач имели и имеют один существенный недостаток - они нагреваются, причем это ненужное для нас тепло возникает за счет электрической энергии вследствие неумолимого закона Джоуля - Ленца, гласящего, что любой ток, проходящий по проводнику с некоторым электрическим сопротивлением, отдает в этом сопротивлении часть своей энергии в виде тепла.
Иногда эта энергия используется, например, в электрических обогревателях, плитках, грелках. Однако в большинстве случаев тепловое нагревание электрических проводов является напрасной потерей электроэнергии, что было хорошо известно и Камерлинг-Оннесу.
Для магнитных измерений в Лейденской лаборатории требовалось построить несколько мощных электромагнитов с полем, например, 100 тысяч эрстед. Обычный электромагнит с массивным, как слон, стальным сердечником мог создавать поля лишь до 60 - 65 тысяч эрстед. К тому же, если такое чудовище весом в несколько тонн поместить в лаборатории, не останется места для работы. Значит, нужно было создавать соленоид, то есть попросту спираль, по которой идет ток, создающий сильное магнитное поле. Но "у каждого - свои недостатки". В соленоиде, выполненном, например, из меди, будет тратиться зря колоссальная мощность! Лишь с помощью сверхпроводников можно было бы избавиться от потерь и создавать сколь угодно мощные электромагниты для исследований. Эта идея увлекла профессора Оннеса, и уже в 1913 году в том же журнале "Сообщения из Лейденской лаборатории" он опубликовал статью с предложением построить сверхпроводящий магнит на 100 тысяч эрстед, не имеющий бесполезных потерь мощности и, естественно, изготовленный не из меди, а из какого-нибудь сверхпроводящего металла.
Однако последующие события показали, что Оннес, как говорится, "замечтался". Суровые физические законы, казалось, восстали против смелой идеи.
Вскоре после опубликования статьи Оннес выяснил, что по сверхпроводнику может течь ток отнюдь не всякой величины. Как только величина тока превосходит некоторое (позже названное "критическим") значение, ток "выключает" сверхпроводимость, и вместо образца с волшебными свойствами в руках у исследователя оказывается ничем не примечательный кусочек свинца, ртути или олова. Токи были настолько малы, что постройка магнита из такой проволоки была бы практически бесполезной. И это еще не все. Вскоре после открытия Оннеса было обнаружено, что не только ток способен "выключить" сверхпроводимость. Сверхпроводимость исчезала и под влиянием очень слабых магнитных полей, не превышающих сотен эрстед. А Камерлинг-Оннес мечтал о сотнях тысяч.
Стало ясно, что сверхпроводимость - не более чем физическая игрушка, возбуждающий любопытство физиков феномен. Видимо, будучи убежденным в этом, ушел на покой Гейке Камерлинг-Оннес, оставив лейденскую лабораторию своим последователям В. Кеезому и де Хаазу.
Кеезом известен своим капитальным трудом "Гелий". В книге собрано все, что знали о гелии - от истории его открытия до свойств в жидком состоянии.
Де Хааз провел многочисленные исследования низких температур, сверхпроводящих сплавов. Совместное советским физиком Л. В. Шубниковым (стажировавшимся в лейденской лаборатории) он открыл так называемый "эффект Шубникова - де Хааза".
В начале тридцатых годов было обнаружено, что существует несколько сплавов различных металлов, в которых сверхпроводимость исчезает в магнитном поле гораздо большем, чем то, о котором знал Оннес. В сплаве свинца с висмутом "критическое магнитное поле" превышало уже пятнадцать тысяч эрстед. Хотя до сотен тысяч эрстед, о которых мечтал Оннес, было еще далеко, физики воспрянули духом. Появилась как будто бы возможность создавать "бесплатные" электромагниты если не на сотни тысяч эрстед, то хотя бы на пятнадцать тысяч. Такие магниты уже можно было бы использовать в электрических машинах. Может быть, сплав свинца с висмутом удалось бы использовать даже в лабораторных магнитах, правда, не очень сильных, но больших по объему рабочей зоны.
Однако обстоятельства сложились совсем не так, как можно было ожидать. В дело вмешался новый директор лаборатории Кеезом. Он, измерив критический ток проволоки из сплава свинца с висмутом, выяснил, что ток слишком мал и сделать из такой проволоки сколько-нибудь ценный магнит невозможно.
Работники лаборатории, ознакомившись с выводами Кеезома, решили отказаться от "бесперспективных" сверхпроводников. Так, сверхпроводящие магниты были "закрыты" во второй раз.
Лишь через три десятка лет выяснилось, что выводы Кеезома были неточными. Критический ток сплава свинца с висмутом был вполне достаточен для того, чтобы из него делать довольно экономичные соленоиды.
Искать новую тему для исследований работникам лаборатории не пришлось. Как раз в эти годы советский физик Петр Леонидович Капица открыл не менее интересное, чем сверхпроводимость, явление - сверхтекучесть жидкого гелия. Лейденцы увлеклись новой перспективной работой, окончательно потеряв интерес к сверхпроводящим магнитам.
Видимо, мрачные выводы Кеезома повлияли и на английских физиков, работавших в Оксфорде. Они отвергли сверхпроводящие сплавы и продолжали исследовать только сверхпроводящие металлы. Тут, казалось, их ждал успех: они сделали ряд интересных открытий, будто бы подтверждавших их выбор. К сожалению, частные успехи были лишь коварной приманкой, подложенной природой, которая, словно оберегая свои тайны, заманила исследователей в дебри дремучего и бесплодного леса. Таким образом, и прекрасно оснащенная оксфордская группа прекратила исследования перспективных сверхпроводников.
Примерно в то же время в Харькове работала большая группа физиков. Руководил ею доктор Л. В. Шубников. Ученые всего мира единодушно признают, что группа Шубникова была лучшей по своей оснащенности и знаниям металлургии сверхпроводящих сплавов. Не приняв выводы Кеезома на веру, харьковская группа продолжала заниматься сверхпроводящими сплавами. Эти работы легли в основу последующих теорий, экспериментов и открытий. Однако и харьковским экспериментаторам не удалось открыть сверхпроводящих сплавов, устойчивых к сильным магнитным полям.
Непонятная сверхпроводимость не давала покоя и теоретикам. Одним из первых пролил свет на природу сверхпроводимости знаменитый советский физик академик Лев Давидович Ландау, длительное время работавший в Институте физических проблем АН СССР. Глубокий и разносторонний ученый пользовался среди физиков непререкаемым авторитетом. Его краткая надпись на чьей-нибудь научной работе: "Одобряю, Ландау" всегда означала, что написана новая незаурядная теоретическая статья, проделана новая, чрезвычайно интересная экспериментальная работа.
Все знавшие Ландау (он умер в 1967 году в результате последствий автомобильной катастрофы), отмечают его легкое, радостное и, как иным даже иногда казалось, внешне легкомысленное (да простят меня читатели за такой эпитет) отношение к труду. Работал он чаще всего лежа на диване в какой-нибудь крайне неудобной позе. Свои глубочайшие мысли он по обыкновению небрежно нацарапывал на мятых листках, которые колодой держал в руке. Почерк его могли разобрать немногие "специалисты". Юмор его был колок, взгляды - радикальны. Суть любой проблемы схватывалась им на лету.
Лишь немногие близкие друзья знают, каким трудом достигалась эта легкость.
Ландау первым сопоставил два "странных" явления - сверхпроводимость и сверхтекучесть - течение жидкого гелия-2 без трения через узкие капилляры и предположил, что эти явления родственны. Сверхпроводимость - это сверхтекучесть весьма своеобразной жидкости - электронной.
Идея Ландау оказалась в высшей степени плодотворной, на ее основе построено большинство теорий сверхпроводимости.
Открытие сверхпроводимости и особенно успехи в ее теоретическом объяснении бросили грозный вызов максвелловой теории да и основанной на ней лоренцевой.
Поскольку родилось предположение о том, что сверхпроводимость обусловливается специальными, "сверх-проводящими" электронами, необходимо было скорректировать уравнения и ввести в них новый член - ток, обусловленный уже не нормальными, а сверхпроводящи-ми электронами. Уравнения Максвелла как бы "раздваивались", их необходимо было отдельно применять для "нормальных" и "сверхпроводящих" электронов.
"Раздвоение" не было механическим. Ток "нормальных" электронов, как известно, подчиняется закону Ома; однако "сверхпроводящие" электроны не встречают сопротивления, и, стало быть (по закону Ома ), измерить на сверхпроводнике падение напряжения на постоянном токе невозможно, и само понятие напряжения теряет смысл. Закон Ома для сверхпроводящих электронов необходимо было заменить какой-то иной зависимостью. Но какой?
П. Л. Капица и Л. Д. Ландау.
Обычно говорят, что основное свойство сверхпроводников - отсутствие сопротивления. Такая точка зрения сильно поколебалась, когда а 1933 году немецкие физики Мейснер и Оксенфельд открыли совершенно неожиданную вещь сверхпроводники оказались непроницаемыми для магнитных силовых линий! Они были для магнитных силовых линий абсолютно непробиваемым щитом.
Такое свойство сверхпроводников позволило советскому физику В. К. Аркадьеву проделать чрезвычайно интересный эксперимент, называемый среди физиков "гробом Магомета" (вы, вероятно, помните, что, по преданию, гроб пророка Магомета висел в воздухе без каких-либо видимых опор).
Опыт Аркадьева был внешне очень прост: в дьюаре с жидким гелием при температуре всего на несколько градусов выше абсолютного нуля размещается свинцовая плита (свинец - сверхпроводник), сверху осторожно спускают постоянный магнит. Силовые линии магнитика не могут проникнуть в сверхпроводник, они отражаются от него, как солнечные лучи от зеркальной поверхности. В свинцовом "зеркале" образуется магнитное отражение, магнитный двойник магнита.
Под северным полюсом магнитика появляется "магнитное изображение" северного полюса, под южным полюсом - южного. Настоящий полюс и полюс "изображения" начинают отталкиваться. Сила отталкивания возрастает до тех пор, пока не станет равной весу магнитика; и тогда магнитик повиснет. Повиснет безо всяких опор.
Упомянем к слову, что принцип "магнитного зеркала" начал сейчас широко использоваться в приборостроении. Очевидно, что таким образом, можно, например, подвесить вращающиеся или перемещающиеся друг относительно друга части прибора - это сразу же наводит на мысль о "магнитных подшипниках", в которых отсутствует трение. Подшипники без трения могут сослужить большую службу, например, в прецизионных гироскопах. Образцы таких гироскопов уже построены и испытаны.
"Гроб Магомета" - магнитик, парящий над сверхпроводящей чашей.
Так вот особенность сверхпроводников - "эффект Мейснера" - заставила подумать о том, каким правилам должны подчиняться "сверхпрово-дящие" электроны, если уж они не подчиняются закону Ома.
Стала ясна и недостаточность определения сверхпроводников как обычных проводников, но с нулевым сопротивлением.
Из уравнений Максвелла, если их решить для случая нулевого сопротивления, эффект Мейснера никак не получался. С другой стороны, если учесть в уравнениях Максвелла нулевое магнитное поле внутри сверхпроводников (эффект Мейснера), то не получается нулевое сопротивление...
В 1935 году, через два года после открытия эффекта Мейснера, в печати появилась статья английских физиков Ф. и Г. Лондонов, предложивших дополнить уравнения Максвелла еще двумя уравнениями, которые учитывали бы наличие двух сортов электронов и одновременно - эффект Мейснера.
А. А. Абрикосов.
Новые уравнения получили название уравнений Лондонов. Их до сих пор широко используют для анализа процессов в сверхпроводниках.
Конечно, уравнения Максвелла не отменились уравнениями Лондонов. Последние, если можно так выразиться, "ответвились" от максвелловых уравнений для анализа явлений в конкретной области - сверхпроводимости, точно так же, как ответвилась от уравнений квантовая электродинамика, призванная изучать процессы в микромире.
А уравнения Максвелла пока что остаются незыблемым языком физиков на все времена.
Следующий шаг в развитии теории сверхпроводимости был сделан почти одновременно советским физиком лауреатом Ленинской премии академиком Н. Н. Боголюбовым и американскими учеными Бардином, Купером и Шриффером.
Теория, разработанная ими, необычайно сложна даже для физиков. Например, в работах Николая Николаевича Боголюбова, посвященных теории, на печатной странице можно прочесть лишь два-три "человеческих" слова, да и то таких, как "известно, что..." "следовательно", "итак, имеем", "что и требовалось доказать", а остальное - роторы, дивергенции, дифференциалы, интегралы, лапласианы, якобианы и прочий высший пилотаж абстрактной математики.
Теория Н. Н. Боголюбова и теория Бардина, Купера и Шриффера (теория БКШ) сводятся, грубо говоря, к предположению о том, что сверхпроводящие электроны, в противовес обычным, объединены в пары, тесно связанные между собой. Разорвать пару и разобщить электроны трудно. Такие связи позволяют электронам двигаться в материале, помогая друг другу и не встречая электрического сопротивления.
И, наконец, последним достижением в разработке теории сверхпроводимости являются работы члена-корреспондента АН СССР А. А. Абрикосова. Он теоретически подтвердил давнюю догадку Л. В. Шубникова о преимуществах сверхпроводящих сплавов перед сверх-проводящими металлами. За разработку теории А. А. Абрикосов удостоен в 1965 году Ленинской премии, а теория ГЛАГ - (Гинзбург Ландау - Абрикосов - Горьков) получила мировое признание.
Итак, теория разработана, она утверждает, что в металлургических лабораториях со дня на день должны родиться сплавы с предсказанными Абрикосовым чудесными свойствами...
И вот в 1961 году американский физик Кунцлер, исследуя сплав ниобия с оловом, обнаруживает совершенно фантастические сверхпроводящие свойства этого соединения. Оказалось, что даже самое сильное магнитное поле в 88 тысяч эрстед, имевшееся тогда в Соединенных Штатах, не в силах разрушить сверхпроводимость сплава.
Путь к сверхпроводящим магнитам, сверхпроводящим электротехническим устройствам был открыт...
Уже через несколько лет были созданы магниты, о которых Камерлинг-Оннес мог только мечтать: сверхпроводящие, легкие, дешевые, небольшие по габаритам, поистине "волшебные" магниты с полем сначала 102, а затем 120, а потом и 170 тысяч эрстед.
Мест приложения силачам сколько угодно. Возьмем для примера мощную электрическую машину. Она тем мощнее, чем сильнее у нее магниты - при сверхпроводящих магнитах можно резко сократить размеры электрооборудования. То же, в принципе, относится и к трансформаторам, ведь их обмотки - тоже магниты, только переменного тока.
Расчеты советских и американских ученых показали, что сверхпроводники выгодно использовать в дальних линиях электропередач. Оказалось, что по сверхпроводящему кабелю всего лишь с руку толщиной можно было бы передавать, например, всю электроэнергию, потребляемую такой индустриально развитой страной, как Соединенные Штаты Америки.
Уже созданы и испытаны первые сверхпроводящие линии электропередач, электрические машины, трансформаторы, плазменные генераторы, вычислительные машины, измерительные приборы. Сверхпроводники верно служат человеку, где бы он ни находился, - на земле, в воздухе, в космосе или под водой.
Кто сделал все это? Кто совершил открытие? Кого благодарить за еще одно благо, поставленное на службу людям? Гейке Камерлинг-Оннеса? Ландау? Лондонов? Шубникова? Абрикосова? Кунцлера? Все они внесли свой вклад в это открытие. И предтечи их - Фарадей, Максвелл, Кальете, Пикте, Ольшевский, Дьюар - тоже должны быть названы здесь... А лаборанты, рабочие, инженеры, научные сотрудники? Многие тысячи, десятки тысяч людей долгое время работали в низкотемпературном колодце, прежде чем он принес людям первую пользу.
Но особо следует оказать здесь о Гейке Камерлинг-Оннесе, и не столько непосредственно о факте открытия им сверхпроводимости, сколько о том, что был он, быть может, одним из первых ученых, понявших новый, коллективный характер научного творчества в двадцатом веке. Он создал крупнейшую лабораторию, оснастил ее самым современным оборудованием, больше похожим на оборудование завода, чем на лабораторные приборы, организовал специальные школы и журналы.
Эта школа выпустила тысячи настоящих мастеров, которые буквально расхватывались научными лабораториями и крупными предприятиями. Многие питомцы Лейденской школы инструментальщиков разбрелись по свету, но большинство осталось в Лейдене, и, в частности, в университетской лаборатории, обеспечив своими золотыми руками успех нового дела.
Мы привыкли уже к масштабным физическим исследованиям. Физики обладают сейчас сложным и дорогим оборудованием, как, например, серпуховский и дубненский синхрофазотроны, ракеты, спутники, специальные подводные лодки, самолеты и корабли. Избалованному машинами-вычислителями и уникальной техникой современному ученому трудно даже представить обычную физическую лабораторию начала века. Даже именитая Кембриджская лаборатория Резерфорда была до двадцатых - тридцатых годов "сургучно-веревочной".
Поэтому, быть может, нам труднее, чем современникам Оннеса, оценить его открытие: он одним из первых понял необходимость капитального переоборудования лабораторий. И не только понял, но и сумел осуществить свои идеи на практике.
Техническое преимущество Оннеса дало себя знать довольно быстро. Все газы ожижены, и более того, большинство доведено до твердого состояния. Лишь гелий не поддается ученым. Уже раздаются голоса о том, не занимает ли этот газ в мире какого-либо особого положения и поэтому не сжижается.
Оннес не сдается, он упорно совершенствует аппаратуру. Каждый новый градус холода дается с неимоверным трудом. Холодильные машины работают по нескольку суток. Достигнута температура 20 градусов абсолютной шкалы... 15 градусов... 10 градусов... Гелий - все тот же, кажется, нисколько не склонен к сжижению. 5 градусов... Гелий остается газообразным.
Более десятка лет прошло с начала опытов...
4,2 градуса...
Гейке Камерлинг-Оннес.
В дьюаровском сосуде появляется небольшое облачко тумана. Это блестящий признак - ведь все остальные газы и пары, которые вследствие нечистоты опыта могли бы остаться в сосуде, уже смерзлись и недвижно застыли где-то на стенках. В сосуде только один-единственный гелий, туман может быть образован лишь им. Значит, в гелии уже образовались центры конденсации, и он начинает превращаться в жидкость! Температура снижается еще немного. Эксперимент продолжается. В конце восемнадцатого часа эксперимента в сосуде возникает какой-то вихрь, бурление, и вот уже сосуд наполнен чуть ли не до краев кипящей жидкостью, настолько прозрачной, что увидеть ее почти невозможно.
Эта жидкость кажется невесомой, почти несуществующей. А может, и нет вовсе ее - жидкости, за которой Камерлинг-Оннес охотился долгие годы?
В глазах ученого помутилось. Десять лет и восемнадцать часов эксперимента, внезапное волнение при виде капель тумана и этой легчайшей волнующейся жидкости подкосили его. Оннеса в бессознательном состоянии отвезли домой. Лишь через несколько месяцев упорнейший человек смог снова вернуться к своим приборам, к письменному столу, к своим экспериментам.
Три года прошло с того дня, когда 10 июля 1908 года Гейке Камерлинг-Оннес получил первые капли жидкого гелия. Теперь можно было проводить любые измерения, любые" исследования свойств веществ при столь низких температурах. Можно, например, изучить свойства веществ при температурах жидкого гелия и указать, насколько хорошо они согласуются с той или иной физической теорией.
И Оннес с головой окунается в эти измерения. Он бесконечно проверяет других и себя, публикует в научном журнале лаборатории груды цифр, являющихся всевозможными физическими данными и константами.
Опубликованы изотермы газов при низких температурах, таблицы и кривые теплоемкостей газов и твердых тел, таблицы удельных электрических сопротивлений. Оннес измерил удельные электрические сопротивления большинства хороших электропроводников (медь, алюминий, серебро), приступил к исследованию сопротивления твердой (конечно, твердой - ведь температура всего лишь на несколько градусов выше абсолютного нуля!) ртути, которая считалась хорошим проводником электричества. И вот тут-то его ожидал сюрприз, да еще какой!
Оннеса интересовало, как будет изменяться электрическое сопротивление ртути в то время, когда ее температура снижается и достигает областей, близких к абсолютному нулю.
Господствующей в то время была следующая точка зрения: если температура образца снижается, то это в первую очередь означает, что кристаллическая решетка материала все меньше и меньше колеблется - вероятность того, что электрон - носитель электричества ударится о решетку и затормозит свое движение (грубо говоря, в этом сущность электрического сопротивления), будет становиться все меньше и меньше. Стало быть, с уменьшением температуры сопротивление образца металла должно уменьшаться и в принципе равняться нулю при нулевой абсолютной температуре.
Но в эксперименте достигнуть температуры, равной абсолютному нулю, невозможно, и поэтому ученые следили за ходом кривой электрического сопротивления при снижении температуры. Все измерения, проделанные на меди, серебре и других хороших проводниках электричества, полностью подтверждали вышеизложенную точку зрения. И вот тут-то замерзшая, отвердевшая ртуть "выкинула номер". Пока сопротивление измерялось в диапазоне 15, 10, 5 градусов Кельвина, все шло нормально, как и в других исследованных металлах. Оннес снизил температуру до 4,1° К, взглянул на прибор, с помощью которого измерялось сопротивление, и поразился: стрелка вольтметра указывала, что сопротивление образца равно нулю, хотя до температурного нуля оставалось еще больше четырех градусов!
Это было поразительно. Для физика исчезновение электрического сопротивления было равносильно исчезновению земли из-под ног. Под сомнение ставились такие ясные вещи, как закон Ома и уравнения Максвелла.
Оннес подумал, что прибор испортился, и включил вместо него запасной. Опыт повторили. Когда температура вновь была снижена до отметки 4,1°К, исследователи увидели, как стрелка прибора "прыгнула" к нулю. Это означало полное отсутствие электрического сопротивления у ртутного столбика.
Оннес и ассистировавший ему Хольст изготовили новый образец затвердевшей ртути - залили ртуть в тончайший стеклянный капилляр и затем заморозили его, получив, таким образом, необычайно тонкий и длинный ртутный столбик. Из электротехники известно, что такой образец должен иметь большое сопротивление. В новом опыте экспериментаторы решили использовать для измерений сверхчувствительный зеркальный гальванометр. Гальванометр в сочетании со специально изготовленным образцом должен был обнаружить хотя бы следы сопротивления.
Но не тут-то было. Вновь при температуре 4,1 градуса выше абсолютного нуля исследователи замечают внезапное "убегание" зайчика гальванометра. Несмотря на все предосторожности, сопротивление не появлялось - оно было равно нулю. Все говорило за то, что Камерлинг-Оннес и Хольст открыли неожиданное для них и для всех физиков мира явление.
И вот теперь Оннес опубликовал в "Сообщениях из Лейденской лаборатории" статью о своем открытии. Статья наделала много шуму. За ней последовали десятки новых сообщений, которые дополняли, подкрепляли и доказывали открытие Оннеса.
Выяснилось, что ртуть вовсе не является монопольной обладательницей свойства "сверхпроводимости". Некоторые другие металлы, такие, например, как свинец, олово, также становятся сверхпроводниками. Вопреки всеобщим ожиданиям, лучшие известные проводники электричества - медь и серебро, оказалось, вовсе не обладают таким свойством. Долгое время ни один физик не мог дать удивительному явлению теоретическое обоснование.
Факты были чрезвычайно интересны не только с точки зрения "чистой физики". Открытие сверхпроводимости сразу же вызвало к жизни множество заманчивых проектов, относящихся в первую очередь к области электротехники.
В 1911 - 1913 годах, о которых идет речь в нашем рассказе, электродвигатели, электрогенераторы были известны уже более полувека, а трансформаторы (их изобрели позже) - не один десяток лет. Срок достаточен для того, чтобы техническая идея воплотилась в довольно совершенные конструкции. Другими словами, электрооборудование было сделано по последнему слову техники того времени, и, как и в наши дни, стояла проблема его дальнейшего совершенствования, на какой-то принципиально новой основе.
И теперь, и тем более в те времена электрические машины, трансформаторы, линии электропередач имели и имеют один существенный недостаток - они нагреваются, причем это ненужное для нас тепло возникает за счет электрической энергии вследствие неумолимого закона Джоуля - Ленца, гласящего, что любой ток, проходящий по проводнику с некоторым электрическим сопротивлением, отдает в этом сопротивлении часть своей энергии в виде тепла.
Иногда эта энергия используется, например, в электрических обогревателях, плитках, грелках. Однако в большинстве случаев тепловое нагревание электрических проводов является напрасной потерей электроэнергии, что было хорошо известно и Камерлинг-Оннесу.
Для магнитных измерений в Лейденской лаборатории требовалось построить несколько мощных электромагнитов с полем, например, 100 тысяч эрстед. Обычный электромагнит с массивным, как слон, стальным сердечником мог создавать поля лишь до 60 - 65 тысяч эрстед. К тому же, если такое чудовище весом в несколько тонн поместить в лаборатории, не останется места для работы. Значит, нужно было создавать соленоид, то есть попросту спираль, по которой идет ток, создающий сильное магнитное поле. Но "у каждого - свои недостатки". В соленоиде, выполненном, например, из меди, будет тратиться зря колоссальная мощность! Лишь с помощью сверхпроводников можно было бы избавиться от потерь и создавать сколь угодно мощные электромагниты для исследований. Эта идея увлекла профессора Оннеса, и уже в 1913 году в том же журнале "Сообщения из Лейденской лаборатории" он опубликовал статью с предложением построить сверхпроводящий магнит на 100 тысяч эрстед, не имеющий бесполезных потерь мощности и, естественно, изготовленный не из меди, а из какого-нибудь сверхпроводящего металла.
Однако последующие события показали, что Оннес, как говорится, "замечтался". Суровые физические законы, казалось, восстали против смелой идеи.
Вскоре после опубликования статьи Оннес выяснил, что по сверхпроводнику может течь ток отнюдь не всякой величины. Как только величина тока превосходит некоторое (позже названное "критическим") значение, ток "выключает" сверхпроводимость, и вместо образца с волшебными свойствами в руках у исследователя оказывается ничем не примечательный кусочек свинца, ртути или олова. Токи были настолько малы, что постройка магнита из такой проволоки была бы практически бесполезной. И это еще не все. Вскоре после открытия Оннеса было обнаружено, что не только ток способен "выключить" сверхпроводимость. Сверхпроводимость исчезала и под влиянием очень слабых магнитных полей, не превышающих сотен эрстед. А Камерлинг-Оннес мечтал о сотнях тысяч.
Стало ясно, что сверхпроводимость - не более чем физическая игрушка, возбуждающий любопытство физиков феномен. Видимо, будучи убежденным в этом, ушел на покой Гейке Камерлинг-Оннес, оставив лейденскую лабораторию своим последователям В. Кеезому и де Хаазу.
Кеезом известен своим капитальным трудом "Гелий". В книге собрано все, что знали о гелии - от истории его открытия до свойств в жидком состоянии.
Де Хааз провел многочисленные исследования низких температур, сверхпроводящих сплавов. Совместное советским физиком Л. В. Шубниковым (стажировавшимся в лейденской лаборатории) он открыл так называемый "эффект Шубникова - де Хааза".
В начале тридцатых годов было обнаружено, что существует несколько сплавов различных металлов, в которых сверхпроводимость исчезает в магнитном поле гораздо большем, чем то, о котором знал Оннес. В сплаве свинца с висмутом "критическое магнитное поле" превышало уже пятнадцать тысяч эрстед. Хотя до сотен тысяч эрстед, о которых мечтал Оннес, было еще далеко, физики воспрянули духом. Появилась как будто бы возможность создавать "бесплатные" электромагниты если не на сотни тысяч эрстед, то хотя бы на пятнадцать тысяч. Такие магниты уже можно было бы использовать в электрических машинах. Может быть, сплав свинца с висмутом удалось бы использовать даже в лабораторных магнитах, правда, не очень сильных, но больших по объему рабочей зоны.
Однако обстоятельства сложились совсем не так, как можно было ожидать. В дело вмешался новый директор лаборатории Кеезом. Он, измерив критический ток проволоки из сплава свинца с висмутом, выяснил, что ток слишком мал и сделать из такой проволоки сколько-нибудь ценный магнит невозможно.
Работники лаборатории, ознакомившись с выводами Кеезома, решили отказаться от "бесперспективных" сверхпроводников. Так, сверхпроводящие магниты были "закрыты" во второй раз.
Лишь через три десятка лет выяснилось, что выводы Кеезома были неточными. Критический ток сплава свинца с висмутом был вполне достаточен для того, чтобы из него делать довольно экономичные соленоиды.
Искать новую тему для исследований работникам лаборатории не пришлось. Как раз в эти годы советский физик Петр Леонидович Капица открыл не менее интересное, чем сверхпроводимость, явление - сверхтекучесть жидкого гелия. Лейденцы увлеклись новой перспективной работой, окончательно потеряв интерес к сверхпроводящим магнитам.
Видимо, мрачные выводы Кеезома повлияли и на английских физиков, работавших в Оксфорде. Они отвергли сверхпроводящие сплавы и продолжали исследовать только сверхпроводящие металлы. Тут, казалось, их ждал успех: они сделали ряд интересных открытий, будто бы подтверждавших их выбор. К сожалению, частные успехи были лишь коварной приманкой, подложенной природой, которая, словно оберегая свои тайны, заманила исследователей в дебри дремучего и бесплодного леса. Таким образом, и прекрасно оснащенная оксфордская группа прекратила исследования перспективных сверхпроводников.
Примерно в то же время в Харькове работала большая группа физиков. Руководил ею доктор Л. В. Шубников. Ученые всего мира единодушно признают, что группа Шубникова была лучшей по своей оснащенности и знаниям металлургии сверхпроводящих сплавов. Не приняв выводы Кеезома на веру, харьковская группа продолжала заниматься сверхпроводящими сплавами. Эти работы легли в основу последующих теорий, экспериментов и открытий. Однако и харьковским экспериментаторам не удалось открыть сверхпроводящих сплавов, устойчивых к сильным магнитным полям.
Непонятная сверхпроводимость не давала покоя и теоретикам. Одним из первых пролил свет на природу сверхпроводимости знаменитый советский физик академик Лев Давидович Ландау, длительное время работавший в Институте физических проблем АН СССР. Глубокий и разносторонний ученый пользовался среди физиков непререкаемым авторитетом. Его краткая надпись на чьей-нибудь научной работе: "Одобряю, Ландау" всегда означала, что написана новая незаурядная теоретическая статья, проделана новая, чрезвычайно интересная экспериментальная работа.
Все знавшие Ландау (он умер в 1967 году в результате последствий автомобильной катастрофы), отмечают его легкое, радостное и, как иным даже иногда казалось, внешне легкомысленное (да простят меня читатели за такой эпитет) отношение к труду. Работал он чаще всего лежа на диване в какой-нибудь крайне неудобной позе. Свои глубочайшие мысли он по обыкновению небрежно нацарапывал на мятых листках, которые колодой держал в руке. Почерк его могли разобрать немногие "специалисты". Юмор его был колок, взгляды - радикальны. Суть любой проблемы схватывалась им на лету.
Лишь немногие близкие друзья знают, каким трудом достигалась эта легкость.
Ландау первым сопоставил два "странных" явления - сверхпроводимость и сверхтекучесть - течение жидкого гелия-2 без трения через узкие капилляры и предположил, что эти явления родственны. Сверхпроводимость - это сверхтекучесть весьма своеобразной жидкости - электронной.
Идея Ландау оказалась в высшей степени плодотворной, на ее основе построено большинство теорий сверхпроводимости.
Открытие сверхпроводимости и особенно успехи в ее теоретическом объяснении бросили грозный вызов максвелловой теории да и основанной на ней лоренцевой.
Поскольку родилось предположение о том, что сверхпроводимость обусловливается специальными, "сверх-проводящими" электронами, необходимо было скорректировать уравнения и ввести в них новый член - ток, обусловленный уже не нормальными, а сверхпроводящи-ми электронами. Уравнения Максвелла как бы "раздваивались", их необходимо было отдельно применять для "нормальных" и "сверхпроводящих" электронов.
"Раздвоение" не было механическим. Ток "нормальных" электронов, как известно, подчиняется закону Ома; однако "сверхпроводящие" электроны не встречают сопротивления, и, стало быть (по закону Ома ), измерить на сверхпроводнике падение напряжения на постоянном токе невозможно, и само понятие напряжения теряет смысл. Закон Ома для сверхпроводящих электронов необходимо было заменить какой-то иной зависимостью. Но какой?
П. Л. Капица и Л. Д. Ландау.
Обычно говорят, что основное свойство сверхпроводников - отсутствие сопротивления. Такая точка зрения сильно поколебалась, когда а 1933 году немецкие физики Мейснер и Оксенфельд открыли совершенно неожиданную вещь сверхпроводники оказались непроницаемыми для магнитных силовых линий! Они были для магнитных силовых линий абсолютно непробиваемым щитом.
Такое свойство сверхпроводников позволило советскому физику В. К. Аркадьеву проделать чрезвычайно интересный эксперимент, называемый среди физиков "гробом Магомета" (вы, вероятно, помните, что, по преданию, гроб пророка Магомета висел в воздухе без каких-либо видимых опор).
Опыт Аркадьева был внешне очень прост: в дьюаре с жидким гелием при температуре всего на несколько градусов выше абсолютного нуля размещается свинцовая плита (свинец - сверхпроводник), сверху осторожно спускают постоянный магнит. Силовые линии магнитика не могут проникнуть в сверхпроводник, они отражаются от него, как солнечные лучи от зеркальной поверхности. В свинцовом "зеркале" образуется магнитное отражение, магнитный двойник магнита.
Под северным полюсом магнитика появляется "магнитное изображение" северного полюса, под южным полюсом - южного. Настоящий полюс и полюс "изображения" начинают отталкиваться. Сила отталкивания возрастает до тех пор, пока не станет равной весу магнитика; и тогда магнитик повиснет. Повиснет безо всяких опор.
Упомянем к слову, что принцип "магнитного зеркала" начал сейчас широко использоваться в приборостроении. Очевидно, что таким образом, можно, например, подвесить вращающиеся или перемещающиеся друг относительно друга части прибора - это сразу же наводит на мысль о "магнитных подшипниках", в которых отсутствует трение. Подшипники без трения могут сослужить большую службу, например, в прецизионных гироскопах. Образцы таких гироскопов уже построены и испытаны.
"Гроб Магомета" - магнитик, парящий над сверхпроводящей чашей.
Так вот особенность сверхпроводников - "эффект Мейснера" - заставила подумать о том, каким правилам должны подчиняться "сверхпрово-дящие" электроны, если уж они не подчиняются закону Ома.
Стала ясна и недостаточность определения сверхпроводников как обычных проводников, но с нулевым сопротивлением.
Из уравнений Максвелла, если их решить для случая нулевого сопротивления, эффект Мейснера никак не получался. С другой стороны, если учесть в уравнениях Максвелла нулевое магнитное поле внутри сверхпроводников (эффект Мейснера), то не получается нулевое сопротивление...
В 1935 году, через два года после открытия эффекта Мейснера, в печати появилась статья английских физиков Ф. и Г. Лондонов, предложивших дополнить уравнения Максвелла еще двумя уравнениями, которые учитывали бы наличие двух сортов электронов и одновременно - эффект Мейснера.
А. А. Абрикосов.
Новые уравнения получили название уравнений Лондонов. Их до сих пор широко используют для анализа процессов в сверхпроводниках.
Конечно, уравнения Максвелла не отменились уравнениями Лондонов. Последние, если можно так выразиться, "ответвились" от максвелловых уравнений для анализа явлений в конкретной области - сверхпроводимости, точно так же, как ответвилась от уравнений квантовая электродинамика, призванная изучать процессы в микромире.
А уравнения Максвелла пока что остаются незыблемым языком физиков на все времена.
Следующий шаг в развитии теории сверхпроводимости был сделан почти одновременно советским физиком лауреатом Ленинской премии академиком Н. Н. Боголюбовым и американскими учеными Бардином, Купером и Шриффером.
Теория, разработанная ими, необычайно сложна даже для физиков. Например, в работах Николая Николаевича Боголюбова, посвященных теории, на печатной странице можно прочесть лишь два-три "человеческих" слова, да и то таких, как "известно, что..." "следовательно", "итак, имеем", "что и требовалось доказать", а остальное - роторы, дивергенции, дифференциалы, интегралы, лапласианы, якобианы и прочий высший пилотаж абстрактной математики.
Теория Н. Н. Боголюбова и теория Бардина, Купера и Шриффера (теория БКШ) сводятся, грубо говоря, к предположению о том, что сверхпроводящие электроны, в противовес обычным, объединены в пары, тесно связанные между собой. Разорвать пару и разобщить электроны трудно. Такие связи позволяют электронам двигаться в материале, помогая друг другу и не встречая электрического сопротивления.
И, наконец, последним достижением в разработке теории сверхпроводимости являются работы члена-корреспондента АН СССР А. А. Абрикосова. Он теоретически подтвердил давнюю догадку Л. В. Шубникова о преимуществах сверхпроводящих сплавов перед сверх-проводящими металлами. За разработку теории А. А. Абрикосов удостоен в 1965 году Ленинской премии, а теория ГЛАГ - (Гинзбург Ландау - Абрикосов - Горьков) получила мировое признание.
Итак, теория разработана, она утверждает, что в металлургических лабораториях со дня на день должны родиться сплавы с предсказанными Абрикосовым чудесными свойствами...
И вот в 1961 году американский физик Кунцлер, исследуя сплав ниобия с оловом, обнаруживает совершенно фантастические сверхпроводящие свойства этого соединения. Оказалось, что даже самое сильное магнитное поле в 88 тысяч эрстед, имевшееся тогда в Соединенных Штатах, не в силах разрушить сверхпроводимость сплава.
Путь к сверхпроводящим магнитам, сверхпроводящим электротехническим устройствам был открыт...
Уже через несколько лет были созданы магниты, о которых Камерлинг-Оннес мог только мечтать: сверхпроводящие, легкие, дешевые, небольшие по габаритам, поистине "волшебные" магниты с полем сначала 102, а затем 120, а потом и 170 тысяч эрстед.
Мест приложения силачам сколько угодно. Возьмем для примера мощную электрическую машину. Она тем мощнее, чем сильнее у нее магниты - при сверхпроводящих магнитах можно резко сократить размеры электрооборудования. То же, в принципе, относится и к трансформаторам, ведь их обмотки - тоже магниты, только переменного тока.
Расчеты советских и американских ученых показали, что сверхпроводники выгодно использовать в дальних линиях электропередач. Оказалось, что по сверхпроводящему кабелю всего лишь с руку толщиной можно было бы передавать, например, всю электроэнергию, потребляемую такой индустриально развитой страной, как Соединенные Штаты Америки.
Уже созданы и испытаны первые сверхпроводящие линии электропередач, электрические машины, трансформаторы, плазменные генераторы, вычислительные машины, измерительные приборы. Сверхпроводники верно служат человеку, где бы он ни находился, - на земле, в воздухе, в космосе или под водой.
Кто сделал все это? Кто совершил открытие? Кого благодарить за еще одно благо, поставленное на службу людям? Гейке Камерлинг-Оннеса? Ландау? Лондонов? Шубникова? Абрикосова? Кунцлера? Все они внесли свой вклад в это открытие. И предтечи их - Фарадей, Максвелл, Кальете, Пикте, Ольшевский, Дьюар - тоже должны быть названы здесь... А лаборанты, рабочие, инженеры, научные сотрудники? Многие тысячи, десятки тысяч людей долгое время работали в низкотемпературном колодце, прежде чем он принес людям первую пользу.
Но особо следует оказать здесь о Гейке Камерлинг-Оннесе, и не столько непосредственно о факте открытия им сверхпроводимости, сколько о том, что был он, быть может, одним из первых ученых, понявших новый, коллективный характер научного творчества в двадцатом веке. Он создал крупнейшую лабораторию, оснастил ее самым современным оборудованием, больше похожим на оборудование завода, чем на лабораторные приборы, организовал специальные школы и журналы.