Страница:
Из практических советов — если вам по какой-то причине важен объем винчестера (например, для нужд видеомонтажа), обратите внимание, что начиная примерно с 300 Гбайт объем растет гораздо медленнее, чем цена, так что два 250-гигабайтных диска обойдутся дешевле, чем один на 500 Гбайт. К тому же дисков небольшого объема к современной материнской плате можно подключить не один и не два, причем объединив их в массив RAID 0, в котором они будут работать гораздо быстрее, чем диск на 500 Гбайт. Правда, если один из дисков сломается (что вероятнее, нежели в случае одного большого диска), то погибнет весь массив.
Впрочем, даже если вы предпочтете один винчестер большой емкости массиву из нескольких, то нет никаких гарантий, что в один прекрасный день и он не выйдет из строя. Последние несколько лет крупных скандалов, связанных с каким-нибудь заводским дефектом, приводившим к массовому отказу HDD, не было, однако единичные случаи отказа встречаются у всех производителей — и у Seagate, и у Samsung, и у Maxtor, и у Hitachi, и даже в хваленой серии WD Raptor с ее пятилетней гарантией. Поэтому традиционным советом долгое время было собирать для HDD, на которых хранится критически важная информация, избыточные массивы RAID 1, в которых информация на двух (или нескольких) дисках дублируется. RAID 1 тоже позволяет получить кое-какой выигрыш в производительности (за счет того, что данные можно одновременно читать с двух дисков, причем начиная с того, с которого это сделать удобнее), однако если в RAID 0 объем задействованных дисков складывается, то в RAID 1 — равен объему одного диска, задействованного в массиве. Учитывая дешевизну гигабайта дискового пространства, это не такая большая проблема, но сегодня появилось более изящное решение — RAID 5. Энное количество дисков объединяется в массив по тому же принципу, что и RAID 0 (то есть хранимая в массиве информация равномерно распределяется по дискам), но с одним дополнительным диском, на котором записываются биты четности для записанной на остальные диски информации.1 Четность — простейший код коррекции ошибок, но его вполне достаточно, чтобы при отказе любого из дисков, входящих в RAID 5, данные, записанные в массиве, можно было восстановить. За счет этого, например, можно подключить к материнской плате на чипсете nForce 570 шесть винчестеров и получить массив, соответствующий по объему и быстродействию массиву из пяти дисков, объединенных в RAID 0, но при этом не теряющий информацию и продолжающий работать в случае единичной поломки. Проще говоря, из массива на шесть дисков можно вынуть любой диск, и ничего страшного не случится, массив продолжит работать как ни в чем не бывало. Главное, чтобы, пока вышедший из строя или отключенный диск не будет заменен, не сломался еще один диск в массиве, потому что два пропуска в данных код четности уже не исправляет. Однако вероятность того, что почти одновременно сломаются два жестких диска, в сотни раз меньше по сравнению с вероятностью одиночного отказа. Кроме того, даже если заменить вышедший из строя диск нечем, теоретически RAID 5 можно просто «ужать», создав на его месте новый массив уже из пяти дисков, на 25% меньшего объема и скорости, но зато снова устойчивого к отказам. При цене 80-гигабайтных моделей в районе $50 создание даже самого маленького RAID5-массива на 240 Гбайт из четырех HDD выглядит довольно интересной идеей. Несмотря на вдвое большую стоимость по сравнению с одиночным 250-гигабайтным диском такая конструкция защищена от поломок и потери информации и обладает гораздо более высокой скоростью. Для дисков большего объема (скажем, массива из четырех дисков на 250 Гбайт, который обойдется в $400) картина получается еще более радужная, поскольку одиночный диск того же объема, более медленный и ненадежный, стоит $450. Одно лишь плохо (помимо высоких цен) — далеко не в каждый корпус можно установить 4—6 дисков, обеспечив им питание и охлаждение.
Что касается корпусов — последнего компонента платформы, то гоняться за особенно мощными моделями даже при сборке дорогого компьютера нет смысла. Блок питания на 300—350 Вт легко «потянет» систему начального и среднего ценового диапазона, а на 350—460 Вт — навороченную, с двухъядерным процессором, мощной видеокартой или пресловутыми четырьмя HDD. Лучше обратите внимание на то, чтобы у БП был 24-контактный (а не устаревший 20-контактный) разъем питания: это, во-первых, признак того, что блок питания действительно сумеет полностью выдать заявленную мощность, а во-вторых, это уже достаточно актуально для некоторых материнских плат. Из примеров хороших корпусов упомяну Ascot 6AR и Chieftec; из «среднего звена» — Foxconn и Inwin; из дешевых, но пока меня не подводивших, — Microlab.
Первый, «особенно безнадежный» случай в лице сложнейшего шедевра вычислительной техники, коим является процессор Pentium 4 в частности и архитектура NetBurst вообще, разгромно проигрывает Core 2 примерно по той же причине, по какой сорокатонный танк с тысячесильным газотурбинным двигателем никогда не догонит обыкновенную легковушку. Схемотехника процессора и заложенные в нее идеи великолепны, многие из них, возможно, опередили свое время, но при всем колоссальном потенциале NetBurst «слишком тяжела» для того, чтобы «быстро ездить». Использованные в ней решения чересчур сложны — а при нынешних микромасштабах кристалла где сложность, там и большой расход энергии. В результате архитектура работает и на 6 ГГц, и вполне пригодна для обещанных нам 10 ГГц, да вот беда — через нее необходимо пропускать такой поток энергии, который, во-первых, придется снимать с процессора криогенной установкой, а во-вторых, даже решив проблему с охлаждением, мы столкнемся с тем, что при столь мощном токе потребления в существующих дизайнах материнских плат начиная с какого-то момента попросту не удается обеспечить достаточно стабильное энергопитание процессора. Pentium 4 на частоте пять-семь-восемь гигагерц, на которые он изначально был рассчитан, был бы чрезвычайно впечатляющим процессором, но увы — «гладко было на бумаге…». Возникает «тепловой тупик».
Проблемы архитектуры K8, которая, в отличие от NetBurst, использует очень простые и изящные схемы вместо навороченных монстров вроде отдельных функциональных блоков, работающих внутри ядра на удвоенной частоте, диаметрально противоположны проблемам, с которыми столкнулась Intel. Если инженеры последней, грубо говоря, пострадали за то, что были «слишком умными» и погнались за лучшим в ущерб хорошему, то в истории разработки K8 остро ощущается огромный разрыв между тем, какие средства расходует на R&D Intel и какие расходы на разработки может себе позволить больше озабоченная проблемой выживания AMD. Core 2 производится по 65-нм технологическому процессу, Athlon 64 — по 90-нм, причем чем дальше, тем разрыв в возможностях Intel и AMD больше. Там, где в Intel параллельно работают две-три команды над разными вариантами процессоров, команда AMD занята совершенствованием одного; там, где Intel успевает выкатить три степпинга, AMD обновляет два, и т. д. При таком соотношении сил AMD просто не имеет права на серьезную ошибку, равно как и на смелый эксперимент, — и в итоге продвигается вперед маленькими осторожными шажками. Причем по иронии судьбы, похоже, именно такой «маленький и неспешный» метод работает лучше всего: Core 2, в отличие от Pentium 4, тоже «вырос» не сразу, а медленно и постепенно, еще от первых Pentium Pro к Pentium II, Pentium III, Pentium M и Core «Yonah». Однако вечно играть на ошибках соперника таким образом невозможно — что мы нынче и наблюдаем.
Что касается Intel Core 2 Duo, я не стану принижать его возможности и говорить, что это простой или неинтересный процессор. Израильская команда разработчиков великолепно доработала то, что было создано их предшественниками, практически «вылизав» кристалл настолько, насколько вообще было возможно. Огромная производительность оперативной памяти и схемы «умной» предвыборки, в 98% случаев заранее угадывающих, какие данные потребуются в следующий момент. Чрезвычайно быстрая кэш-память второго уровня, разделяемая между ядрами, и очень быстрые и подключенные по широким шинам кэши первого уровня. Целых три функциональных устройства, каждое из которых реализует все операции с упакованными 128-битными операндами SSE (это могут быть четыре 32-битных или два 64-битных числа) всего за один такт. Нигде, насколько мне известно, раньше не применявшаяся новаторская система обработки микроинструкций, записывающих данные в оперативную память. Интересная реализация декодирования x86-инструкций, позволяющая превращать две инструкции в одну микрооперацию. И — что поражает больше всего — практическое отсутствие «узких мест». Фактически из архитектуры P6, которая неявно лежит в основе Core 2, разработчики «выжали» все что можно. AMD, несмотря на то что ее K8 в принципе гораздо перспективнее P6, о таком остается только мечтать, — многие ее «узкие» места давно известны, но не «расширяются» годами.
Впрочем, не подумайте, что я исполняю по архитектуре K8 похоронный марш. Хотя, как я уже сказал, AMD не имеет права на ошибку, рискованные (и революционные) скачки, будучи прижатой к стенке, она все же совершает. В будущем году AMD обещает выпустить значительно улучшенную версию K8, которая (особенно если с 65-нм технологическим процессом все пойдет гладко) сможет сразиться с Core 2 на равных. А затем настанет черед ответного хода Intel, и корпорация, по слухам, уже сейчас «кует» что-то принципиально новое (главное, чтобы инженеры снова не увлеклись и не соорудили второй Pentium 4). Вопреки скепсису последних лет, потенциал для увеличения производительности отдельного процессорного ядра (во всяком случае, в подходе AMD) на ближайшую пятилетку прослеживается явно.
Что же касается дня сегодняшнего, то AMD к концу года надеется (благодаря Fab 36 в Дрездене и заключенному с Chartered Semiconductors производственному соглашению) значительно увеличить свою долю на рынке, продавая процессоры хоть и гораздо дешевле, но зато и в гораздо больших количествах.
SnagIt. Для кого-то это малопонятный в своей навязчивости 13-мегабайтный заменитель клавиши Print Screen; для других — «виртуальный цифровой фотоаппарат» со встроенной системой распознавания текста. Я же использую такую разностороннюю грабилку экрана для создания макетов графических интерфейсов новых программ из «сфотографированных» частей интерфейсов существующих. А служба поддержки одного известного промышленного софта устанавливает SnagIt в автозагрузку клиентских машин и больше не задает пользователям сакраментальный вопрос: «Что вы видите на экране?» SnagIt все видит сама и по нажатии горячей клавиши (или по расписанию) отсылает по заданному адресу снимки экрана или рабочего поля.
Впрочем, даже если вы предпочтете один винчестер большой емкости массиву из нескольких, то нет никаких гарантий, что в один прекрасный день и он не выйдет из строя. Последние несколько лет крупных скандалов, связанных с каким-нибудь заводским дефектом, приводившим к массовому отказу HDD, не было, однако единичные случаи отказа встречаются у всех производителей — и у Seagate, и у Samsung, и у Maxtor, и у Hitachi, и даже в хваленой серии WD Raptor с ее пятилетней гарантией. Поэтому традиционным советом долгое время было собирать для HDD, на которых хранится критически важная информация, избыточные массивы RAID 1, в которых информация на двух (или нескольких) дисках дублируется. RAID 1 тоже позволяет получить кое-какой выигрыш в производительности (за счет того, что данные можно одновременно читать с двух дисков, причем начиная с того, с которого это сделать удобнее), однако если в RAID 0 объем задействованных дисков складывается, то в RAID 1 — равен объему одного диска, задействованного в массиве. Учитывая дешевизну гигабайта дискового пространства, это не такая большая проблема, но сегодня появилось более изящное решение — RAID 5. Энное количество дисков объединяется в массив по тому же принципу, что и RAID 0 (то есть хранимая в массиве информация равномерно распределяется по дискам), но с одним дополнительным диском, на котором записываются биты четности для записанной на остальные диски информации.1 Четность — простейший код коррекции ошибок, но его вполне достаточно, чтобы при отказе любого из дисков, входящих в RAID 5, данные, записанные в массиве, можно было восстановить. За счет этого, например, можно подключить к материнской плате на чипсете nForce 570 шесть винчестеров и получить массив, соответствующий по объему и быстродействию массиву из пяти дисков, объединенных в RAID 0, но при этом не теряющий информацию и продолжающий работать в случае единичной поломки. Проще говоря, из массива на шесть дисков можно вынуть любой диск, и ничего страшного не случится, массив продолжит работать как ни в чем не бывало. Главное, чтобы, пока вышедший из строя или отключенный диск не будет заменен, не сломался еще один диск в массиве, потому что два пропуска в данных код четности уже не исправляет. Однако вероятность того, что почти одновременно сломаются два жестких диска, в сотни раз меньше по сравнению с вероятностью одиночного отказа. Кроме того, даже если заменить вышедший из строя диск нечем, теоретически RAID 5 можно просто «ужать», создав на его месте новый массив уже из пяти дисков, на 25% меньшего объема и скорости, но зато снова устойчивого к отказам. При цене 80-гигабайтных моделей в районе $50 создание даже самого маленького RAID5-массива на 240 Гбайт из четырех HDD выглядит довольно интересной идеей. Несмотря на вдвое большую стоимость по сравнению с одиночным 250-гигабайтным диском такая конструкция защищена от поломок и потери информации и обладает гораздо более высокой скоростью. Для дисков большего объема (скажем, массива из четырех дисков на 250 Гбайт, который обойдется в $400) картина получается еще более радужная, поскольку одиночный диск того же объема, более медленный и ненадежный, стоит $450. Одно лишь плохо (помимо высоких цен) — далеко не в каждый корпус можно установить 4—6 дисков, обеспечив им питание и охлаждение.
Что касается корпусов — последнего компонента платформы, то гоняться за особенно мощными моделями даже при сборке дорогого компьютера нет смысла. Блок питания на 300—350 Вт легко «потянет» систему начального и среднего ценового диапазона, а на 350—460 Вт — навороченную, с двухъядерным процессором, мощной видеокартой или пресловутыми четырьмя HDD. Лучше обратите внимание на то, чтобы у БП был 24-контактный (а не устаревший 20-контактный) разъем питания: это, во-первых, признак того, что блок питания действительно сумеет полностью выдать заявленную мощность, а во-вторых, это уже достаточно актуально для некоторых материнских плат. Из примеров хороших корпусов упомяну Ascot 6AR и Chieftec; из «среднего звена» — Foxconn и Inwin; из дешевых, но пока меня не подводивших, — Microlab.
Почему Core 2 лучше всех?
Как вы думаете, что устроено проще — быстрый и экономичный Core 2 Duo или медленный и горячий Pentium D? Это может показаться парадоксальным, но Core 2 Duo действительно проще — при том же объеме кэш-памяти в нем гораздо меньше транзисторов, а площадь кристалла и вовсе почти вдвое меньше. Вместе с тем вычислительная техника — это не человеческие взаимоотношения, где зачастую чем проще, тем лучше. Как же так получается? Я хотел было дать краткий ответ на этот вопрос, но исторический экскурс в принципы, положенные в схему функционирования Pentium III, и в усовершенствования, приведшие к Pentium 4, AMD Athlon и Core 2, разросся до половины темы номера. Вкратце же — дело не столько в «удачности Core 2» как архитектуры, сколько в проблемах его конкурентов.Первый, «особенно безнадежный» случай в лице сложнейшего шедевра вычислительной техники, коим является процессор Pentium 4 в частности и архитектура NetBurst вообще, разгромно проигрывает Core 2 примерно по той же причине, по какой сорокатонный танк с тысячесильным газотурбинным двигателем никогда не догонит обыкновенную легковушку. Схемотехника процессора и заложенные в нее идеи великолепны, многие из них, возможно, опередили свое время, но при всем колоссальном потенциале NetBurst «слишком тяжела» для того, чтобы «быстро ездить». Использованные в ней решения чересчур сложны — а при нынешних микромасштабах кристалла где сложность, там и большой расход энергии. В результате архитектура работает и на 6 ГГц, и вполне пригодна для обещанных нам 10 ГГц, да вот беда — через нее необходимо пропускать такой поток энергии, который, во-первых, придется снимать с процессора криогенной установкой, а во-вторых, даже решив проблему с охлаждением, мы столкнемся с тем, что при столь мощном токе потребления в существующих дизайнах материнских плат начиная с какого-то момента попросту не удается обеспечить достаточно стабильное энергопитание процессора. Pentium 4 на частоте пять-семь-восемь гигагерц, на которые он изначально был рассчитан, был бы чрезвычайно впечатляющим процессором, но увы — «гладко было на бумаге…». Возникает «тепловой тупик».
Проблемы архитектуры K8, которая, в отличие от NetBurst, использует очень простые и изящные схемы вместо навороченных монстров вроде отдельных функциональных блоков, работающих внутри ядра на удвоенной частоте, диаметрально противоположны проблемам, с которыми столкнулась Intel. Если инженеры последней, грубо говоря, пострадали за то, что были «слишком умными» и погнались за лучшим в ущерб хорошему, то в истории разработки K8 остро ощущается огромный разрыв между тем, какие средства расходует на R&D Intel и какие расходы на разработки может себе позволить больше озабоченная проблемой выживания AMD. Core 2 производится по 65-нм технологическому процессу, Athlon 64 — по 90-нм, причем чем дальше, тем разрыв в возможностях Intel и AMD больше. Там, где в Intel параллельно работают две-три команды над разными вариантами процессоров, команда AMD занята совершенствованием одного; там, где Intel успевает выкатить три степпинга, AMD обновляет два, и т. д. При таком соотношении сил AMD просто не имеет права на серьезную ошибку, равно как и на смелый эксперимент, — и в итоге продвигается вперед маленькими осторожными шажками. Причем по иронии судьбы, похоже, именно такой «маленький и неспешный» метод работает лучше всего: Core 2, в отличие от Pentium 4, тоже «вырос» не сразу, а медленно и постепенно, еще от первых Pentium Pro к Pentium II, Pentium III, Pentium M и Core «Yonah». Однако вечно играть на ошибках соперника таким образом невозможно — что мы нынче и наблюдаем.
Что касается Intel Core 2 Duo, я не стану принижать его возможности и говорить, что это простой или неинтересный процессор. Израильская команда разработчиков великолепно доработала то, что было создано их предшественниками, практически «вылизав» кристалл настолько, насколько вообще было возможно. Огромная производительность оперативной памяти и схемы «умной» предвыборки, в 98% случаев заранее угадывающих, какие данные потребуются в следующий момент. Чрезвычайно быстрая кэш-память второго уровня, разделяемая между ядрами, и очень быстрые и подключенные по широким шинам кэши первого уровня. Целых три функциональных устройства, каждое из которых реализует все операции с упакованными 128-битными операндами SSE (это могут быть четыре 32-битных или два 64-битных числа) всего за один такт. Нигде, насколько мне известно, раньше не применявшаяся новаторская система обработки микроинструкций, записывающих данные в оперативную память. Интересная реализация декодирования x86-инструкций, позволяющая превращать две инструкции в одну микрооперацию. И — что поражает больше всего — практическое отсутствие «узких мест». Фактически из архитектуры P6, которая неявно лежит в основе Core 2, разработчики «выжали» все что можно. AMD, несмотря на то что ее K8 в принципе гораздо перспективнее P6, о таком остается только мечтать, — многие ее «узкие» места давно известны, но не «расширяются» годами.
Впрочем, не подумайте, что я исполняю по архитектуре K8 похоронный марш. Хотя, как я уже сказал, AMD не имеет права на ошибку, рискованные (и революционные) скачки, будучи прижатой к стенке, она все же совершает. В будущем году AMD обещает выпустить значительно улучшенную версию K8, которая (особенно если с 65-нм технологическим процессом все пойдет гладко) сможет сразиться с Core 2 на равных. А затем настанет черед ответного хода Intel, и корпорация, по слухам, уже сейчас «кует» что-то принципиально новое (главное, чтобы инженеры снова не увлеклись и не соорудили второй Pentium 4). Вопреки скепсису последних лет, потенциал для увеличения производительности отдельного процессорного ядра (во всяком случае, в подходе AMD) на ближайшую пятилетку прослеживается явно.
Что же касается дня сегодняшнего, то AMD к концу года надеется (благодаря Fab 36 в Дрездене и заключенному с Chartered Semiconductors производственному соглашению) значительно увеличить свою долю на рынке, продавая процессоры хоть и гораздо дешевле, но зато и в гораздо больших количествах.