Иерархические модели данных хорошо известны и изучены. Самый известный пример — реестр ОС MS Windows. Использование иерархической модели позволяет строить более сложные индексы, нежели в реляционных БД. Исторически эти модели были первой структурой БД и получили широкое распространение в эпоху мэйнфреймов. Для подобных баз были созданы мощные языки запросов, а по быстродействию они до сих пор вне конкуренции. Реляционные БД со временем оттеснили иерархические, но не факт, что не произойдет частичный реверс.
   В принципе, запаковать иерархические данные в реляционную базу нетрудно. Для этого рядом с основной таблицей строится триггером таблица транзитивного замыкания, содержащая все пары предок-потомок, где из предка существует путь в потомки. Несколько ресурсоемко и по быстродействию не то, но работает.
   Как же осуществляется интеллектуальный поиск в такой базе данных? Предположим, что нас интересует информация о девушке, играющей по утрам на арфе. Такой запрос можно составить и на естественном языке, и тот же анализ компонент выделит в нем компоненту со значением времени (по утрам) и орудийную компоненту (на арфе). При поиске фрагменты текста, где, например, «девушка по утрам слушала игру на арфе», будут игнорироваться, так как там к игре на арфе относится не орудийная компонента, а компонента сенсорного восприятия. Вот такая избирательность и логичность.
   Понятно, что для интеллектуального поиска конструирование модели запроса представляет собой серьезную задачу. Но при указанном подходе вполне реально получать ответы на любые запросы по смыслу документа.
   Вот и весь краткий сказ о поиске. Разумеется, из-за недостатка места и времени многое опущено. Но ясно, что существующие сегодня поисковые сервисы позволяют найти все. А завтра, будем надеяться, появятся и те, что из всего найденного выдадут действительно необходимое.
 
   Крупнейшие поисковые сервисы — Google, Yahoo! и MSN — к попыткам научить поисковые движки понимать запросы пользователей и документы видимого интереса не испытывают (вполне возможно, что причины их равнодушия к этим разработкам схожи с соображениями Александра Садовского, изложенными в предыдущей врезке). Интернет-пользователи привыкли к особенностям поисковых машин, знают их сильные и слабые стороны и по большей части удовлетворены имеющимися возможностями. Если в ближайшие несколько лет в поисковых технологиях и появятся революционные качественные изменения, то инициатором их появления станут, скорее всего, не известные лидеры рынка, а компании, которые обыватель с поиском вообще не связывает. В частности, очень активно сейчас развиваются корпоративные поисковые сервисы, которым зачастую ставится задача не только найти похожий по смыслу документ, но и проанализировать его, найти документы с ним связанные, и т. д. И здесь привычным поиском по ключевым словам не обойдешься.
   Над технологией, способной обойти привычные ограничения, уже несколько лет работает исследовательский центр IBM. В августе этого года корпорация даже пообещала выложить в Сеть для свободной загрузки исходные коды своей платформы UIMA (Unstructured Information Management Architecture, www.alphaworks.ibm.com/tech/uima).
   Информационные агентства поспешили заявить о том, что на смену поиску по ключевым словам приходит поиск по понятиям (key facts вместо key words), однако UIMA поиск по ключевым словам вовсе не отменяет (скорее, дополняет);
   является не готовым приложением, а основой для построения специализированных программ анализа данных;
   сейчас — после четырех лет разработки — все еще находится в начальной стадии развития, хотя пилотные проекты на базе UIMA существуют.
   Подробнее об UIMA, которая оказалась в центре внимания прессы только пару недель назад, можно прочитать в прошлогоднем номере IBM Systems Journal (www.research.ibm.com/journal/sj43-3.html). Там же описаны несколько возможных приложений UIMA (например, www.research.ibm.com/journal/sj/433/mack.html и www.research.ibm.com/journal/sj/433/uramoto.html).
   В общем случае UIMA дает инструменты для анализа и структурирования информации (в ходе чего можно обнаружить неочевидные связи между данными). Однако для поиска в Интернете эта технология пока неприменима и в обозримом будущем может стать популярным, но специализированным решением для предприятий.
   У IBM в этом свой интерес — если действительно удастся сделать UIMA стандартом, то вложения в эту технологию окупятся стократ. А там, глядишь, потенциал, заложенный в UIMA, будет раскрыт сторонними разработчиками, да так, что поисковый сервис, скажем, 2015 года на скромный пользовательский запрос о бесплатных mp3 вместо нужных ссылок будет выдавать составленный машиной оригинальный двадцатистраничный реферат о проблемах пиратства в Сети. — В.Г.

www.clickpress.com/releases/Detailed/2253005cp.shtml)] и только инженеров у нее насчитывается десять человек, среди которых есть даже разработчики firmware. Поиск в Сети сведений о том, чем контора занималась раньше, дает очень скудные результаты. Тем не менее в форуме на electrothree.com один из участников дал прошлой весной ссылку на pdf-файл на сайте самой компании, согласно которому, еще три года назад Бобье обещал начать работы «по уменьшению частотной полосы, занимаемой в кабеле обычным ТВ-каналом, с 6 МГц до 30 кГц». Интересно, что сейчас этого документа на сайте нет.
   Комментарии профессиональных связистов к заявлениям Бобье (и в 2002-м, и в этом году) очень скептические, если не сказать крепче. В общем-то, на этом я уже хотел закончить статью (дескать, ну вот еще один мыльный пузырь хайтека), да помешало одно обстоятельство. Статья Бобье о своем изобретении, опубликованная в восьми изданиях, была подписана не только им, но и Стюартом Швартцем — принстонским профессором с сорокалетним стажем исследований в области телекоммуникаций и внушительным списком научных работ. Швартц — настоящий профессор, с персональным разделом на университетском сервере, подлинность которого не вызывает сомнений[http://www.ee.princeton.edu/iss/faculty/stuart/index.html]. Автор этих строк решил написать г-ну Швартцу письмо с двумя краткими вопросами: «Действительно ли Вы связаны с Джозефом Бобье, и что вообще думаете об xMax?» Захотелось, так сказать, разобраться окончательно. Ответ пришел через полсуток и был краток: «Я консультировал его компанию, видел, что технология работает, анализировал ее и знаю, почему она работает. Насколько хороша она будет в реальных условиях, покажут полевые испытания». Вот так вот.
   Что же все-таки скрывается под названием xMax? Если собрать вместе все ее фрагментарные описания — с официального сайта, из интервью, данных Бобье, из скриншотов и статьи Бобье-Швартца, то, как мозаика, складывается интересная картинка. Собственно говоря, несколько толковых сетевых ресурсов уже успели ее сложить, поэтому два нижеследующих абзаца будут сжатым пересказом их материалов.
   Как пишет сайт Techworld.com, передатчик xMax излучает в эфир два сигнала. Один мощный, в который вкладывается 99% энергии. Он достаточно силен, чтобы помешать обычным пользователям УКВ-диапазона, так что для него все же надо искать в эфире свободное место. Однако этот «громкий» сигнал занимает очень узкую полосу — несколько килогерц, поэтому легко втискивается даже в городской эфир[Для сравнения, обычная FM-станция занимает в эфире полосу шириной 200 кГц]. Его называют несущей (carrier), но сигнал несет только служебные данные, позволяющие приемнику точно синхронизироваться с передатчиком. Мощность несущей достаточна, чтобы принимать ее безо всяких фокусов обычными радиосхемами, а длина волны (метры или дециметры) позволяет проникать глубоко сквозь стены.
   Полезная же информация передается другим сигналом — xGFlash, о котором известно лишь, что он занимает в эфире много места и невероятно слаб — в десятки раз слабее атмосферного шума. Это позволяет излучать xGFlash на уже занятых частотах, где радиослушатели его не заметят. Кроме того, его не нужно регистрировать в контролирующих органах, поскольку фены и кофемолки излучают сильнее. Усилением сигнала и выделением из него данных занимается Wavelet Pass Filter — ключевой элемент приемника xMax. Вот, собственно, и все, что можно наскрести из обычных источников о принципах действия чудо-технологии.
   Что можно сказать о ней? Передача служебных и полезных данных очень разными способами выглядит оригинально. xGFlash-сигнал напоминает современную широкополосную связь, но там сигналы синхронизации и автоподстройки смешаны с основными. Создатели xMax утверждают, что их приемник будет проще и дешевле конкурентов, а синхронизация с передатчиком — «экстремально прецизионной». Надо сказать, что слабыми сигналами действительно можно обеспечить высокие скорости — именно это делают сверхширокополосные (UWB) устройства. В США их мощность ограничена уровнем —41 дБм/МГц, что почти сливается с атмосферным шумом. Однако из-за такой мизерной мощности UWB-устройства очень «близоруки» — на них возлагаются надежды по связи бытовых приборов внутри квартиры и компьютерной периферии, но никак не на километровые городские сети. Создатели же xMax заявляют, что, во-первых xGFlash-сигнал слабее UWB-сигнала в тысячу раз, а во-вторых — может приниматься гораздо дальше.
   Один из профессиональных связистов, которому я показывал заявления xG Technologу и описания xMax, после некоторых размышлений предположил: «Похоже на туманное описание простой синхронизации демодулятора в приемнике с модулятором в передатчике. Это действительно улучшает прием слабых сигналов, но не больше, чем на 3—5 дБ. Ни о каких „в тысячи раз ниже уровня шума“ не может быть и речи». Здесь я уже во второй раз собрался закончить статью, как мой знакомый посетовал: «Жаль, что нельзя взглянуть на их патенты…», после чего с закруглением опять пришлось повременить. А ведь действительно, если американская компания говорит о «запатентованной технологии xMax», то где же патенты?!
   На сайте xG Technology о них сказано удивительно бегло: «…получен ряд патентов…», и все. Это удивительно потому, что для стартапов в порядке вещей козырять патентами, часто преувеличивая их число. Но ничего этого нет, и любопытствующим приходиться самим идти на сайт американского патентного архива. Разумеется, я тоже туда отправился и поискал по имени Bobier и названию компании. Уж разбираться, так до конца.
   В архиве patft.uspto.gov нашлись три патента. Один заурядный — на имя Бобье зарегистрирован новый способ экранирования стоек с радиоаппаратурой. Второй — главного инженера компании Надим Хана, предложившего скоростной модулятор новой конструкции. И третий, самый главный, где Бобье и Хан описывают необычный способ применения амплитудной модуляции. В американском патенте № 6.901.246, выданном 31 мая 2005 года на «Suppressed cycle based carrier modulation using amplitude modulation», предлагается следующее.
   Берем передатчик, излучающий одну синусоидальную несущую волну, ширина которой (иначе говоря — сколько герц она занимает в эфире) должна быть как можно меньше. В идеальном случае — бесконечной малой, как толщина прямой линии в геометрии. Благодаря такой предельной фокусировке даже слабый передатчик выдаст в эфир сигнал с высокой спектральной мощностью. Настолько высокой, что она несомненно будет мешать обычным пользователям и потому потребует свободной полосы в эфире (очень узкой).
   Затем берем приемник, который принимает эту мощную и предельно узкую (а потому никому не мешающую) волну. Как передавать данные приемнику? Очень просто — амплитудой каждого цикла волны. Представьте обычную синусоиду, имеющую, грубо говоря, «горбы» одинаковой высоты (да простят мне специалисты эти детские термины). Так вот, Бобье предлагает логическую единицу передавать «горбом» максимальной высоты, а ноль — немного меньшей. Причем передавать один бит данных должен каждый цикл несущей. Соответственно, приемник, вылавливая из эфира одну волну (!) с частотой 100 МГц, превращает ее в поток скоростью 100 Мбит\с. Видимо, этим и занимается Wavelet Pass Filter.
   Здесь читатели, кое-что понимающие в природе волн, наверняка воскликнут: «А как же боковые полосы?!» Да, с ними интересно… Сначала поясним тем, кто не понимает (ну, скажем так, школьникам ), о чем идет речь.
   Проведите на своем компьютере простой эксперимент — возьмите любой звуковой редактор и сделайте в нем синусоиду с частотой, например 10 тысяч герц. Взгляните на нее в спектроанализаторе (хотя бы WinAmp’а) — вы увидите плато, посреди которого высится один 10-килогерцовый пик. Все правильно — это простая волна с единственной частотой. Теперь наполовину уменьшите у синусоиды высоту каждого второго цикла («горба»). Если все сделано правильно, то в спектроанализаторе вы увидите странную картину: по бокам от прежнего пика появились меньшие. Откуда эти сигналы? Вы же не добавляли новых волн. И не меняли частоту первоначальной синусоиды. Изменилась только громкость ее отдельных циклов. Вот эти сигналы и есть боковые «полосы». Самые мощные из них отстоят от основного сигнала на половинной и двойной частоте, поскольку вы меняли громкость каждого второго цикла.
   Оказывается, когда единичная синусоида каким-то образом подвергается воздействию (например, меняется ее амплитуда), она перестает быть единичной. Появляется спектрально более сложный сигнал, содержащий несколько частот. Чем сложнее воздействие на синусоиду (правильнее сказать — на несущую волну), тем больше появляется дополнительных частот (боковых полос). А чем воздействие сильнее — тем сигналы на боковых полосах мощнее. Если вы попробуете отрезать новые частоты эквалайзером, то увидите, как это обрезание будет нейтрализовывать внесенные вами изменения. То есть синусоида будет возвращаться к первоначальной форме, когда все ее циклы были одинаковыми. Понять этот момент крайне важно — без боковых полос существует лишь идеальная волна с постоянной амплитудой, которая не несет в себе информации. Если мы воздействуем на волну, чтобы передать ей данные, это неизбежно создает сигналы на других частотах. Если мы полностью заглушим эти сигналы — несущая волна потеряет всю информацию.
   Как было сказано выше, в своем патенте Бобье предлагает менять амплитуду каждого (!) цикла несущей, что автоматически создаст в эфире паразитные сигналы на соседних частотах. Более того, поскольку при реальной передаче будут подавляться случайные циклы в случайной последовательности (ведь нули и единицы данных будут идти как попало), то, например, нижняя боковая полоса такого сигнала займет все частоты в эфире, от нуля и до самой несущей. Возникнет тот самый широкополосный сигнал со случайными всплесками, который маркетологи компании уже успели назвать именем xGFlash и зарегистрировать как торговую марку. Тут теорема Шеннона действительно не нарушается — первоначальная узкая волна с частотой 100 МГц, после модуляции каждого цикла обретает ширину в те же 100 МГц! И вот такой она передается через радиоэфир.
   Однако в метровом диапазоне нет свободных ста мегагерц. Что делать?
   В патенте предлагается следующее. Мощность сигналов в боковых полосах зависит от степени модуляции. Она максимальна при глушении циклов до нуля и уменьшается при уменьшении разницы между модулированным и немодулированным циклом. Бобье и Надим Хан предлагают подавлять циклы совсем чуть-чуть, чтобы сигналы на боковых полосах оказались слабее атмосферного шума. Например, если взять несущую с частотой 30 МГц и модулировать ее циклы только на 5%, то боковые полосы окажутся в тысячу (и более) раз слабее несущей. О таких слабых сигналах можно забыть — они как бы исчезнут, а по эфиру пойдет одна сверхузкая волна. Она будет услышана приемником, который должен превратить 5-процентную разницу между амплитудами циклов обратно в нули и единицы. Вот и вся суть изобретения.
   Конечно, удивительно, когда сигналы, слабые настолько, что их никак нельзя вычленить из шума, в действительности переносят информацию. Это кажется невозможным, но это так. Повторим еще раз: если приемнику xMax подать несущую волну, от которой отфильтровали все другие частоты (где и прячутся те самые сверхслабые боковые всплески), он не сможет декодировать данные, поскольку амплитуда несущей станет постоянной.
   Модуляция подавлением цикла (Suppressed Cycle Modulation) выглядит многообещающе. Она занимает крайне мало места в эфире, позволяет очень плотно сводить несколько несущих, быстра и экономична, применима к любым частотам и т. д. и т. п. Почитайте патент, там немало интересного. Слабое место тоже очевидно — сможет ли приемник реагировать на едва уловимую разницу в амплитуде циклов? Особенно в условиях городского эфира, забитого слабыми помехами на всех частотах. А если сможет (принимая сразу несколько несущих, с повторами, избыточностью и т. д.), насколько устойчиво он будет это делать? Вероятно, именно на это должны ответить полевые испытания.
   Сейчас же можно лишь удивляться, почему на xGTechnologу.com до сих пор не удосужились выложить нормальное описание своей разработки. Оно ведь не только неполное, но и прямо ошибочное. Вот цитата с сайта: «xMax не нарушает теорему Шеннона-Хартли, поскольку узкополосный сигнал не несет полезных данных и используется только для координации приема широкополосного сигнала». Это же неверно. Узкополосным сигналом здесь названа именно слабомодулированная несущая, и она, конечно же, несет информацию. Хотя бы потому, что, сравнивая амплитуду только ее циклов, xMax-приемник получает передаваемый поток нулей и единиц.
   В заключение, чтобы напомнить читателям, о каком многообещающем проекте идет речь, приведем некоторые детали, сообщенные Бобье и руководством xG Technology в разное время и по разным поводам:
   Первая сеть xMax будет работать в пригороде Майами в нелицензируемом диапазоне 900 МГц. Именно на этих частотах работают телефонные радиотрубки с радиусом действия пару сотен метров. Скорость в новой сети должна достичь 40 Мбит/с. Единственная базовая станция будет иметь ненаправленную антенну и при мощности всего 1 Вт покрывать круг поперечником 48 км.