***
 
   Для тех, кто так и не привык постоянно пользоваться беспроводной гарнитурой и устал то и дело лазить в карман за трезвонящим сотовым, Sony Ericsson выпустила интересную альтернативу. Наручные Bluetooth-ходики MBW-100, созданные совместно с часовщиками из Fossil, работают как дистанционный пульт управления телефоном. Часы умеют отображать на OLED-дисплее (размещенном под аналоговым циферблатом) информацию о входящих вызовах и SMS, позволяют принять или отклонить звонок, а также управлять воспроизведением музыки. НЯ
***
 
   На Титане снова открыли озера. На сей раз о находке сообщило Европейское космическое агентство после недавнего, семнадцатого по счету сближения зонда «Кассини» со спутником Сатурна. Радар аппарата нащупал возле северного полюса несколько образований протяженностью от 10 до 100 км, которые, по предположению ученых, содержат смесь сжиженных метана и этана. Есть, правда, и другое мнение, согласно которому темные пятна на полученных изображениях — это скопление мелких частиц различных углеводородов, по консистенции напоминающих сажу. Астрономы считают, что озера (если они действительно существуют) на Титане не постоянны, их появление связано с конденсацией метана и этана возле одного из полюсов в зимний период. В это же время могут идти дожди и течь реки. Один из таких сезонов в северном полушарии и застал «Кассини». АБ
***
 
   Если бы в блоггерском мире существовала премия, присуждаемая за вознесение жанра сетевого дневника на недосягаемую высоту, его стоило бы вручить первой космической туристке Аньюше Ансари (Anousheh Ansari). Именно ей довелось стать первым в истории «космо-блоггером»: доселе интернет-активность обитателей орбиты сводилась лишь к отсылке электронных писем. Самым незабываемым впечатлением от полета счастливица назвала момент, когда она впервые посмотрела на Землю из иллюминаторов Международной космической станции. «Это была она, прекрасная планета, вращающаяся вокруг своей оси и греющаяся в теплых солнечных лучах, мирная и полная жизни, лишенная всяких границ и признаков войн, проблем, нищеты…» Впрочем, помимо восторгов от первого в жизни космического полета, в своем орбитальном дневнике (spaceblog.xprize.org) Аньюша честно делилась с читателями (большинство которых составили жители США и Ирана — сограждане и соплеменники туристки) трудностями обитания на орбите, не обходя и таких щепетильных тем, как поддержание личной гигиены в условиях невесомости. Читая эти строчки, поневоле становится жаль, что «эпоха блогов» на четыре десятка лет моложе космической эры. Только представьте, как замечательно было бы почитать о подробностях самого первого полета в искрометном гагаринском блоге «Поехали!»… ДК

Естественно, Америка

   Авторы: Дмитрий Шабанов, Алексей Левин
   Выбор лауреатов Нобелевских премий 2006 года по естественным наукам политкорректностью не отличается. Все пятеро призеров — не только граждане, но и уроженцы США [Кстати, точно такая же история случилась в 1946 и 1976 годах. Поневоле начнешь верить в нумерологию], так что на отток лучших умов в Штаты этот казус не спишешь. Однако дело вовсе не в проамериканских настроениях шведских научных рефери. Все премии этого года присуждены за действительно фундаментальные, основополагающие исследования стопроцентно нобелевского уровня. Краткое описание отмеченных работ по дисциплинам мы решили построить в том же порядке, в каком они были объявлены Нобелевским комитетом 2—4 октября.
Большая премия за малые РНК
   «КТ» не раз сетовала на то, что Нобелевские премии, как правило, вручают состарившимся ученым за открытия, которые давным-давно обосновались в соответствующих учебниках. В этом году Нобелевский комитет поломал эту прискорбную традицию, вручая премию по физиологии и медицине. Около 1,4 млн. долларов поделят молекулярные биологи Эндрю Файер (Andrew Fire) и Крейг Меллоу (Craig Mello), которым нет еще и пятидесяти. Награду они получили за достаточно свежую работу — статью, опубликованную в журнале Nature в 1998 году. У той статьи было шесть авторов, но Файер — первый из них, а Меллоу — последний. Премия присуждена за открытие РНК-интерференции, блокирования работы генов в результате действия малых двухцепочечных молекул РНК — siRNA (small interfering RiboNucleic Acids). Это открытие имеет как важнейшее теоретическое значение, так и впечатляющие практические перспективы. Обсудим открытый феномен подробнее.
   Раскрыв учебники, вы узнаете, что РНК играет вспомогательную роль в хранении и передаче генетической информации. Основной информационный поток в клетке идет в направлении от ДНК через РНК к белку. ДНК — устойчивый двухцепочечный носитель информации, а РНК — ее одноцепочечный переносчик. Другие молекулы РНК выступают в роли подносчиков аминокислот или входят вместе с белками в состав рибосом. Передача информации от РНК к ДНК открыта довольно давно, но она казалась какой-то патологией, характеризующей почти исключительно РНК-несущие вирусы (такие, например, как ВИЧ). Данные, свидетельствующие в пользу широкого распространения передачи от РНК к ДНК, известны гораздо меньше, как и факт существования рибозимов — молекул РНК, обладающих каталитической активностью. В любом случае, РНК часто воспринимается как подсобный класс молекул, обслуживающих два «столпа» жизни — ДНК и белки. Основное внимание в исследованиях уделялось достаточно крупным молекулам РНК (так, информационная РНК может состоять из 100 тысяч нуклеотидов), а мелкие молекулы РНК воспринимались как малосущественные осколки больших молекул.
 
 
 
 
   С началом экспериментов по генной инженерии стали накапливаться странные факты. Предположим, желая усилить работу какого-то гена в клетке растения, вы вводите в нее еще одну копию этого гена. Парадоксальным образом это может приводить к противоположному результату: и новый ген не встроится, и старый перестанет работать! Со временем выяснилось, что в таких клетках увеличивается число малых РНК, казавшихся обломками нужного гена. На этом этапе развития науки нынешние нобелевские лауреаты сделали следующее: поняли, что «выключателем» гена является именно малая РНК, и для описания этого феномена ввели понятие РНК-интерференции; исследовали этот процесс у круглого червя Caenorhabditis elegans и, наконец, обнаружили, что наиболее активными являются необычные двухцепочечные молекулы РНК.
   Прошло восемь лет. Стало ясно, что siRNA являются мощным защитным средством, охраняющим клетки от вирусов и потенциально опасных элементов собственного генома (мобильных генетических элементов). В ответ на попадание в клетку чужеродного гена его фрагмент каким-то (пока неизвестным) способом преобразуется в siRNA, двухцепочечную молекулу из 21—28 нуклеотидов на цепочку. Эта молекула связывается с какими-то белками, расщепляется на отдельные цепочки, соединяется с соответствующими последовательностями в своих или чужих генах и опять-таки с помощью белков блокирует их работу. Итак, описываемые молекулы являются ключевым звеном сложной (и по большей части еще не изученной) системы управления генной активностью! Разные организмы отличаются по эффективности работы этой системы — для растений или, к примеру, круглых червей, с которыми работали лауреаты, она важнее, чем для млекопитающих, использующих и иные формы иммунной защиты. В общем, еще разбираться и разбираться… Возвращаясь к роли РНК в клетке, можно сказать, что исследования последних лет показывают — этот класс молекул является не вспомогательным, а центральным, интегрирующим основные клеточные процессы.
   Применять найденный феномен можно до того, как будет понят его механизм. Сегодня siRNA стали распространенным инструментом для изучения функции генов. Когда речь идет о системе такой сложности, как клетка, наш главный методический подход прост — сломать какую-нибудь детальку и посмотреть, в каком месте засбоит. Останавливаем нормальную работу гена и смотрим, где что поменялось… Ага, вот на эти-то функции ген и влиял… Для такой работы лучшего инструмента, чем siRNA, пока не найдено. Вызывает интерес возможность использования генной интерференции и для борьбы с вирусами. Рабочих технологий блокирования вирусных инфекций введением в клетки соответствующей siRNA пока не создано, но идея кажется перспективной.
   Задумавшись о сути научных премий, мы можем заключить, что их предназначение — не просто награждение достойных. Премия должна стимулировать интерес к важным областям исследования. Кажется, нынешняя физиолого-медицинская премия выполняет это предназначение. ДШ
Холод Большого Взрыва
   Премию по физике получили ученые, сыгравшие главную роль в подготовке запуска научного спутника COBE и в интерпретации результатов работы его аппаратуры. Это один из ведущих специалистов Центра космических полетов NASA имени Годдарда Джон Мазер (John C. Mather) и профессор Калифорнийского Университета в Беркли Джордж Смут (George F. Smoot).
   Запущенный в 1989 году COBE (Cosmic Background Explorer) — первый американский спутник, специально предназначенный для космологических исследований. Один из трех его инструментов измерял интенсивность потоков инфракрасных фотонов, а остальные занимались спектральным анализом микроволновой радиации. Мазер и Смут возглавляли группы ученых, работавших с этими аппаратами.
   Космическое фоновое микроволновое излучение возникло через 380 тысяч лет после Большого Взрыва, который дал начало нашей Вселенной (поэтому его еще называют реликтовым излучением). В момент рождения его температура составляла 3—4 тысячи градусов Кельвина, но за 13 с лишним миллиардов лет оно успело остыть примерно в тысячу раз. Из так называемой горячей модели рождения Вселенной вытекает, что спектр нынешнего реликтового излучения должен почти точно совпадать со спектром абсолютно черного тела с температурой около 2,7 градуса Кельвина.
   Почти — но не совсем. Спектр чернотельного излучения совершенно гладкий, а вот спектру микроволной радиации полагается немного «рябить». Иначе говоря, температура излучения, приходящего с разных участков небосвода, должна иметь очень слабые флуктуации. Еще до запуска спутника COBE теоретики космологии пришли к выводу, что амплитуда этих флуктуаций не превышает одной стотысячной доли градуса. Согласно теории, эти вариации возникают из-за пространственных неоднородностей в распределении материи, рожденной Большим Взрывом, которые сделали возможным рождение галактик и галактических скоплений.
   Реликтовое излучение было обнаружено в 1964 году. С тех пор его тщательно изучали как с земли, так и со стратостатов и геофизических ракет. В 80-е годы несколько групп астрофизиков объявили, что спектр реликтового излучения отличается от чернотельного сильнее, нежели позволяет уже почти общепринятая к тому времени модель Большого Взрыва. Хотя эти утверждения имели под собой не слишком прочное основание, они все же вызывали сомнения в правильности модели. Требовался решающий эксперимент, который должен был или снять все возражения, или подтвердить их. Однако его можно было выполнить только в космосе, поскольку земная атмосфера непрозрачна для многих участков реликтового спектра.
 
 
 
 
   Таким экспериментом и стал запуск COBE. Спутник проработал в космосе четыре года, но основные результаты дал гораздо раньше. Его приборы убедительно подтвердили, что спектр реликтового излучения строго соответствует требованиям модели горячего рождения Вселенной. Была точно измерена его температура (2,726 °К) и обнаружены ее флуктуации (так называемая анизотропия излучения), причем с амплитудой порядка одной стотысячной доли градуса, как того и требовала теория. Это окончательно убедило ученых, что у концепции Большого Взрыва нет серьезных конкурентов. Признанный авторитет в космологии Стивен Хокинг в интервью газете «Таймс» назвал полученные результаты величайшим научным открытием двадцатого столетия. АЛ
Яблочко от яблони
   Нобелевская премия по химии досталась на сей раз одному человеку — профессору структурной биологии Стэнфордского университета Роджеру Корнбергу (Roger D. Kornberg). Кстати, это тот самый случай [В Нобелевской летописи не столь уж редкий. С 1901 года было зафиксировано шесть «дуплетов» отец-сын], когда известная пословица о том, что «на детях талантов природа отдыхает», неправа. Отец Роджера Артур Корнберг получил премию по медицине и физиологии в 1959 году. В его честь назван фермент, синтезирующий ДНК по ДНКовой матрице — ДНК-полимераза I, она же полимераза Корнберга.
   Любопытно и то, что химическая награда 2006 года оказалась тесно связана с медицинской. Первый этап процесса внутриклеточного биосинтеза белков — перезапись генетической информации с ДНК на РНК. В этом процессе, который называется транскрипцией, участвует фермент РНК-полимераза, молекула которого состоит из тридцати тысяч атомов. Если Корнберг-отец работал с ДНК-полимеразой, то Корнберг-сын выбрал РНК-полимеразу. Роберт Корнберг получил премию за фундаментальные исследования, которые привели к гораздо лучшему пониманию механизмов работы этого энзима на молекулярном уровне.
   Основные принципы действия РНК-полимеразы были известны и раньше. Этот фермент сначала распознает тот участок ДНК, откуда следует начинать транскрипцию (его называют промотором), вступает с ним во взаимодействие, расплетает двойную спираль ДНК и использует одну из ее нитей как матрицу для строительства РНК. По мере движения участка полимеразы удлиняющаяся цепь РНК отходит в сторону от ДНКовой матрицы, и ДНК восстанавливает свою двухцепочечную структуру.
   Это общая схема, но в ее реальном воплощении есть множество нюансов. Как известно, по строению клеток организмы делятся на доядерные (прокариоты) и ядерные (эукариоты), к последним относятся высшие организмы. Как ни парадоксально, мы значительно лучше знаем устройство клеток прокариот (например, знаменитой кишечной палочки — главного объекта молекулярной биологии), нежели устройство клеток животных, растений или грибов. Корнберг-отец работал с кишечной палочкой, а Корнберг-сын — с дрожжами (одноклеточными грибами). Вместе с членами своей группы младший Корнберг разработал элегантную технику экспериментов с эукариотическими дрожжевыми клетками, которая дала много новой информации о процессе транскрипции. Фактически ему удалось полностью описать работу РНК-полимеразы дрожжей на молекулярном уровне, что и принесло Роджеру Корнбергу Нобелевскую премию. АЛ ДШ

Intel приблизил сказку к реальности: Intel Developer Forum Fall 2006, Сан-Франциско

   Автор: Сергей Озеров
   Подобно большинству серьезных высокотехнологичных компаний, Intel соблюдает строгий режим секретности — даже о ее известных разработках вплоть до последней минуты, когда происходит анонс, нельзя что-либо утверждать с полной уверенностью. А уж перспективные — просто тонут в глубоком тумане, так что Интернет время от времени будоражат слухи-размышления о том, например, что Intel нанимает людей с опытом работы над графическими чипами и что, наверное, «это ж-ж-ж-ж неспроста». Завеса тайны приподнимается лишь дважды в год, когда в Сан-Франциско открывает свои двери Форум для разработчиков.
 
   В этом году Intel, кажется, решила превзойти саму себя, еще до открытия Форума, на специальном R&D-брифинге ошарашив журналистов рассказом о совершенно фантастических разработках. Ну когда еще услышишь рассказ о программируемой материи, по твоему желанию принимающей любую, сколь угодно сложную форму и изменяющую некоторые свои свойства — для начала хотя бы цвет. Помните робота T1000 из «Терминатора-2»? Вот ровно такую штуку нам и обещают, — естественно, для куда более мирных целей, которых можно придумать множество. Долой пресс-формы для пластика и трехмерные принтеры! Даешь переворот в проектировании физических объектов и технику, которая принимает удобную форму, — скажем, мышь, подлаживающаяся к ладони человека, или мобильник, который «растекается» в кармане рубашки и собирается обратно в элегантную трубку, когда берешь его в руки. Кто-то уже успел выложить CG-ролик с презентации Intel на YouTube2 — и впечатление он производит действительно сильное. Особенно когда тебе не просто рассказывают об общей концепции, а еще и показывают какие-то прототипы и простенькие модели. На этом фоне даже блекнут такие разработки, как экспериментальный 80-ядерный процессор с расчетной пиковой производительностью порядка 1 Тфлопс; работающий прототип интегрированного в стандартный кремниевый кристалл лазера, открывающего прямую дорогу к первым оптическим процессорам, в которых используется не электрический ток, а инфракрасный свет; и очень интересные концептуальные разработки радикально новых систем контроля за действиями людей, предназначенные для нужд здравоохранения. Так сказать, даешь технологии XXII века в массы!
   Сам брифинг, правда, из-за желания показать как можно больше «наворотов» и одновременно совместить это с массой лирических отступлений на тему «почему R&D так важно для Intel» или «как хорошо мы дружим с British Telecom», получился довольно сумбурным, но на протяжении четырех последующих дней обо всем этом подробно рассказали в докладах сами разработчики, а не руководители исследовательских лабораторий.
   Естественно, с практической реализацией дела обстоят куда хуже, чем на бумаге, и добрая половина из того, о чем гордо рассказывали в конференц-зале отеля «Мариотт», пестреет дырами, закрыть которые может только какой-нибудь гениальный прорыв, говорить о сроках которого, конечно, невозможно. Так что есть в этом всем элемент показухи — Intel так хотелось уложить всех наповал, что в ход пошли все, даже самые сырые наработки. Хотя приятно уже то, что несмотря на колоссальную сложность поставленных задач и непредсказуемую, как и от всяких фундаментальных исследований, отдачу, работа над ними все-таки идет. Как говорится, глаза боятся, а руки делают, — и это единственно правильный подход к прогрессу.
Клэйтроника
   Нельзя сказать, чтобы Intel изобрела здесь что-то новое, — в Штатах даже зарегистрирована корпорация The Programmable Matter, не говоря уже о десятках фирмешек и исследовательских групп, пытающихся найти ключ к давней мечте человечества, хорошо знакомой соотечественникам по сказке о Емеле и щучьем велении. Ну а как еще называть статью в Nature, где так красочно расписывается столь тотальное распространение нанороботов в 2100 году, что дома больше не строят, а сбрасывают грузовик «программки» — а дальше сам собой вырастает хошь коттедж, хошь электростанция, хошь завод? Тем не менее Intel — первая компания на моей памяти, которая публично демонстрирует прототипы элементарных «кирпичиков» программируемой материи. Правда, поскольку Programmable Matter — ныне торговый знак, то называется это другими словами, в основном «клэйтроникой» (clay по-английски — глина).
 
   Собственно, идея, лежащая в основе всей концепции, — это то, что можно создать контролируемую материю, используя специальные искусственные «атомы» — крошечные наноавтоматы, способные целенаправленно взаимодействовать друг с другом. «Клатомы» соответственно должны каким-то образом уметь произвольно прицепляться и отсоединяться, перемещать себя друг относительно друга и — что тоже немаловажно — обмениваться информацией о том, что им необходимо сделать. На IDF специалисты Карнеги-Меллона показывали с десяток разных опытных моделей «клатомов», выполненных в макроскопическом масштабе, на которых идет отработка первых идей, — правда, пока не для объема, а для плоскости. Модельки, оснащенные электромагнитами (которые служат и для соединения, и для перемещения клатомов), действительно ползали по столу и неким образом взаимодействовали — хотя, увы, лишь в очень примитивных вариантах и не больше двух-трех клатомов за раз. Впрочем, в наш компьютерный век большого числа железок и не требуется, — на демонстрации был показан ролик, иллюстрирующий поведение большой системы, на которой отрабатывается технология управления миллионами и миллионами клатомов. Дело ведь не только в том, чтобы создать отдельные элементы и миниатюризировать их — нужно еще заставить их по сигналу извне совершать осмысленные действия в условиях, когда даже координаты отдельных клатомов будут внешней системе толком неизвестны. Выход пока видят в разработке принципиально новых управляющих систем, которые будут работать по псевдослучайному принципу, создавая своеобразный «тепловой шум», когда в массиве атомов случайным образом перемещаются незаполненные «дырки» и как-то этот шум на границе нужным образом корректируя — в демонстрации, например, клатомы из бесформенных «озер» образовали нечеткое и колеблющееся, но тем не менее отчетливо читающееся слово «intel».
   Показали и первые миниатюрные (доли миллиметра) сэмплы клатомов, произведенных с помощью более или менее стандартного литографического процесса. Проблему создания нанороботов сложной структуры в Карнеги остроумно предлагают решать, «вытравливая» традиционными методами плоский рисунок — своеобразную «развертку» робота, а затем «склеивая» его особыми способами в объемный объект. Выглядит довольно любопытно, но без микроскопа в том, что получилось и демонстрировалось в небольшом контейнере, конечно, не разберешься.
   Тем не менее рассчитывать на появление в обозримом будущем хоть каких-то работающих прототипов, несмотря на все вышесказанное и на оптимизм моих коллег, вспоминающих, какой путь прошли за пятьдесят лет жесткие диски персональных компьютеров, я бы не стал. Например, те же модельки с электромагнитами непрерывно потребляют довольно много электроэнергии, рассеивая ее в виде тепла, — представляете стену дома, которая греется как электрочайник и рассыпается пылью при отключении электричества? Специалисты пытаются решить эту проблему, используя не электромагнитные («динамические»), а электростатические силы притяжения, но как они собираются ими управлять, на лету перераспределяя по пылинке клатома заряды, для меня осталось загадкой. Электромагнитному варианту могли бы здорово помочь высокотемпературные сверхпроводники, которые бы сняли проблему энергозатрат, но их создание, очевидно, относится к вполне сопоставимым по масштабам сверхзадачам человечества. Даже чисто механически непонятно, удастся ли обеспечить движение не пары атомов друг относительно друга, а «дырки» в большом массиве, на который действуют внешние силы. Да и программирование клатомов для 3D и в реальном масштабе времени, несмотря на все демонстрации, — тоже нерешенная проблема. Потребуется совершенно новый подход к программированию сверхбольших систем, а исследователи здесь лишь в самом начале пути.
   Куда реалистичнее звучат рассказы о других реализациях объявленной Intel общей концепции «управления физической материей». Например, антенны для систем подвижной связи, самостоятельно изменяющие размеры и положение в пространстве для оптимального приема сигнала. Примеров соответствующей реализации, правда, на Форуме показано не было, но в принципе чисто технически это реализуемо. Будет ли «изменяемая геометрия» востребована практикой или, как в авиации, уступит место более простым решениям — увидим.
Терапроцессоры
   Если клэйтроника на Форуме все-таки проходила под грифом экзотической диковинки, то о терапроцессорах, позволяющих на старой технологии за счет радикально новых идей получить на один-два порядка большую производительность, нежели у традиционных «многоядерников», говорили более чем серьезно — эта тема составляла содержание не только презентаций, но и технических сессий для профессионалов. Впрочем, главная идея здесь тоже далеко не нова и даже вполне процветает в коммерчески выпускаемом «железе», начиная с Cell и заканчивая специализированными сопроцессорами от ClearSpeed. Ее суть в том, чтобы заменить одно сложное ядро (на котором вычислительные блоки нередко занимают менее 10% площади кристалла, а остальное уходит на то, чтобы вовремя подготовить для этих 10% данные и инструкции) набором из, скажем, пяти более простых, в каждом из которых вычислительные блоки займут половину площади ядра. Естественно, загрузка этих блоков из-за простоты обслуживающей их электроники будет невысока, а потому их быстродействие — заметно ниже, но потенциальный выигрыш за счет пятикратного увеличения числа вычислительных ресурсов перекроет все. Побочные эффекты — увеличение тактовой частоты (за счет упрощения) и снижение тепловыделения (за счет него же) — тоже играют на руку подобному подходу. И все было бы замечательно… если б не необходимость заставлять работать эти десятки процессорных ядер «в одной упряжке». Даже оставляя в стороне вопросы программирования параллельного ПО для десятков специализированных ядер, необходимо с достаточной скоростью читать и записывать обрабатываемую ими информацию и передавать ее на другие устройства — в противном случае наш терапроцессор будет большую часть времени ожидать новую порцию данных, и все его быстродействие сойдет на нет.
 
   То, что предлагает Intel, как ни крути, сильно напоминает Cell, только с гораздо большим количеством ядер: если в детище IBM и Sony их всего девять, то в экспериментальном кристалле Intel — добрых восемьдесят (матрица 8x10). И там и там ядра максимально упрощены и функционируют на частоте 3—4 ГГц; и там и там, чтобы снять проблему недостаточной пропускной способности, каждому ядру выделяется кусочек локальной памяти, с которым оно может работать без оглядки на всех остальных; и там и там используется сложнейшая система связи, связывающая отдельные ядра в многомерную сетку, в которой передаются данные. Разница только в реализации: если IBM и Sony используют сравнительно традиционные технологии, то Intel — принципиально новые. Например, в Cell локальная память реализована как упрощенный аналог кэш-памяти первого уровня и является частью кристалла процессора. В терапроцессоре же используется технология трехмерной упаковки оперативной памяти — на подложке строится «сэндвич» из кристаллов оперативной памяти и лежащего над ними кристалла процессора, что позволяет разместить на той же площади куда больше и ядер, и подключенной к ним памяти. В ядрах Cell нет кэш-памяти и тем более — когерентной (хранящей общие для всех ядер данные), в терапроцессоре — есть. В качестве внешнего интерфейса для Cell используется «электронная» технология, для терапроцессора планируется оптический канал на порядок большей пропускной способности и т. д.