Б. К. Леонтьев
GPS: Все, что Вы хотели знать, но боялись спросить

   Автор этой книги не несет ответственности за использование материалов, которые опубликованы в этом издании. Вся информация дана исключительно в образовательных целях. Ни при каких условиях ответственность за какие-либо последствия от использования этой книги в практических целях не может возлагаться на автора.

Вместо введения

   Вот так каждый раз: начинаешь писать книгу и надолго задумываешься, как же ее начать, чтобы читатель, по крайней мере, не сразу стал искать выводы и итоги. Какие-то находки на эту тему либо очень быстро кем то повторяются и становятся избитыми, либо оказывается, что это уже и не ново, и кто-то это уже использовал, а вредному читателю только попробуй, повтори по шаблону, не прочитает и половины, да еще и обзовет как-нибудь в письменном виде…
   Но, с другой стороны, не в писательском же мастерстве мы тут упражняемся, задача совсем другая стоит. А значит, попросим на время любителей стиля, русского языка и голых фактов быть немного снисходительнее и не ругаться, а заботливо отправлять поправки автору в почту. А вот теперь, вроде бы, можно и начинать…
   Находчивый калифорниец закрепил на автомобиле своей бывшей девушки GPS-систему, а затем в течение 6 месяцев следил за ней и угрожал ей смертью. Благодаря этому устройству он мог неожиданно появляться везде, где бы не была его «бывшая», чем сильно пугал ее. Закрепив GPSмобильный телефон с детектором движения на ее автомобиле он ежеминутно получал спутниковый сигнал о месте ее нахождения. Преступник был пойман в момент замен батареи на телефоне, а полиция восхитилась «продвинутостью» нарушителя спокойствия.

Часть 1.
GPS для начинающих и не только

Глава 1.
Глобальная система местоопределения

   Когда негодяй Негоро подкладывал под судовой компас «Пилигрима» железный брусок, он точно знал, что сложность навигационных расчетов не по плечу хоть и смышленому, но еще очень молодому пятнадцатилетнему юноше. Шутка ли, управиться с секстантом, ведь и в наше время его использование требует больших знаний и навыков.
   Цифровой век высоких технологий революционизировал методы решения навигационных задач. Сегодня две дюжины небольших спутников окутывают всю Землю навигационными сигналами, а портативный приемоиндикатор, представляющий собой, по сути, небольшой специализированный компьютер, вычисляет по этим сигналам координаты местоположения с точностью до 10-30 метров. Навигация при этом облегчается настолько, что создается впечатление самодостаточности этой чудо-коробочки, GPS-приемника. Среди профессиональных «навигаторов» — моряков, летчиков и путешественников — уже вырастает целое поколение специалистов, не умеющих работать с классическими навигационными приборами.
   Ничто не останавливает победного шествия GPS. Приемники стремительно уменьшаются в размерах: прибор со спичечный коробок уже можно купить всего за 150 долларов; навигационные чипы встраиваются в часы и мобильные телефоны, становятся составной частью автомобильных сигнализаций. А компания Applied Solution в следующем году намерена наладить серийное производство чипов, предназначенных для имплантации в тело человека. Приемники GPS находят применение при решении самых разнообразных задач: геологи в реальном времени следят за малозаметным перемещением участков земной коры, зоологи делают ошейники с портативными примоиндикаторами и радиопередатчиками для изучения миграции животных, военные строят самонаводящиеся ракеты и бомбы, а экспедиция Национального географического общества США в прошлом году с сантиметровой точностью измерила высоту Эвереста.
   GPS — глобальная система местоопределения (часто ошибочно называется Глобальной системой позиционирования). Состоит из низкоорбитальных 24-х спутников, передающих сигналы на частоте более 1 ГГц и пользовательских приемников, определяющих по этим сигналам свои координаты. Для работы GPS приемника необходима прямая видимость небосвода (сигнал GPS спутников экранируется металлом, некоторыми пластиками, бетоном).
Навигация
   По радиосигналам спутников GPS-приемники пользователей устойчиво и точно определяют текущие координаты местоположения. Погрешности не превышают десятков метров. Этого вполне достаточно для решения задач НАВИГАЦИИ подвижных объектов (самолеты, корабли, космические аппараты, автомобили и т.д.).
Землемерие
   Новое понятие «Система местоопределения» — является существенно более общим, чем «навигационная система». Оно охватывает и чрезвычайно важные для человечества проблемы и задачи ЗЕМЛЕМЕРИЯ (геодезия, картография, планиметрия, геофизика, строительство уникальных промышленных сооружений и дорог и т.д.). Для этих целей погрешности местоопределения не должны превышать долей метра и даже долей сантиметра. Специальные приемники и методы обработки сигналов обеспечивают эту точность.
Микроэлектроника
   Если ракеты и спутники — это механическая основа системы, ее кости и мышцы, то радиотехнические и вычислительные микроэлектронные устройства — это ее мозг и нервы. Вместе с теоретическими методами это информационная основа системы, без которой ее существование невозможно. Плата приемника содержит: высокочастотный приемный тракт, устройства сложной математической обработки принятых из космоса сигналов, первоклассный компьютер с большим быстродействием и значительной памятью, микроэлектронные схемы его сопряжения с внешними устройствами и другие сложные элементы. Сама плата имеет шесть слоев печатного монтажа и обеспечивает одновременный прием и обработку сигналов до восьми спутников. Управляют этим ансамблем уникальные математические алгоритмы, реализованные в виде машинных программ. Не будет преувеличением сказать, что GPS — дитя микроэлектроники и вычислительной техники. Что в каждом из своих проявлений GPS — одновременно и продукт и средство современных высоких технологий.
Новая «общественная потребность»
   До 1991 года существовали практические ограничения на применение GPS из-за отсутствия в России разработок этой техники гражданского применения. Сейчас же спутниковое местоопределение становится для нас новой «общественной потребностью», такой же необходимой и доступной, какой давно стала телефонная связь.
   Более 300 млн. человек в мире пользуются системой GPS, с помощью которой путешественник может определять свои координаты, а пилот посадить самолет в зоне с нулевой видимостью. В ближайшее десятилетие возможности глобальной системы позиционирования значительно расширятся.
   Возможности системы глобального позиционирования в ближайшие 10 лет станут намного шире. Пользователь сможет определять свои координаты с точностью до метра. Возможности системы GPS будут расширяться за счет модернизации, подразумевающей: введение дополнительных каналов сигнала на спутнике, увеличение мощности сигнала и усовершенствование системы его коррекции, использование направленных антенн, а также интеграцию с телевизионными и телефонными сотовыми сетями.
   Ее новыми возможностями в первую очередь смогут воспользоваться военные, для которых она и создавалась. Самолеты военно-морских сил США смогут приземляться на палубу авианосца в полной темноте. Система сможет отслеживать местонахождение воздушных судов на всем протяжении полета. В ближайшее время GPS поможет контролировать движение автомобильного транспорта, обеспечивая безопасность дорожного движения, усовершенствованная система сможет быть применена в электроэнергетике, в телекоммуникациях, при добыче полезных ископаемых, картографии и даже в сельском хозяйстве. Кроме того, любой путешественник сможет воспользоваться GPS на всей территории земного шара.
Небо ограничивает
   Создание глобальной системы позиционирования началось в США в 1978 г. с запуска первого спутника Navstar. В то время министерство обороны решило помочь 40 тыс. американским военнослужащим научиться определять свои координаты на земле, в воде и воздухе. Лишь в 80-х гг. картографы и геофизики получили доступ к сигналам спутников, а гражданские лица стали пользоваться системой с начала 90-х гг., когда на орбите находились 24 спутника системы GPS. Сегодня около 30 млн. человек используют GPS-навигацию, благодаря которой капитаны судов, водители автомобилей и любители приключений определяют свои координаты. В магазинах каждый месяц продается около 200 тыс. приемников. В 2003 г. по всему миру их продано на $3,5 млрд., и, по прогнозам маркетинговой фирмы Frost@Sallivan, с 2010 г. ежегодные показатели могут вырасти до $10 млрд. (Цифры не включают доходы от предприятий, работающих в отрасли.) Более 50% оборудования приобретают частные лица, 40% — коммерческие структуры, и лишь 8% — военные.
   Америка не одинока, разворачивая космические навигационные системы. В период «холодной войны» Россия разместила на космической орбите спутники Glonass. В ближайшее время эта отрасль будет стремительно развиваться и GPS-приемниками будут оборудованы как легковые автомобили, так и мобильные телефоны. Вскоре стартует европейский проект Galileo, который может произвести передел рынка спутниковой навигации.
   Приобретя GPS-приемник стоимостью в $100, человек может рассчитывать на отклонение в 5-10 м. Армейские приборы позволяют определять местонахождение с точностью до 5 м. Если же GPS-приемник получает сигнал от наземной станции и проводит соответствующую коррекцию данных, его точность возрастает до 0,5 м.
Информационный дождь из космоса
   Чтобы понять, что нас ждет в будущем, давайте разберемся, чем мы располагаем сегодня. Спутники передают сигналы двух видов. Один из них несет информацию о местонахождении спутника и времени передачи сигнала. Он принимается стационарными наземными станциями, обрабатывается и отправляется на спутник, который передает его всем пользователям системы. Второй сигнал — код, необходимый для определения времени передачи сигнала. Создатели системы называют его псевдослучайным шумом.
   Чтобы преодолеть расстояние в 20 тыс. км, сигналу требуется время. Если пользователь сможет с помощью своего приемника, в который заложен код, определить время его отправления, то несложно будет зафиксировать время его прохождения и, умножив полученные данные на скорость распространения, рассчитать расстояние до спутника.
   Если в GPS-приемник установить часы, то, получив удаление от трех спутников, пользователь сможет определить широту, долготу и высоту своего местонахождения. Сигнал, идущий от спутников, напоминает три сферы, пересекающиеся в различное время в разных точках. Для пользователя, находящегося на Земле, существует только один момент их соприкосновения в данный промежуток времени. Для более слаженной синхронизации сигнала на спутниках установлены атомные часы, обеспечивающие точность хода до одной миллиардной. В большинстве GPS-приемников они могут отставать на одну или более секунд в день. Можно подсчитать, что ошибка всего в одну секунду изменит расстояние от спутника до пользователя на 300 тыс. км. Инженеры называют процесс измерения расстояния между спутником и пользователем псевдоизмерением. Дело в том, что погрешность присутствует и в сигналах от четырех спутников, в результате чего мы получаем четыре уравнения с четырьмя неизвестными.
   Современные GPS-приемники способны учитывать доплеровский эффект в случае, если измерения проводятся в движении. При перемещении приемника в сторону распространения волны ее длина становится больше, а при встречном ходе — меньше. Каждый спутник напоминает скоростной поезд. Если он движется на вас, то его гудок по мере приближения становится громче, а если удаляется, то сигнал теряет мощность. Учитывая данный эффект, можно получить скорость движения GPS-приемника. Такой метод измерения скорости очень точен.
   Таким образом, GPS-приемники определяют три координаты и три вектора скорости, а также производят синхронизацию времени через сеть. При этом сами приемники не передают сигналов в эфир. В скором времени GPS будут оборудованы сотовые телефоны, что приведет к подорожанию последних всего на $5.
Преодолевая ионосферу
   Спутники GPS-системы передают сигнал, обладающий классической синусоидальной формой, на обычной радиочастоте. Сейчас на микроволновой частоте передаются два сигнала — L-1, L-2. Канал L-1 доступен для всех. Считается, что он предназначен для гражданских пользователей, хотя и военные про него не забывают. Канал L-2 предназначен для военнослужащих. Гражданские пользователи принимают на свои GPS-приемники этот канал, но в силу того, что они не имеют доступа к PRN-коду, возникает ошибка в позиционировании. Только дорогие приемники позволяют гражданским пользователям работать в диапазоне L-2. Поэтому большинство из них принимает сигнал L-1, позволяющий точно определять координаты от 5 до 10 м.
   Сложности при приеме сигнала вызваны главным образом тем, что радиоволны на своем пути преодолевают ионосферу Земли, которая представляет собой плазменное облако, образованное Солнечным ветром. Ее границы простираются от 70 до 1300 км над поверхностью Земли, и при прохождении через ионосферу радиосигналы ослабляются и искажаются. В ночное время, когда ионосфера находится в состоянии покоя, задержка передачи сигнала составляет 1 м, а днем, когда активность плазмы высока, — более 10 м.
   Для того чтобы минимизировать влияние ионосферы, используют дифференцированный D-GPS. В такой схеме используются два приемника: один мобильный, а второй находится в точке с известными координатами. Данные, поступающие с этих GPS, сравниваются и обрабатываются, после чего происходит корректировка показаний мобильного приемника. Чем ближе они находятся, тем точнее определяются координаты.
Сильные и направленные сигналы
   Начиная с 2005 г. спутники будут передавать дополнительные сигналы, которые помогут исключить помехи от ионосферы. По два сигнала добавятся к военным L-1 и L-2 и один — к гражданскому L-1, а существующие ныне сигналы не претерпят каких-либо изменений. Следующий этап совершенствования системы начнется в 2008 г. Спутники будут передавать еще один гражданский сигнал L-5, который будет в 5 раз более мощным, чем сейчас. Сдвоенный сигнал позволит минимизировать влияние ионосферы. GPS-приемники будущего смогут сравнивать искажения двух сигналов, внося необходимые коррективы в расчеты.
   Операторы, использующие D-GPS-приемники, также окажутся в выигрыше. Напомним, что точность работы D-GPS-системы снижается по мере того, как увеличивается расстояние между фиксированным приемником и мобильным GPS. Это связано с тем что на приемники попадают сигналы от спутников, прошедшие через разные слои ионосферы. При работе с двумя сигналами мобильный GPS способен оценить влияние ионосферы, а данные от фиксированного приемника помогут свести к минимуму остальные погрешности, которые могут составлять от 30 до 50 см.
   Чтобы получить точность позиционирования в пределах сантиметров или даже миллиметров, пользователи могут воспользоваться D-GPS-приемниками. Их современные модели, имея связь со стационарной станцией по радиоканалу, передают сведения о своем местонахождении и получают откорректированные данные. Длина волны, на которой ведется передача сигнала со спутника, составляет 19 см. Приемник может измерить время получения сигнала с точностью до 1%. В абсолютном выражении эта величина составит несколько миллиметров.
   Для проведения более точных измерений приемник должен идентифицировать волну сигнала со спутника. Современные GPS сопоставляют сигналы от спутников по каналам L-1 и L-2. В системе GPS длины волн отличаются на 85 см, что позволяет проводить измерения с точностью до 8 мм. Надежность такой системы измерения в сотни раз больше, чем у систем, работающих с PRN-кодами. Их предел — 50 см. D-GPS приемники, работающие с одним каналом L-1, обеспечивают точность измерения до 19 см. Дорогие модели GPS имеют возможность повысить точность измерения посредством сопоставления частот сигналов, поступающих по каналам L-1 и L-2. С началом передачи дополнительных сигналов со спутников существенно возрастет точность и надежность работы GPS-приемников. Гражданские пользователи получат доступ к открытой части канала L-2 и новому каналу L-5. В будущем GPS смогут производить сравнение трех пар каналов (L-1 с L-2, L-2 с L-5, L-2 с L-5L).
Полеты с GPS
   Какие еще возможности откроются перед пользователями GPS? Федеральное управление гражданской авиации США разрабатывает новые правила полетов с использованием системы GPS. Многие самолеты уже оснащены подобными приемниками, но возможности их использования ограниченны. Новое оборудование позволит производить посадку при нулевой видимости. Однако для этого потребуется, что бы, во-первых, в любой ситуации пилот учитывал, что показания приборов не всегда соответствуют реальному местонахождению самолета, и в экстренных случаях вносил поправки в режим полета. (При посадке отклонение от заданной траектории не должно превышать 10 м.) Во-вторых, авиационные системы должны иметь очень высокую степень надежности.
   Представители Федерального управления гражданской авиации США предложили две системы, основанные на базе D-GPS-технологии. В наземную часть комплекса входят приемно-передающие антенны, связанные с центром управления. В 2003 г. появилась сеть наземных станций WAAS, которая позволяет в режиме реального времени корректировать координаты всех пользователей GPS. (Над подобными системами работают инженеры Европы, Китая, Японии, Индии, Австралии и Бразилии.) В случае ошибки WAAS в течение 7 секунд вносит коррекцию в D-GPS-пользователя. Благодаря этому при заходе на посадку пилот может вести самолет до высоты 100 м. В зоне аэропорта экипаж переходит на режим пилотирования с использованием наземного навигационного оборудования.
   Со временем навигационные комплексы LAAS, работающие в коротковолновом диапазоне, смогут обеспечить приземление при нулевой видимости с использованием канала L-5. Военно-морские силы США разрабатывают для авианосцев систему точного наведения и посадки самолета JPALS, в основе которой лежит принцип D-GPS-системы, работающей с каналами L-1 и L-2. При заходе на посадку и приземлении летчик морской авиации должен контролировать расстояние до палубы авианосца с точностью до 1 м, чтобы специальный крюк на корпусе самолета смог зацепить тормозной канат. Испытания системы JPALS начнутся в 2006 г.
   Ученые и инженеры уже трудятся над созданием GPS-системы третьего поколения. Запуск новых спутников произойдет не ранее 2012 г. За счет использования спутниковой связи и установки на них более мощных вычислительных комплексов существенно расширятся u1074 возможности системы.

Глава 2. Cистема позиционирования

   Очевидно, что любому человеку, сознательно или интуитивно, хочется знать, где он находится. В житейских случаях он задает свое местоположение относительно знакомых ему ориентиров. Например: «Я нахожусь по такому-то адресу». Или: «Я лечу где-то посередине между Жмеринкой и Парижем». Самой же универсальной формой задания местоположения, той, которой пользуются навигаторы и геодезисты, является использование какой-либо системы координат. Поэтому, прежде чем говорить о позиционировании, необходимо сказать о том, что такое координаты пункта в нашем понимании.
   Рассмотрим геоцентрические системы координат. Их начало совпадает с центром (или, точнее говоря, с центром масс) Земли. Глобальная система позиционирования использует прямоугольную (декартову) систему X, Y, Z и эллипсоидальную систему B, L, H. Поясним, о каком эллипсоиде идет речь. Общеземной эллипсоид является самой простой в математическом смысле моделью Земли. Эллипсоид подбирают так, чтобы его поверхность как можно ближе подходила к поверхности геоида. Геоид можно представить себе как поверхность, совпадающую с невозмущенной поверхностью мирового океана и мысленно продолженную под материками. В строгом определении геоид — это уровневая поверхность, содержащая точку, принятую за начало отсчета высот. В России таковой является нуль-пункт кронштадтского футштока. Опорными плоскостями в рассматриваемых системах координат являются плоскость экватора и плоскость начального (гринвичского) меридиана. От экватора отсчитывают геодезические широты B. От Гринвича отсчитывают геодезические долготы L. Геодезические высоты H отсчитывают от поверхности эллипсоида по нормали. К этому же эллипсоиду относится и прямоугольная система координат. С осью суточного вращения Земли совпадает малая ось эллипсоида и ось Z, проходящая через северный полюс. Ось X является линией пересечения плоскости экватора и плоскости гринвичского меридиана. Ось Y также лежит в плоскости экватора. Системы спутниковой радионавигации не исключение. Рассмотрим несколько основополагающих идей.
   А — местоопределение по расстоянию до спутников. Зная координаты навигационных спутников и умея измерять расстояние до них, определить координаты наблюдателя — дело техники. Например, если мы знаем, что от нас до навигационного спутника, скажем, 11 тыс. км, то это значит, что мы находимся где-то на воображаемой сфере радиусом в 11 тыс. км с центром, совпадающим с этим спутником. Если одновременно с этим расстояние до другого спутника составляет 12 тыс. км, то наше местоположение будет где-то на окружности, являющейся пересечением двух таких сфер. И, наконец, знание дальности до третьего спутника сократит количество возможных точек нашего местонахождения до двух, одна из которых будет находиться где-то далеко в космосе (и мы ее отбрасываем), а другая — на земле, рядом с нами.
   Б — измерение расстояния до спутника. Школьная истина гласит: «расстояние есть скорость, умноженная на время движения». Навигационный приемник так и работает. Он измеряет время, за которое радиосигнал доходит от спутника до нас, а затем по этому времени вычисляет расстояние. Главной трудностью при измерении времени прохождения радиосигнала является точное выделение момента его передачи со спутника. Для этого на спутнике и в приемнике в одно и то же время генерируется одна и та же кодовая последовательность. Теперь остается только сравнить время их рассогласования, умножить его на скорость распространения радиоволн, и, казалось бы, дело в шляпе. Однако если спутник и приемник имеют расхождение временных шкал только в одну сотую секунды, то ошибка измерения расстояния составит около 3 тыс. км!
   В — совершенная временная привязка. Чтобы избежать таких ошибок, на спутнике устанавливают атомные часы, точность которых составляет наносекунды, а стоимость — сотню тысяч долларов. Иметь такие же часы в приемнике — слишком дорогое удовольствие. Однако можно обойтись и простыми часами, если измерять дальность не до трех, а до четырех спутников. В этом случае четыре неточных измерения (с «расстроенными» часами) позволяют исключить относительное смещение шкалы времени приемника. И вот каким образом. Предположим, часы приемника несовершенны, не сверены с единым временем навигационной системы и отстают от него, например, на полсекунды. Если измерить время прохождения сигнала от четырех спутников и получить неистинные или псевдодальности до них, то окажется, что воображаемые сферы с радиусами, соответствующими этим псевдодальностям, не пересекаются в одной точке. Тогда для уточнения дальностей компьютер приемника прибавляет ко всем измерениям (или вычитает) некоторый один и тот же интервал времени до тех пор, пока не найдет решение, при котором все четыре воображаемые сферы пересекаются в одной точке.
   Г — определение положения спутника в космическом пространстве. Чтобы все вышеизложенное успешно выполнялось, необходимо точно знать местоположение каждого навигационного спутника. Для этого, во-первых, спутники запускают на высокие орбиты (около 20 тыс. км), где движение стабильно и прогнозируемо с большой точностью. А во-вторых, незначительные изменения в орбитах постоянно отслеживаются. При этом сведения о местоположении спутника записываются в память бортового компьютера и затем передаются на приемник вместе с кодовой последовательностью.
   Д — коррекция задержек сигнала. Как бы совершенна ни была система, есть несколько источников погрешностей, которые очень трудно избежать. Самые существенные из них возникают при задержке радиосигнала в ионосфере (слое заряженных частиц на высоте 120-200 км) и тропосфере (8-18 км) Земли. Величина задержек непостоянна и зависит от солнечной активности и погодных условий.
   Существуют два метода, которые можно использовать, чтобы сделать ошибку минимальной. Во-первых, мы можем предсказать, каково типичное изменение скорости распространения радиоволн в обычный день, при средних ионосферных условиях, а затем ввести поправку в измерения. Но, к сожалению, не каждый день является обычным.
   Другой способ состоит в использовании двух частот несущих колебаний. По разности задержек двух разночастотных сигналов нетрудно выяснить величину замедления скорости света в атмосфере.
   В американской GPS используется World Geodetic System (WGS84) — всемирная геодезическая система, принятая в 1984 году. В глобальной навигационной спутниковой системе «Глонасс» используется ПЗ90 — система параметров Земли, принятая в 1990 году. Они отличаются параметрами земного эллипсоида, поэтому координаты, используемые в этих геодезических системах, могут расходиться на 100-150 м.