Страница:
Заметим при этом, что четыре упомянутых выше геометрических тела, пропорционально связанных между собою, Платон мыслит равновеликими четырем правильным многогранникам - кубу, икосаэдру, октаэдру и пирамиде, так что пропорция элементов мыслится у него как равенство отношений между объемами куба и икосаэдра, с одной стороны, и октаэдра и пирамиды, - с другой. Здесь перед нами вскрывается ни больше ни меньше, как тайна всего античного пластического мышления. Уже то, что античная эстетика хотела постепенно и планомерно переходить от мускульно-осязательных ощущений к зрительным, достаточно приоткрывает нам эту тайну. Ведь пластика и есть единство зрения и осязания. Можно спорить о способах и типах такого соединения; возможны любые возражения против античной эстетики. Но самый принцип пластичности выставляется здесь вполне безупречно и с полной очевидностью. Пластика есть тот единый предмет, который сразу и одновременно воспринимается как осязательно-мускульно, так и зрительно. Но античная эстетика идет еще дальше. Так как все чувственно-воспринимаемое, с ее точки зрения, должно быть безукоризненно правильным и обязательно трехмерно-телесным, а идеальными представителями этой правильной трехмерной телесности являются правильные геометрические тела, то тем самым стереометрия стихийно врывается в чувственный опыт древних, и для эстетики самыми прекрасными чувственными предметами оказываются только правильные геометрические тела. И никакие отличия куба от земли, икосаэдра от воды, октаэдра от воздуха и пирамиды от огня не могли заставить античную эстетику разорвать эти физические и геометрические образы, - до того повелительно диктовало свою волю пластическое мышление, воспитанное, как мы видели выше, также и на соответствующем социально-историческом базисе. Стихийный материализм, выросший на определенном социально-историческом базисе, оказался здесь сильнее абстрактной логики.
4. Музыкальные пропорции
Есть еще одна область, где Платон развивает пифагорейскую теорию пропорций. Это - область звуковых представлений. Здесь также налицо, с одной стороны, простейшая мысль, вошедшая и в современную нам акустику, и нечто специфически античное, что только с большим трудом поддается анализу и переводу на современный научно-философский язык.
Простейшая мысль заключается в том, что Платон пользуется установленными до него числовыми отношениями октавы, квинты, кварты и тона и наблюдает присутствие в них пропорции. Так как октава равняется 2, квинта - 3?2 и кварта - 4?3, и так как 2:3?2 = 4?3:1, то наличие пропорциональности в отношениях тонов между собою, с точки зрения Платона, очевидно: октава относится к квинте, как кварта к началу октавы. А что пропорция предполагает между квинтой и квартой наличие одного целого тона 8:9, это ясно из отношения 4?3:3?2.
Это рассуждение не вызывает у нас никакого сомнения, поскольку отвлеченно взятые здесь количественные отношения, как бы их не расценивать, составляют пропорцию. Дальше, однако, начинается трудно усвояемая античная спецификация этой мысли.
Прежде всего, эти пропорциональные отношения Платон понимает также пространственно. И Платон и вся античность - мы с этим сталкиваемся на каждом шагу - вообще все на свете понимают телесно (правда, телесность может быть разной). Оказывается, тон, кварта, квинта и октава суть телесная характеристика космоса. Разные части пространства, оказывается, относятся между собою как тоны, как кварты, как квинты и как октавы (а дальше мы узнаем, что и как полутоны). Как понимать такую пространственно-звуковую концепцию? Почему пространство в античной эстетике несет на себе функции музыкальных тонов?
Мы вовсе не ставим цель защищать это давно отжившее и, если угодно, вполне курьезное учение. Однако следует обратить внимание на то простейшее обстоятельство, что высота тона зависит от степени натянутости издающей его струны. Слабо натянутая струна издает более низкие звуки, сильно натянутая более высокие. Это известно всем. Но, может быть, не всем известно то, что античные философы очень часто представляли себе пространство именно в виде различным образом натянутой струны, т.е. с разной степенью напряженности, с разной степенью сгущенности и разреженности. В греческой философии существовал даже термин tonos (что значит "натянутость"), которым философы, как, например, Гераклит или стоики, характеризовали все бытие в целом. Оно все, с начала до конца и сверху донизу, было в разной степени натянуто и напряжено, в разной степени сгущено и разрежено. Не вещи в пространстве были в разной степени напряжены, а само пространство было в разной степени напряжено и натянуто.
И это по той простой причине, что пространство, даже у самых крупных греческих философов, очень слабо отличалось от заполняющего его вещества. Но если это пространство и вместе с ним все его заполнение, т.е. все бытие в целом, было аналогично разнообразно натянутым струнам, то почему же древние не могли говорить здесь о музыкальных тонах и почему они не могли находить среди своих первоначальных элементов кварты, квинты и октавы? Конечно, разная уплотненность пространства выражена здесь чрезвычайно наивно. И тем не менее здесь функционировал огромной важности и абсолютно-научный принцип, а именно принцип разной плотности пространства, или, как теперь говорят в науке, принцип относительности, который не только является последним словом современной науки, но который, диалектически соединяя пространство и материю, во многом глубоко соответствует также идеям диалектического материализма. Поэтому учение античной эстетики о гармонии сфер с ее квартами, квинтами и октавами требует самого внимательного анализа и не должно быть отбрасываемо априори как нелепый курьез.
Но Платон идет еще дальше. Акустическая пропорция характеризует для него не только отношения чисто пространственные, но и качественно-пространственные, т.е. взаимоотношения элементов. Оказывается, огонь относится к воздуху как кварта, к воде - как квинта, а к земле - как октава (и, стало быть, расстояние между воздухом и водой равно целому тону).
Все эти трудно усвояемые построения мы должны подвергнуть рассмотрению особо, а сейчас констатируем только то, что пропорция у Платона может иметь смысл и чисто акустический, и телесно-акустический, и даже космически-акустический.
Место в "Тимее", откуда извлекается это учение (35с), интересно еще в одном отношении. Читаем: "...в каждом промежутке оказалось по два средних члена, из которых один на столько же долей превышал первый из крайних членов, на сколько его самого превышал второй [из этих членов], а другой на такое же число превышал один [из тех же крайних членов], каким его самого превышал другой [их них]".
Здесь устанавливается, как потом отмечали комментаторы Платона, три вида пропорции. Первая пропорция гармоническая: на какую часть своей собственной величины один член превосходит другой, на ту же самую часть третьего члена этот последний превосходит второй. Именно, пропорция 1, 1, 2 есть гармоническая, потому что второй член получается здесь из первого как путем прибавления к этому последнему одной его трети, так и путем вычитания из третьего одной трети этого последнего. Вторая пропорция - арифметическая: на сколько вторая величина превосходит первую, на столько третья величина превосходит вторую. 1, 1, 2 есть пропорция арифметическая, потому что здесь второй член больше первого и меньше третьего на одну и ту же величину . Наконец, геометрическая пропорция требует, чтобы второй член так относился к первому, как третий ко второму: 1, 2, 4.
Пропорции эти имеют для Платона отнюдь не просто отвлеченно-арифметическое значение. Отвлеченно-арифметических отношений для него вообще не существует. Правда, подробной теории этих пропорций сам Платон не дал, и это развили его комментаторы. Но уже "Тимей" ясно свидетельствует о том, что последовательность: огонь, воздух, земля - пропорция гармоническая, последовательность: огонь, вода, земля - пропорция арифметическая и последовательность: огонь, воздух, вода, земля - пропорция геометрическая.
Необходимо помнить, что отношение огня к земле есть отношение октавы, т.е. 1:2; отношение огня к воздуху есть кварта (т.е. 1:) и отношение воздуха к воде - один тон, т.е. (:). Отсюда уже само собой получалось, что отношение воды к земле равняется кварте, т.е. отношение :2, и отношение воздуха к воде (оно же отношение огня к воде) оказывалось квинтой, т.е. :2. И здесь же применяется учение о пропорциях. Отношение 1::2, т.е. арифметическая пропорция, отношение огня, воды и земли, а отношение 1::2, т.е. гармоническая пропорция, - отношение огня, воздуха и земли. Что же касается геометрической пропорции, то, понимая ее в широком смысле слова, Платон трактует ее как равенство отношений между землей и водой и между воздухом и огнем (1:=:2). Другими словами, средний член пропорции понимается здесь не количественно, а просто вообще как средний.
Что же означают все эти положения, если перевести их на эстетический язык? Арифметическая пропорция указывает на то, что если мы, например, видим два дерева разной величины и учитываем эту разницу, то такую же разницу мы можем находить и между другой парой деревьев или вообще другой парой вещей. Следовательно, античный глаз все время как бы обмеривает разные вещи, стремясь найти между ними наглядно и структурно видимую аналогию. То же самое и в геометрической пропорции. Что же касается гармонической пропорции, то и она имела для древних наглядно-структурный смысл. А именно, если мы имеем три величины a, b и с, то возьмем сначала разницу между первой и второй и разницу между второй и третьей величинами. Оказывается, что отношение этих двух разниц равно отношению первой величины к третьей. Интуитивно это тоже можно себе легко представить. Если арифметическая пропорция (1:2:3), беря целые числа, говорит о постоянном нарастании предметов на одну и ту же величину, а геометрическая (1:2:4) - о нарастании в одно и то же число раз, то гармоническая пропорция (3:4:6) говорит нам о таком отношении целого и частей, при котором мыслится одинаковость отношения двух каких-нибудь частей к своему положению относительно третьей части.
Таким образом, все это представляет усилия эстетической мысли понять извивную пластичность предмета в ее разнообразно расположенных элементах, причем это разнообразие всегда управляется единым принципом и потому является пропорциональным.
5. Общая сводка
Для лучшего понимания связи между музыкально-акустическими пропорциями и физико-геометрическими телами можно было бы выставить следующие соображения.
Переходя от 1 к 2, мы переходим к тому, что является противоположностью первоначальной единице. Двойка тоже есть некая единица, но уже за пределами первой единицы. Когда античная эстетика искала такого же соотношения в области тонов, то она сталкивалась с октавой, поскольку эта последняя не только акустически равняется отношению 1:2, но и на слух говорит нам о переходе к некоему новому тону, который тем не менее вполне аналогичен первому тону.
Далее, симметрия и пропорция повелительно требовали найти середину между двумя тонами, составляющими октаву. Такой серединой является тон между квартой и квинтой, потому что от тона до кварты столько же, сколько от квинты до октавы. А отсюда уже само собой возникали физические аналогии. Что у древних было наиболее противоположным в их чувственном опыте? Это - земля и огонь, вполне противоположные и по тяжести (плотности), и по подвижности, и по остроте. Значит, отношение между землей и огнем есть октава. А что является серединой между тоном и октавой? Мы уже сказали, что ею является тон между квартой и квинтой. А что является серединой между землей и огнем? Мы знаем, что это есть расстояние между водой и воздухом. Значит, расстояние между водой и воздухом равно целому тону, а расстояние между землей и водой, как и расстояние между воздухом и огнем, равно кварте. Отсюда само собой вытекает, что расстояние между землей и воздухом, как и расстояние между огнем и водой, равняется квинте. А так как кварта равняется 3: 2 и квинта равняется 4:3, то тем самым пропорция 1:::2 (со всеми арифметически допустимыми здесь перестановками) в прямом и буквальном смысле слова применяется к указанным физическим телам и, соответственно, правильным многогранникам (см. табл. 2).
Платоновские и пифагорейские материалы, относящиеся к пропорциям, весьма разноречивы. Они имели тысячелетнюю историю и допускают разнообразную интерпретацию в зависимости от точки зрения на предмет. В табл. 2 дана примерная сводная схема, которая может быть представлена и в другом виде; но выбрана она исключительно ради удобства обозрения платоновских материалов, относящихся к пропорциям. Чтобы понять эту схему, надо принять во внимание следующие четыре обстоятельства.
Во-первых, отношения, входящие в пропорцию, Платон (как и вся античность) понимает в самом широком смысле слова. Поэтому земля, вода, воздух и огонь вместе с соответствующими многогранниками могут браться у него в самой разнообразной комбинации, как по числу членов отношения, так и по их взаимному расположению. Поэтому, если в космическом плане Платон от земли переходил к воде и дальше - к воздуху и огню, то ничего не стоило ему, в целях установления тех или иных пропорций, переходить также и от земли прямо к воздуху, а уже потом к воде и огню. Каждая такая комбинация, как это вполне естественно, имела свою собственную структуру и свое собственное взаимоотношение элементов.
Во-вторых, отношение здесь понимается настолько в общем виде, что совершенно безразлично, переходить ли от 1 к 2 или от 2 к 1, переходить ли от 3 к 4 или от 4 к 3 и переходить ли от 3 к 2 или от 2 к 3. Это не наша абстрактная арифметика, в которой числитель и знаменатель дроби не могут меняться между собой местами. В античном учении о пропорциях такая перемена всегда возможна, потому что важно самое отношение, а вовсе не абсолютные величины относящихся между собой элементов. Поэтому, если мы берем отношение огонь, вода, воздух и земля, то, переставив крайние члены, мы с таким же успехом можем взять и отношения - земля, вода, воздух, огонь.
В-третьих, желая осмыслить эстетику многогранников и связать ее с эстетикой акустической, древние исходили, по-видимому, из количества вершин многогранников и получали ряд - 4, 6, 12, 8, так как эти числа как раз и соответствовали количеству вершин пирамиды, октаэдра, икосаэдра и куба (додекаэдр, как наиболее близкий к шару, и сам шар они сохраняли для очертания всего космоса в целом), или, что то же, 1, , 3, 2. При этом акустика требовала, чтобы отношение октавы было 1:2, т.е. огненная пирамида и земляной куб трактовались как отстоящие друг от друга на октаву. Но если октава есть отношение 1:2, то число 3, очевидно, уже выходило за октаву, и поэтому его нужно было трактовать так, чтобы оно оставалось все же в пределах октавы. По-видимому, здесь рассуждали так, что под числом 3 понимали просто 3 тона, т.е. кварту, и поэтому вышеприведенный ряд акустически понимался как основной тон, квинта, кварта и октава. А так как существовала живейшая потребность отразить космическое соотношение элементов (внизу - тяжелый куб земли, выше более легкая и текучая вода - икосаэдр, еще легче и быстрее воздух - октаэдр и выше всего легчайший огонь - пирамида), то вышеприведенный ряд после соответствующей перестановки членов получал следующий вид: 1, , , 2. Другими словами, земля и вода составляли кварту, земля и воздух - квинту, а вода и воздух (:) - один тон ().
И, наконец, в-четвертых, соответственно нетрудно понять, что пропорция 1::2 есть гармоническая, пропорция 1::2 есть арифметическая и пропорция 1:=:2 - геометрическая (причем здесь возможны разнообразные перестановки этих элементов, как это мы знаем из современной нам арифметики).
Таким образом, и физически, и геометрически, и акустически, и арифметически (в смысле трех основных пропорций) во всех этих рассуждениях было свое непререкаемое рациональное зерно. И если в чем можно обвинять античную эстетику, так это только в том, что вполне непререкаемые, вполне понятные и вполне здравые рациональные построения из разных областей чувственного восприятия она обязательно хотела объединить в нечто единое и целое тоже чувственным способом, в то время как чувственность вовсе не является единственным критерием познания, а требуются еще и рассудочные, абстрактные и разумные критерии. Как мы теперь знаем, солнце вовсе не заходит и не всходит. Но если исходить из чувственных данных, то солнце именно и всходит и заходит. И с точки зрения голой чувственности возразить тут нечего. Поэтому, имея космически-геометрическую последовательность - земляной куб, водяной икосаэдр, воздушный октаэдр и огненную пирамиду, а с другой стороны, акустическую последовательность - 1, , 2 (т.е. исходный тон, кварту, квинту и октаву), древние, желая во что бы то ни стало объединить обе последовательности, делали соответственную перестановку в первой последовательности и считали земляной куб за 1, а огненную пирамиду за 2 (так как 1:2 и 2:1, как указано выше, трактовались как нечто тождественное). Широкое понимание отношений давало им для этого полную свободу. Такова была непреодолимая потребность толковать единство всех пропорций, геометрических, стихийных, акустических и арифметических, как единство обязательно чувственное.
6. Гносеологическая пропорция
Наконец, мы имеем еще одну область, где Платон мыслит пропорциональное отношение, это - область знания. Не только чувственное восприятие, но и знание также должно быть рассматриваемо с точки зрения пропорции. "...Нам нравится... чтобы первую часть [познавательных способностей] мы называли знанием (epistCmCn), вторую - рассудком (dianoian), третью верой (pistin) и четвертую - уподоблением (eicasian), причем две последние [способности] вместе - мнением (doxan)..., а первые две - мышлением (noCsin). А именно, мнение относится к становлению, мышление же - к сущности. И как сущность относится к становлению, так мышление - к мнению, и как мышление - к мнению, так знание - к вере и рассудок - к уподоблению" (R. P. VII 533e - 534a). Дальше здесь говорится о том, что для ясности рассуждения надо пока отказаться от пропорции самих предметов, к которым эти пропорциональные способности относятся, и сосредоточиться только на самих способностях.
Пропорция эта, как видим, сформулирована яснейшим образом. Разумеется, у нас нет возможности входить в анализ всех этих трудных платоновских терминов. Но необходимо отметить два простых обстоятельства.
Во-первых, тут говорится о разделении на "сущность" и "становление". С этим мы уже встречались у Платона, и это трудности для нас не составляет. Тут всемирно-историческое разделение на идеальное и реальное, бытие и небытие, смысл и факт, идею и материю и т.д. Во-вторых, каждая из этих областей, в свою очередь, делится здесь на две области - по тому принципу, который мы, не входя в текстовой анализ, прямо назовем здесь интуитивным. Иными словами, возможно чистое поэтическое знание - интуитивное, т.е. дающее свой предмет в его непосредственном существовании (эпистема), и дискурсивное, т.е. дающее свой предмет только в результате ряда логических (рассудочных) переходов, т.е. умозаключений и доказательств (дианоя). Возможно чувственное доксическое знание - интуитивное, когда чувственный предмет дается в своем непосредственном явлении и факте (пистис), и дискурсивное, когда в сознании в результате ряда отображений чувственных предметов возникает ряд "умоуподоблений" сознания этим чувственным предметам. При этом налицо соответствующие обобщающие выводы (эйкасия).
При таком подходе к четырем познавательным способностям с полной ясностью устанавливается пропорциональное отношение между ними: чтобы от знания перейти к рассудку, надо исключить интуитивность, и чтобы перейти от веры к уподоблению, надо тоже исключить интуитивность. Это отношение между членами первой пары тождественно с отношением между членами второй пары. А тождество двух отношений есть пропорция.
Чтобы покончить с пифагорейско-платоновским учением о пропорциях, обратим внимание еще на одно интересное обстоятельство, которое в науке не раз переоценивалось. Дело в том, что частным видом геометрической пропорции является так называемое золотое деление, начало учения о котором часто приписывали "пифагорейцам" и развернутую теорию которого находили у Платона. В эпоху Возрождения эта "божественная пропорция" фигурировала именно в пифагорейско-платоническом обличии. Если обратиться к первоисточникам, то отчетливых материалов о сознательно проводимой теории золотого деления у Платона мы не найдем. Золотое деление получается из обычной геометрической пропорции путем внесения в нее идеи последовательного убывания чисел. Получается, что целое так относится к своей бoльшей части, как бoльшая к меньшей. Золотое деление, следовательно, есть равновесие между целым и частью, наблюдаемое при последовательном исчерпывании целого. Что мы имеем на эту тему у Платона?
Выше мы приводили текст Tim. 31c - 32a. Этот текст прямо формулирует то, что мы теперь называем золотым делением. Но ни сам Платон не употребляет такого термина, ни его последующее изложение не показывает в отчетливой форме способ применения этого закона. Поэтому, строго говоря, использование этого закона у Платона является не столько сознательным и намеренным, сколько интуитивным и непосредственно-эстетическим. Но дело этим не кончается.
Как известно, Платон строит свой космос из прямоугольных треугольников двух видов - с равными катетами и с неравными катетами. К первому золотое деление совсем неприложимо; что касается второго рода треугольников, то их может быть бесчисленное множество, но Платон почему-то выбирает именно тот, который получается из разделения равностороннего треугольника пополам его высотой. В таком прямоугольном треугольнике гипотенуза вдвое больше меньшего из катетов, а отношение его катетов есть 1:3. Последнее отношение близко к золотому сечению и до известной степени может его заменить. Руководствовался ли Платон подобными соображениями при выборе такого треугольника, сказать трудно за полным отсутствием у него всяких указаний на этот предмет.
Более ясен другой пункт. Как известно, из равнобедренных треугольников у Платона образуется куб, а из треугольников второго рода - пирамида, октаэдр и икосаэдр. Однако есть еще одно - пятое - правильное геометрическое тело, это додекаэдр (двенадцатигранник), которое Платон употребляет "для очертания (diadzographon) вселенной" (Tim. - 55c), в то время как первые четыре конструируют собою четыре космические стихии. Додекаэдр, следовательно, есть форма неба; прочие же многогранники характеризуют собою то, что внутри неба, то, что в самом космосе. Додекаэдр точно построен по закону золотого деления. Это особенно ярко видно на так называемой пентаграмме, которая представляет собою совокупность диагоналей додекаэдра, или геометрическую фигуру, образованную последовательным соединением вершин додекаэдра через одну. Элементарное построение показывает, что сторона додекаэдра так относится к его диагонали, как расстояние от вершины до ближайшей точки пересечения двух диагоналей относится к стороне додекаэдра и как расстояние между двумя соседними точками пересечения диагоналей к расстоянию от вершины до ближайшей точки пересечения диагоналей. Целым является здесь диагональ, большим сторона додекаэдра, а меньшим - расстояние от вершины до ближайшей точки пересечения диагоналей. Интересным является также и то, что точки пересечения диагоналей додекаэдра составляют совокупность вершин правильного пятиугольника, стороны которого лежат на сторонах пентаграммы (т.е. на диагоналях основного додекаэдра).
Если Платон сознательно отнес додекаэдр со всеми этими элементами золотого деления к форме космоса, к небу - в чем, конечно, нет ничего невероятного, то тогда получается, что золотое деление действительно является у Платона наиболее "божественной" пропорцией. Но так ли это на самом деле и даже вообще формулировал ли Платон для себя точно и сознательно наличие золотых делений в додекаэдре и пентаграмме, - сведений об этом нет никаких, хотя вероятность сознательной математической работы здесь весьма велика, особенно если иметь в виду весь контекст античного пифагорейского платонизма. Заметим, впрочем, что икосаэдр тоже строится при помощи закона золотого деления. Это интуитивное конструирование золотого деления, даже если здесь не было сознательной концепции, чрезвычайно важно для всей античной эстетики. Интуитивность здесь только подчеркивает собою органическую направленность античного сознания на фиксацию целого, находящегося в одном и том же отношении с любой своей частью при последовательном постоянном и непрерывном переходе от большей части к меньшей. Заметим, кстати, что историки искусства уже давно установили в античных статуях пупок как точку, разделяющую весь человеческий рост именно по закону золотого деления. Органичность этого закона для Платона в самой четкой форме вытекает из всей его философской теории. Ведь если идея, по-разному воплощаясь в материи, остается все же сама собой, то ясно, что при переходе от большего воплощения к меньшему мы везде будем иметь закон золотого деления, т.е. везде целое будет так относиться к своей большей части, как эта последняя к меньшей.
4. Музыкальные пропорции
Есть еще одна область, где Платон развивает пифагорейскую теорию пропорций. Это - область звуковых представлений. Здесь также налицо, с одной стороны, простейшая мысль, вошедшая и в современную нам акустику, и нечто специфически античное, что только с большим трудом поддается анализу и переводу на современный научно-философский язык.
Простейшая мысль заключается в том, что Платон пользуется установленными до него числовыми отношениями октавы, квинты, кварты и тона и наблюдает присутствие в них пропорции. Так как октава равняется 2, квинта - 3?2 и кварта - 4?3, и так как 2:3?2 = 4?3:1, то наличие пропорциональности в отношениях тонов между собою, с точки зрения Платона, очевидно: октава относится к квинте, как кварта к началу октавы. А что пропорция предполагает между квинтой и квартой наличие одного целого тона 8:9, это ясно из отношения 4?3:3?2.
Это рассуждение не вызывает у нас никакого сомнения, поскольку отвлеченно взятые здесь количественные отношения, как бы их не расценивать, составляют пропорцию. Дальше, однако, начинается трудно усвояемая античная спецификация этой мысли.
Прежде всего, эти пропорциональные отношения Платон понимает также пространственно. И Платон и вся античность - мы с этим сталкиваемся на каждом шагу - вообще все на свете понимают телесно (правда, телесность может быть разной). Оказывается, тон, кварта, квинта и октава суть телесная характеристика космоса. Разные части пространства, оказывается, относятся между собою как тоны, как кварты, как квинты и как октавы (а дальше мы узнаем, что и как полутоны). Как понимать такую пространственно-звуковую концепцию? Почему пространство в античной эстетике несет на себе функции музыкальных тонов?
Мы вовсе не ставим цель защищать это давно отжившее и, если угодно, вполне курьезное учение. Однако следует обратить внимание на то простейшее обстоятельство, что высота тона зависит от степени натянутости издающей его струны. Слабо натянутая струна издает более низкие звуки, сильно натянутая более высокие. Это известно всем. Но, может быть, не всем известно то, что античные философы очень часто представляли себе пространство именно в виде различным образом натянутой струны, т.е. с разной степенью напряженности, с разной степенью сгущенности и разреженности. В греческой философии существовал даже термин tonos (что значит "натянутость"), которым философы, как, например, Гераклит или стоики, характеризовали все бытие в целом. Оно все, с начала до конца и сверху донизу, было в разной степени натянуто и напряжено, в разной степени сгущено и разрежено. Не вещи в пространстве были в разной степени напряжены, а само пространство было в разной степени напряжено и натянуто.
И это по той простой причине, что пространство, даже у самых крупных греческих философов, очень слабо отличалось от заполняющего его вещества. Но если это пространство и вместе с ним все его заполнение, т.е. все бытие в целом, было аналогично разнообразно натянутым струнам, то почему же древние не могли говорить здесь о музыкальных тонах и почему они не могли находить среди своих первоначальных элементов кварты, квинты и октавы? Конечно, разная уплотненность пространства выражена здесь чрезвычайно наивно. И тем не менее здесь функционировал огромной важности и абсолютно-научный принцип, а именно принцип разной плотности пространства, или, как теперь говорят в науке, принцип относительности, который не только является последним словом современной науки, но который, диалектически соединяя пространство и материю, во многом глубоко соответствует также идеям диалектического материализма. Поэтому учение античной эстетики о гармонии сфер с ее квартами, квинтами и октавами требует самого внимательного анализа и не должно быть отбрасываемо априори как нелепый курьез.
Но Платон идет еще дальше. Акустическая пропорция характеризует для него не только отношения чисто пространственные, но и качественно-пространственные, т.е. взаимоотношения элементов. Оказывается, огонь относится к воздуху как кварта, к воде - как квинта, а к земле - как октава (и, стало быть, расстояние между воздухом и водой равно целому тону).
Все эти трудно усвояемые построения мы должны подвергнуть рассмотрению особо, а сейчас констатируем только то, что пропорция у Платона может иметь смысл и чисто акустический, и телесно-акустический, и даже космически-акустический.
Место в "Тимее", откуда извлекается это учение (35с), интересно еще в одном отношении. Читаем: "...в каждом промежутке оказалось по два средних члена, из которых один на столько же долей превышал первый из крайних членов, на сколько его самого превышал второй [из этих членов], а другой на такое же число превышал один [из тех же крайних членов], каким его самого превышал другой [их них]".
Здесь устанавливается, как потом отмечали комментаторы Платона, три вида пропорции. Первая пропорция гармоническая: на какую часть своей собственной величины один член превосходит другой, на ту же самую часть третьего члена этот последний превосходит второй. Именно, пропорция 1, 1, 2 есть гармоническая, потому что второй член получается здесь из первого как путем прибавления к этому последнему одной его трети, так и путем вычитания из третьего одной трети этого последнего. Вторая пропорция - арифметическая: на сколько вторая величина превосходит первую, на столько третья величина превосходит вторую. 1, 1, 2 есть пропорция арифметическая, потому что здесь второй член больше первого и меньше третьего на одну и ту же величину . Наконец, геометрическая пропорция требует, чтобы второй член так относился к первому, как третий ко второму: 1, 2, 4.
Пропорции эти имеют для Платона отнюдь не просто отвлеченно-арифметическое значение. Отвлеченно-арифметических отношений для него вообще не существует. Правда, подробной теории этих пропорций сам Платон не дал, и это развили его комментаторы. Но уже "Тимей" ясно свидетельствует о том, что последовательность: огонь, воздух, земля - пропорция гармоническая, последовательность: огонь, вода, земля - пропорция арифметическая и последовательность: огонь, воздух, вода, земля - пропорция геометрическая.
Необходимо помнить, что отношение огня к земле есть отношение октавы, т.е. 1:2; отношение огня к воздуху есть кварта (т.е. 1:) и отношение воздуха к воде - один тон, т.е. (:). Отсюда уже само собой получалось, что отношение воды к земле равняется кварте, т.е. отношение :2, и отношение воздуха к воде (оно же отношение огня к воде) оказывалось квинтой, т.е. :2. И здесь же применяется учение о пропорциях. Отношение 1::2, т.е. арифметическая пропорция, отношение огня, воды и земли, а отношение 1::2, т.е. гармоническая пропорция, - отношение огня, воздуха и земли. Что же касается геометрической пропорции, то, понимая ее в широком смысле слова, Платон трактует ее как равенство отношений между землей и водой и между воздухом и огнем (1:=:2). Другими словами, средний член пропорции понимается здесь не количественно, а просто вообще как средний.
Что же означают все эти положения, если перевести их на эстетический язык? Арифметическая пропорция указывает на то, что если мы, например, видим два дерева разной величины и учитываем эту разницу, то такую же разницу мы можем находить и между другой парой деревьев или вообще другой парой вещей. Следовательно, античный глаз все время как бы обмеривает разные вещи, стремясь найти между ними наглядно и структурно видимую аналогию. То же самое и в геометрической пропорции. Что же касается гармонической пропорции, то и она имела для древних наглядно-структурный смысл. А именно, если мы имеем три величины a, b и с, то возьмем сначала разницу между первой и второй и разницу между второй и третьей величинами. Оказывается, что отношение этих двух разниц равно отношению первой величины к третьей. Интуитивно это тоже можно себе легко представить. Если арифметическая пропорция (1:2:3), беря целые числа, говорит о постоянном нарастании предметов на одну и ту же величину, а геометрическая (1:2:4) - о нарастании в одно и то же число раз, то гармоническая пропорция (3:4:6) говорит нам о таком отношении целого и частей, при котором мыслится одинаковость отношения двух каких-нибудь частей к своему положению относительно третьей части.
Таким образом, все это представляет усилия эстетической мысли понять извивную пластичность предмета в ее разнообразно расположенных элементах, причем это разнообразие всегда управляется единым принципом и потому является пропорциональным.
5. Общая сводка
Для лучшего понимания связи между музыкально-акустическими пропорциями и физико-геометрическими телами можно было бы выставить следующие соображения.
Переходя от 1 к 2, мы переходим к тому, что является противоположностью первоначальной единице. Двойка тоже есть некая единица, но уже за пределами первой единицы. Когда античная эстетика искала такого же соотношения в области тонов, то она сталкивалась с октавой, поскольку эта последняя не только акустически равняется отношению 1:2, но и на слух говорит нам о переходе к некоему новому тону, который тем не менее вполне аналогичен первому тону.
Далее, симметрия и пропорция повелительно требовали найти середину между двумя тонами, составляющими октаву. Такой серединой является тон между квартой и квинтой, потому что от тона до кварты столько же, сколько от квинты до октавы. А отсюда уже само собой возникали физические аналогии. Что у древних было наиболее противоположным в их чувственном опыте? Это - земля и огонь, вполне противоположные и по тяжести (плотности), и по подвижности, и по остроте. Значит, отношение между землей и огнем есть октава. А что является серединой между тоном и октавой? Мы уже сказали, что ею является тон между квартой и квинтой. А что является серединой между землей и огнем? Мы знаем, что это есть расстояние между водой и воздухом. Значит, расстояние между водой и воздухом равно целому тону, а расстояние между землей и водой, как и расстояние между воздухом и огнем, равно кварте. Отсюда само собой вытекает, что расстояние между землей и воздухом, как и расстояние между огнем и водой, равняется квинте. А так как кварта равняется 3: 2 и квинта равняется 4:3, то тем самым пропорция 1:::2 (со всеми арифметически допустимыми здесь перестановками) в прямом и буквальном смысле слова применяется к указанным физическим телам и, соответственно, правильным многогранникам (см. табл. 2).
Платоновские и пифагорейские материалы, относящиеся к пропорциям, весьма разноречивы. Они имели тысячелетнюю историю и допускают разнообразную интерпретацию в зависимости от точки зрения на предмет. В табл. 2 дана примерная сводная схема, которая может быть представлена и в другом виде; но выбрана она исключительно ради удобства обозрения платоновских материалов, относящихся к пропорциям. Чтобы понять эту схему, надо принять во внимание следующие четыре обстоятельства.
Во-первых, отношения, входящие в пропорцию, Платон (как и вся античность) понимает в самом широком смысле слова. Поэтому земля, вода, воздух и огонь вместе с соответствующими многогранниками могут браться у него в самой разнообразной комбинации, как по числу членов отношения, так и по их взаимному расположению. Поэтому, если в космическом плане Платон от земли переходил к воде и дальше - к воздуху и огню, то ничего не стоило ему, в целях установления тех или иных пропорций, переходить также и от земли прямо к воздуху, а уже потом к воде и огню. Каждая такая комбинация, как это вполне естественно, имела свою собственную структуру и свое собственное взаимоотношение элементов.
Во-вторых, отношение здесь понимается настолько в общем виде, что совершенно безразлично, переходить ли от 1 к 2 или от 2 к 1, переходить ли от 3 к 4 или от 4 к 3 и переходить ли от 3 к 2 или от 2 к 3. Это не наша абстрактная арифметика, в которой числитель и знаменатель дроби не могут меняться между собой местами. В античном учении о пропорциях такая перемена всегда возможна, потому что важно самое отношение, а вовсе не абсолютные величины относящихся между собой элементов. Поэтому, если мы берем отношение огонь, вода, воздух и земля, то, переставив крайние члены, мы с таким же успехом можем взять и отношения - земля, вода, воздух, огонь.
В-третьих, желая осмыслить эстетику многогранников и связать ее с эстетикой акустической, древние исходили, по-видимому, из количества вершин многогранников и получали ряд - 4, 6, 12, 8, так как эти числа как раз и соответствовали количеству вершин пирамиды, октаэдра, икосаэдра и куба (додекаэдр, как наиболее близкий к шару, и сам шар они сохраняли для очертания всего космоса в целом), или, что то же, 1, , 3, 2. При этом акустика требовала, чтобы отношение октавы было 1:2, т.е. огненная пирамида и земляной куб трактовались как отстоящие друг от друга на октаву. Но если октава есть отношение 1:2, то число 3, очевидно, уже выходило за октаву, и поэтому его нужно было трактовать так, чтобы оно оставалось все же в пределах октавы. По-видимому, здесь рассуждали так, что под числом 3 понимали просто 3 тона, т.е. кварту, и поэтому вышеприведенный ряд акустически понимался как основной тон, квинта, кварта и октава. А так как существовала живейшая потребность отразить космическое соотношение элементов (внизу - тяжелый куб земли, выше более легкая и текучая вода - икосаэдр, еще легче и быстрее воздух - октаэдр и выше всего легчайший огонь - пирамида), то вышеприведенный ряд после соответствующей перестановки членов получал следующий вид: 1, , , 2. Другими словами, земля и вода составляли кварту, земля и воздух - квинту, а вода и воздух (:) - один тон ().
И, наконец, в-четвертых, соответственно нетрудно понять, что пропорция 1::2 есть гармоническая, пропорция 1::2 есть арифметическая и пропорция 1:=:2 - геометрическая (причем здесь возможны разнообразные перестановки этих элементов, как это мы знаем из современной нам арифметики).
Таким образом, и физически, и геометрически, и акустически, и арифметически (в смысле трех основных пропорций) во всех этих рассуждениях было свое непререкаемое рациональное зерно. И если в чем можно обвинять античную эстетику, так это только в том, что вполне непререкаемые, вполне понятные и вполне здравые рациональные построения из разных областей чувственного восприятия она обязательно хотела объединить в нечто единое и целое тоже чувственным способом, в то время как чувственность вовсе не является единственным критерием познания, а требуются еще и рассудочные, абстрактные и разумные критерии. Как мы теперь знаем, солнце вовсе не заходит и не всходит. Но если исходить из чувственных данных, то солнце именно и всходит и заходит. И с точки зрения голой чувственности возразить тут нечего. Поэтому, имея космически-геометрическую последовательность - земляной куб, водяной икосаэдр, воздушный октаэдр и огненную пирамиду, а с другой стороны, акустическую последовательность - 1, , 2 (т.е. исходный тон, кварту, квинту и октаву), древние, желая во что бы то ни стало объединить обе последовательности, делали соответственную перестановку в первой последовательности и считали земляной куб за 1, а огненную пирамиду за 2 (так как 1:2 и 2:1, как указано выше, трактовались как нечто тождественное). Широкое понимание отношений давало им для этого полную свободу. Такова была непреодолимая потребность толковать единство всех пропорций, геометрических, стихийных, акустических и арифметических, как единство обязательно чувственное.
6. Гносеологическая пропорция
Наконец, мы имеем еще одну область, где Платон мыслит пропорциональное отношение, это - область знания. Не только чувственное восприятие, но и знание также должно быть рассматриваемо с точки зрения пропорции. "...Нам нравится... чтобы первую часть [познавательных способностей] мы называли знанием (epistCmCn), вторую - рассудком (dianoian), третью верой (pistin) и четвертую - уподоблением (eicasian), причем две последние [способности] вместе - мнением (doxan)..., а первые две - мышлением (noCsin). А именно, мнение относится к становлению, мышление же - к сущности. И как сущность относится к становлению, так мышление - к мнению, и как мышление - к мнению, так знание - к вере и рассудок - к уподоблению" (R. P. VII 533e - 534a). Дальше здесь говорится о том, что для ясности рассуждения надо пока отказаться от пропорции самих предметов, к которым эти пропорциональные способности относятся, и сосредоточиться только на самих способностях.
Пропорция эта, как видим, сформулирована яснейшим образом. Разумеется, у нас нет возможности входить в анализ всех этих трудных платоновских терминов. Но необходимо отметить два простых обстоятельства.
Во-первых, тут говорится о разделении на "сущность" и "становление". С этим мы уже встречались у Платона, и это трудности для нас не составляет. Тут всемирно-историческое разделение на идеальное и реальное, бытие и небытие, смысл и факт, идею и материю и т.д. Во-вторых, каждая из этих областей, в свою очередь, делится здесь на две области - по тому принципу, который мы, не входя в текстовой анализ, прямо назовем здесь интуитивным. Иными словами, возможно чистое поэтическое знание - интуитивное, т.е. дающее свой предмет в его непосредственном существовании (эпистема), и дискурсивное, т.е. дающее свой предмет только в результате ряда логических (рассудочных) переходов, т.е. умозаключений и доказательств (дианоя). Возможно чувственное доксическое знание - интуитивное, когда чувственный предмет дается в своем непосредственном явлении и факте (пистис), и дискурсивное, когда в сознании в результате ряда отображений чувственных предметов возникает ряд "умоуподоблений" сознания этим чувственным предметам. При этом налицо соответствующие обобщающие выводы (эйкасия).
При таком подходе к четырем познавательным способностям с полной ясностью устанавливается пропорциональное отношение между ними: чтобы от знания перейти к рассудку, надо исключить интуитивность, и чтобы перейти от веры к уподоблению, надо тоже исключить интуитивность. Это отношение между членами первой пары тождественно с отношением между членами второй пары. А тождество двух отношений есть пропорция.
Чтобы покончить с пифагорейско-платоновским учением о пропорциях, обратим внимание еще на одно интересное обстоятельство, которое в науке не раз переоценивалось. Дело в том, что частным видом геометрической пропорции является так называемое золотое деление, начало учения о котором часто приписывали "пифагорейцам" и развернутую теорию которого находили у Платона. В эпоху Возрождения эта "божественная пропорция" фигурировала именно в пифагорейско-платоническом обличии. Если обратиться к первоисточникам, то отчетливых материалов о сознательно проводимой теории золотого деления у Платона мы не найдем. Золотое деление получается из обычной геометрической пропорции путем внесения в нее идеи последовательного убывания чисел. Получается, что целое так относится к своей бoльшей части, как бoльшая к меньшей. Золотое деление, следовательно, есть равновесие между целым и частью, наблюдаемое при последовательном исчерпывании целого. Что мы имеем на эту тему у Платона?
Выше мы приводили текст Tim. 31c - 32a. Этот текст прямо формулирует то, что мы теперь называем золотым делением. Но ни сам Платон не употребляет такого термина, ни его последующее изложение не показывает в отчетливой форме способ применения этого закона. Поэтому, строго говоря, использование этого закона у Платона является не столько сознательным и намеренным, сколько интуитивным и непосредственно-эстетическим. Но дело этим не кончается.
Как известно, Платон строит свой космос из прямоугольных треугольников двух видов - с равными катетами и с неравными катетами. К первому золотое деление совсем неприложимо; что касается второго рода треугольников, то их может быть бесчисленное множество, но Платон почему-то выбирает именно тот, который получается из разделения равностороннего треугольника пополам его высотой. В таком прямоугольном треугольнике гипотенуза вдвое больше меньшего из катетов, а отношение его катетов есть 1:3. Последнее отношение близко к золотому сечению и до известной степени может его заменить. Руководствовался ли Платон подобными соображениями при выборе такого треугольника, сказать трудно за полным отсутствием у него всяких указаний на этот предмет.
Более ясен другой пункт. Как известно, из равнобедренных треугольников у Платона образуется куб, а из треугольников второго рода - пирамида, октаэдр и икосаэдр. Однако есть еще одно - пятое - правильное геометрическое тело, это додекаэдр (двенадцатигранник), которое Платон употребляет "для очертания (diadzographon) вселенной" (Tim. - 55c), в то время как первые четыре конструируют собою четыре космические стихии. Додекаэдр, следовательно, есть форма неба; прочие же многогранники характеризуют собою то, что внутри неба, то, что в самом космосе. Додекаэдр точно построен по закону золотого деления. Это особенно ярко видно на так называемой пентаграмме, которая представляет собою совокупность диагоналей додекаэдра, или геометрическую фигуру, образованную последовательным соединением вершин додекаэдра через одну. Элементарное построение показывает, что сторона додекаэдра так относится к его диагонали, как расстояние от вершины до ближайшей точки пересечения двух диагоналей относится к стороне додекаэдра и как расстояние между двумя соседними точками пересечения диагоналей к расстоянию от вершины до ближайшей точки пересечения диагоналей. Целым является здесь диагональ, большим сторона додекаэдра, а меньшим - расстояние от вершины до ближайшей точки пересечения диагоналей. Интересным является также и то, что точки пересечения диагоналей додекаэдра составляют совокупность вершин правильного пятиугольника, стороны которого лежат на сторонах пентаграммы (т.е. на диагоналях основного додекаэдра).
Если Платон сознательно отнес додекаэдр со всеми этими элементами золотого деления к форме космоса, к небу - в чем, конечно, нет ничего невероятного, то тогда получается, что золотое деление действительно является у Платона наиболее "божественной" пропорцией. Но так ли это на самом деле и даже вообще формулировал ли Платон для себя точно и сознательно наличие золотых делений в додекаэдре и пентаграмме, - сведений об этом нет никаких, хотя вероятность сознательной математической работы здесь весьма велика, особенно если иметь в виду весь контекст античного пифагорейского платонизма. Заметим, впрочем, что икосаэдр тоже строится при помощи закона золотого деления. Это интуитивное конструирование золотого деления, даже если здесь не было сознательной концепции, чрезвычайно важно для всей античной эстетики. Интуитивность здесь только подчеркивает собою органическую направленность античного сознания на фиксацию целого, находящегося в одном и том же отношении с любой своей частью при последовательном постоянном и непрерывном переходе от большей части к меньшей. Заметим, кстати, что историки искусства уже давно установили в античных статуях пупок как точку, разделяющую весь человеческий рост именно по закону золотого деления. Органичность этого закона для Платона в самой четкой форме вытекает из всей его философской теории. Ведь если идея, по-разному воплощаясь в материи, остается все же сама собой, то ясно, что при переходе от большего воплощения к меньшему мы везде будем иметь закон золотого деления, т.е. везде целое будет так относиться к своей большей части, как эта последняя к меньшей.