Во времена Джефферсона мир ничего не знал о шумерской культуре, и он не подозревал, что маятник с периодом колебания 1 раз в секунду имел длину ровно 3 куша, или чуть менее полутора метров. При этом следует помнить, что в то время понятие «метр» еще не существовало.
   Анкерный маятник длиной 3 куша ведет себя точно так же, как обычный маятник длиной 2 куша, и поэтому совершает 240 колебаний за 1/360 часть суток. Таким образом Джефферсон случайно воссоздал ритуал, использовавшийся шумерскими жрецами-астрономами почти 5000 лет назад и связанный с принципами доисторических измерений.
   Все единицы измерения, предложенные Джефферсоном, были основаны на длине этого секундного маятника. Он писал:
   «Пусть вышеописанный секундный маятник будет стандартной мерой. Разделим его на пять равных частей, каждая из которых будет называться футом, ибо, возможно, в целом будет лучше сохранить название нынешней меры длины, близкой по значению. Новая мера будет примерно на четверть дюйма короче, чем старый фут.
   Далее меры длины подразделяются следующим образом:
   Пусть 1 фут делится на 10 дюймов,
   1 дюйм делится на 10 линий,
   1 линия делится на 10 точек.
   Пусть 10 футов составляют декаду,
   10 декад составляют 1 род,
   10 родов составляют 1 фарлонг,
   10 фарлонгов составляют 1 милю».
   Как видим, предлагаемая «декада» была основана на двойном «секундном маятнике». Она была эквивалентна 6 шумерским кушам, а фарлонг Джефферсона составлял 600 кушей. Это создает еще более глубокую связь с жителями Древнего Ирака, поскольку они пользовались шестидесятеричной системой счета. Они имели систему счисления, работавшую следующим образом:
   Шаг Множитель Значение
   2 х 10 = 10
   3 х 6 = 60
   4 х 10 = 600
   5 х 6 = 3600
   Как можно видеть, числа 10 и 6 действительно лежат в основе шумерской единицы длины.
   Фарлонг Джефферсона не только равен 600 кушам, но и почти точно соответствует 360 мегалитическим ярдам.
   Странным образом система Джефферсона оказалась тесно связанной с мегалитической и шумерской системами. Но если взять 366 фарлонгов Джефферсона, возвести это число в квадрат и перевести на современную меру длины, мы получим еще более странную картину:
   (366 фарлонгов)2= 39 961,257 км
   Как мы уже упоминали, значения предполагаемой длины земной окружности различаются на несколько километров в зависимости от источника наблюдений. Вероятно, это происходит из-за того, что перепады высот на линии предполагаемой окружности оставляют место для некоторых дискуссий. Общепринятым максимальным значением является 40 008 км, однако, если взять расчеты НАСА, мы получаем полярный радиус 6356,8 км, что равно полярной окружности 39941,0 км.
   Квадрат расстояния равного 366 фарлонгам Джефферсона совпадает с оценкой НАСА на 99,95%. Это едва ли можно считать случайным совпадением.
 
Проблемы с маятником Фуко
 
   Мы все больше интересовались тем, что связано с маятниками. Во время одного телефонного разговора, продолжавшегося более часа, мы подробно обсудили идею о том, что движение маятника может отражать действие еще неизвестного закона астрофизики. Мы рассмотрели разные смелые гипотезы – от стоячих синусоидальных электромагнитных волн до гироскопического эффекта вращения Земли и даже теории гравитонов, содержащих пакеты информации о геометрической форме объектов. Но мы сошлись на том, что у нас недостаточно сведений даже для того, чтобы приступить к изучению подобных гипотез. В черновике этой главы Крис подытожил наше общее впечатление о результате дискуссии:
   «Приходится признать, что мы до сих пор не понимаем, почему это происходит. Однако использование маятника в связи с древними системами мер и весов соответствует некой физической реальности, существующей на Земле. Каждый маятник реагирует на массу Земли, но некоторые ритмы вызывают определенную „гармоническую“ реакцию, связанную с массой и скоростью вращения нашей планеты».
   Но в какой-то момент все изменилось.
   На следующий день в 5 часов утра после бессонной ночи Крис решил заварить себе чаю. Именно тогда его посетил «библиотечный ангел» («Библиотечный ангел» – термин, используемый учеными для описания тех странных моментов, когда искомая информация как будто сама находит их. Разумеется, это вероятностный процесс, поскольку, когда вы работаете с большим объемом материала, вам время от времени должно везти.). Собираясь почитать перед завтраком, он снял упаковку с журнала, пришедшего по почте в предыдущий день, и раскрыл его. Главная тематическая статья в этом выпуске журнала «Нью Сайентист» была озаглавлена: «Тень над гравитацией». Название звучало интересно даже темным ноябрьским утром.
   Но Крис быстро осознал, что в статье содержится нечто гораздо более важное. Уже в первом абзаце, содержавшем впечатления очевидца полного солнечного затмения, было сказано, что такие затмения оказывают значительный эффект на действия маятников. Шла бурная дискуссия о причинах этого явления, в рамках которой было выдвинуто предположение, что маятники могут оказаться ключом к замочной скважине теории относительности Альберта Эйнштейна.
   В статье рассматривалась работа Жана-Бернара Леона Фуко, который продемонстрировал особые качества маятников во время международной выставки в Лондоне в 1851 г. Его маятник, который теперь называют маятником Фуко, представляет собой очень тяжелый груз, прикрепленный к очень длинному тросу, свисающему с потолка очень высокого здания. Маятник может свободно вращаться вокруг неподвижной точки, описывая медленную дугу в любом направлении. Гигантские маятники такого рода сейчас являются обычными экспонатами в некоторых крупных музеях, включая Смитсониановский музей в Вашингтоне и Музей науки в Лондоне.
   После того как маятник Фуко приведен в движение, направление его раскачивания вращается со скоростью примерно 12° в час, но на самом деле это иллюзия, поскольку наблюдатель движется вместе с остальным миром, а маятник сохраняет фиксированную позицию колебаний по отношению к окружающей Вселенной. Это происходит потому, что маятник не зависит от движения Земли, вращающейся под ним, из-за чего возникает впечатление, будто колебание маятника изменяет направление. Сами колебания происходят потому, что гравитационное поле Земли постоянно воздействует на маятник. Согласно общей теории относительности Эйнштейна, это непрерывное воздействие обусловлено тем фактом, что любая масса искривляет ткань пространства – времени вокруг него, заставляя другие массы соскальзывать во «впадину», которую она создает в структуре пространства – времени.
   Скорость вращения маятника Фуко зависит от широты. На Северном полюсе Земли кажется, будто маятник совершает полный оборот на 360° за каждый оборот Земли (т. е. каждый звездный день), так как планета под ним совершает полный оборот. В Северном полушарии на широте Британских островов скорость вращения уменьшается примерно до 280° в день и продолжает уменьшаться при приближении к экватору, где маятник Фуко вообще не вращается.
   В течение ста лет все знали, что маятник Фуко вращается совершенно предсказуемым образом в любом конкретном месте земной поверхности. В 1954 г. французский инженер, экономист и будущий физик Морис Аллэ обнаружил, что так бывает не всегда. Он проводил эксперимент с целью изучения возможной связи между магнетизмом и тяготением. В ходе этого эксперимента он высвобождал маятник Фуко на 14 минут в течение 30 суток и регистрировал направление движения в градусах. По чистой случайности в один из этих дней произошло солнечное затмение.
   Каждый раз маятник двигался с механической точностью, но 30 июня 1954 г., когда произошло частичное солнечное затмение, один из ассистентов Аллэ заметил, что маятник как будто сорвался с цепи. После начала затмения плоскость колебания маятника внезапно начала вращаться в обратном направлении. Отклонение достигло максимального значения за 20 минут до максимума солнечного затмения, когда Луна закрыла значительную часть солнечной поверхности, и вернулось к норме после окончания затмения. Казалось, что колебания маятника каким-то образом связаны со взаимным расположением Земли, Луны и Солнца.
   Это было поразительно и совершенно необъяснимо. Эксперимент Аллэ проводился в помещении, куда не проникал солнечный свет, поэтому было непонятно, каким образом затмение могло прямо повлиять на него. Сам Аллэ затруднился объяснить, что произошло, но когда он провел уточненный вариант своего эксперимента в июне и июле 1958 г. с двумя маятниками, отстоящими друг от друга на 6 км, он обнаружил сходный эффект. Во время частичного солнечного затмения 22 октября 1959 г. Аллэ снова наблюдал такое же хаотическое вращение, но на этот раз о сходных наблюдениях сообщили трое румынских ученых, ничего не знавших о его работе.
   Многие усомнились в его результатах главным образом потому, что ученым не нравятся необъяснимые вещи. Многие другие повторили эксперимент с противоречивыми результатами: некоторые не обнаружили никакого эффекта, поддающегося измерению, но большинство подтвердили результат в разных местах, включая одну подземную лабораторию.
   Интересно заметить, что в 1988 г. Аллэ получил Нобелевскую премию в области экономики. Подобно Александру Тому и многим другим разрушителям научных парадигм, он совершил крупное открытие, работая за пределами своей главной области исследований. Поступками замечательных людей движет любопытство, не скованное формальностями традиционного образования.
   Аллэ с сожалением говорит о противодействии, с которым приходится сталкиваться каждому первооткрывателю: «Любое революционное открытие в истории науки встречается с очень сильным противодействием… Релятивисты говорят, что я неправ, но не предоставляют никаких доказательств. Большинство из них даже не читали моих работ».
   В 1970 г. Эрвин Сашл и Милдред Аллсн из Маунт-колледжа в штате Массачусетс изучили поведение маятника до, во время и после полного солнечного затмения. Их эксперимент несколько отличался от предыдущих, так как они пользовались торсионным маятником, который представляет собой массивный диск, подвешенный на проводе, прикрепленном к его центру. Вращение диска приводит к закручиванию провода. При высвобождении диск начинает вращаться сначала по часовой стрелке, а затем против часовой стрелки с определенными интервалами. Но во время полного затмения движение маятника заметно ускорилось. Ученые пришли к выводу, что теория гравитации нуждается в поправках.
   В 1995 г. индийские ученые Д.К. Мишра и М.Б. Рао из Национального института геофизических исследований в Хайдарабаде наблюдали незначительное, но внезапное уменьшение силы тяготения при использовании крайне чувствительного и точного гравиметра во время солнечного затмения. Однако их результаты были неоднозначными. 22 июля 1990 г. во время солнечного затмения над Хельсинки финские геофизики не обнаружили возмущений в обычном движении маятника, однако в марте 1997 г. ученые наблюдали гравиметрические аномалии во время затмения в отдаленном районе Северо-Восточного Китая.
   Тайна остается тайной, но ни одно научное учреждение не хочет тратить время и деньги для глубокого изучения этого феномена. Однако Томас Гуди, независимый исследователь из Брентфорда в Англии, решил самостоятельно изучить «эффект Аллэ» с использованием нескольких маятников во время затмения. Поскольку современное оборудование является гораздо более точным и чувствительным, чем существовавшее в 1954 г. (точность измерений возросла с 20 до 100 раз), он уверен в получении четких результатов.
   В следующие несколько лет Гуди планирует объехать весь мир с 12 маятниками специальной конструкции. В мае 2004 г. он представил свой план на совещании Общества научных исследований в Лас-Вегасе и пригласил физиков присоединиться к нему. Как сообщается в статье журнала «Нью Сайентист», несколько специалистов воспользовались этой возможностью.
   Гуди полагает, что аномалии возникают в тех случаях, когда наблюдатели находятся рядом с линией, соединяющей центры масс Солнца и Луны. Во время полного солнечного затмения линия Луна – Солнце пересекает поверхность Земли в двух точках, например, на противоположных сторонах земного шара. Эта теория объясняет, почему эксперимент во время солнечного затмения в Хельсинки не привел к желаемому результату. Гуди считает, что наблюдения в точке «антизатмения», где затмения не видно, могут обладать значительно большей ценностью.
   Мы с интересом ожидаем завершения этого эксперимента. Надеемся, мы были правы в своем предположении, что маятники позволяют многое узнать о природе тяготения нашей планеты и ее гравитационных взаимоотношениях с Луной и Солнцем. Возможно ли, что Луна, закрывающая солнечный диск, служит экраном для непрерывного взаимодействия между Землей и Солнцем? Возможно ли, что, когда все три центра масс оказываются на одной линии, происходит еще неизвестное явление, имеющее физическую природу?
   Древние строители, которые изобрели мегалитический ярд и способ его измерения, могли обладать гораздо более глубоким пониманием маятникового эффекта, чем мы. Наши недавние открытия указывают на то, что они хорошо разбирались во взаимосвязи между Землей, Луной и Солнцем.
 
Особая взаимосвязь
 
   Наши первые находки в области мегалитической геометрии, описанные в книге «Первая цивилизация», побудили нас к изучению возможной связи между физическими параметрами Земли и древними системами мер и весов. Нас интересовало, является ли способ вычисления мегалитического ярда в некотором отношении специфическим для нашей планеты, существует ли какая-то связь между массой, скоростью вращения и орбитальным периодом, которая присуща только Земле, но не другим планетам?
   Сначала мы применили принципы мегалитической геометрии ко всем планетам Солнечной системы. Нам не удалось выявить какой-либо закономерности: результаты выглядели совершенно случайными. К примеру, для Марса мы получили 19,78 мегалитического ярда на угловую секунду, а для Венеры такое же значение достигало 347,8. Мы также проверили крупные спутники других планет, но все оказалось тщетным. Хиллари Ньюбиген, старая знакомая Криса, предлодала сопоставить количество дней в орбитальном периоде каждой планеты с ее размерами, но результаты снова ни к чему не привели.
   Потом мы обратились к Луне.
   Результат можно было назвать каким угодно, только не бессмысленным. Мы взяли лунный радиус, определенный НАСА как 1738,1 км, и рассчитали окружность в метрах, получив на вид бессмысленное число 10 920 800. Затем мы перевели это расстояние в мегалитические ярды и получили не менее произвольную величину 13 162 900.
   Затем мы применили правило мегалитической геометрии, разделив эту окружность на 366 градусов по 60 угловых минут и 6 угловых секунд. К нашему изумлению, на каждую угловую секунду для Луны приходилось по 100 мегалитических ярдов. Точность результата составляла 99,9%, что находится на границах погрешностей для таких расчетов.
   Не странно ли, что мегалитический ярд оказался подходящей единицей измерения не только для Земли, но и для Луны?
   Потом мы обратились к Солнцу. Поскольку мы знали, что Солнце в 400 раз больше Луны, то по логическим соображениям его размер должен был составлять 40 000 мегалитических ярдов на одну угловую секунду. Мы провели расчеты для верности и убедились в своей правоте.
   Все это казалось очень странным. Мегалитические сооружения, построенные в Западной Европе, очевидно, использовались для наблюдения за движением Солнца и Луны, но как может единица длины, применявшаяся при строительстве этих сооружений, так замечательно вписываться в окружность этих небесных тел, а также Земли?
   Совпадение? С учетом остальных странных фактов, связанных с Луной, было бы крайне неразумно списывать все на случайную игру природы. Разумеется, мы отдавали себе отчет в том, что числа, которыми мы пользуемся, подтверждают нашу гипотезу лишь в том случае, если они принадлежат к десятеричной системе счисления. Впоследствии мы еще вернемся к этому вопросу.
   Если это не совпадение, можно выдвинуть два других предположения. Первое заключается в том, что в силу неизвестного закона астрофизики возникли некоторые взаимоотношения, которые были так или иначе замечены нашими предками в эпоху каменного века. Другое предположение – все это является результатом осознанного замысла.
   Идея осознанного замысла выглядела безумной: здравый смысл подсказывал, что этого не может быть. Впрочем, мы не забывали о мудрых словах Альберта Эйнштейна: «Здравый смысл – это собрание предрассудков, которые человек приобретает к восемнадцатилетнему возрасту».
   В возрасте 18 лет мы, как и все остальные, знали, что все в мире создано либо природой, либо руками человека. Но если отложить в сторону наши предрассудки о том, что возможно и что невозможно, можно найти логику даже в тех гипотезах, которые на первый взгляд кажутся безумными.
   Разумно ли считать, что каменщики эпохи неолита оказались достаточно умными, чтобы измерить полярную окружность Земли и изобрести единицу измерения, связанную с нашей планетой? Эту задачу можно решить с помощью очень простых орудий, как было доказано еще древними греками, но могли ли наши предки на самом деле измерить окружность Луны и Солнца?
   Или это имеет отношение к загадочному свойству маятников?
   Этот вопрос представлял для нас огромный интерес, однако самая большая загадка, которую предстояло решить, заключалась в размерах и расположении Луны.
 

Глава третья
ПРОИСХОЖДЕНИЕ ЛУНЫ

   Лучше всего считать Луну ошибкой наблюдения – ее просто не существует!
Приписывается Ирвину Шапиро из Гарвардского центра астрофизических исследований

 
   Один непреложный факт заключается в том, что Луна движется вокруг Земли. Она улыбается нам с ночного неба, но согласно всему, что знает наука, этого не должно быть.
   Древние греки были великими собирателями знаний и исследователями законов природы. В V в. до н. э. Демокрит, создавший теорию о происхождении вещества из невидимых частиц, называемых атомами, обратился к другому концу масштабной шкалы и предположил, что темные отметины на лунном диске могут быть горами. Немного позднее Евдокс из Книда, который был астрономом и математиком, вычислил Саросский цикл затмений и таким образом смог предсказывать их наступление.
   Около 260 г. до н. э. другой грек по имени Аристарх изобрел способ измерения размера Луны и ее расстояния от Земли. Его расчеты оказались неправильными, но крупный математик и астроном Гиппарх с острова Родос справился с этой задачей сто лет спустя. Он пользовался оригинальным методом измерений во время солнечного затмения. Затмение, о котором идет речь, было полным на Родосе, но лишь частичным в Александрии, которая находилась на расстоянии примерно 730 км. Заручившись поддержкой единомышленников, Гиппарх воспользовался известным расстоянием от Родоса до Александрии и разницей угловых величин полного и частичного затмения для определения истинного размера Луны и ее расстояния от Земли.
   В конце I в. н. э. Плутарх написал короткое сочинение о Луне под названием «О лике лунного светила», где предположил, что темные отметины на лунном диске являются глубокими впадинами, не отражающими солнечный свет. Он считал, что на Луне есть горы и речные долины, и даже высказал предположение о ее обитаемости.
   Хотя в V в. н. э. индийский астроном Ариабхата повторил и подтвердил эксперимент, проведенный Гиппархом, христианские власти того времени рассматривали Луну только в библейской трактовке, а любая информация о нашем ближайшем небесном соседе, противоречившая Священному Писанию, находилась под запретом. С победой христианства европейский мир вступил в эпоху, когда религия, а не наука служила руководством в жизни человека.
   Железная хватка христианской церкви немного ослабла в XV—XVI вв.: эпоха Возрождения произвела глубокие и радикальные перемены в европейской культуре. Именно тогда впервые были сформулированы основные ценности современного мира. Осознание культурного возрождения само по себе было характерно для этой эпохи. Итальянские ученые и критики этого периода утверждали, что их эпоха избавилась от былого варварства и обрела вдохновение в культуре Древней Греции и Рима, наиболее соответствовавшей ей по духу. В конце XVI в. гениальный Гали-лео Галилей из Пизы, один из самых блестящих ученых эпохи Возрождения, проводил эксперименты с маятниками и падающими телами, изучал законы оптики и занимался всем, что захватывало его воображение, но, самое главное, большую часть своей зрелой жизни Галилей был ревностным астрономом.
   В мае 1609 г. Галилей получил письмо от Паоло Сарпи с рассказом об оригинальной подзорной трубе, которую ему показал один голландец в Венеции. В апреле 1610 г. Галилей написал:
   «Примерно десять месяцев назад до меня дошла весть о том, что некий Флеминг изобрел подзорную трубу, с помощью которой видимые объекты, находящиеся на большом отдалении от глаза наблюдателя, становятся четко видны как бы вблизи. Существует несколько сообщений об этом поистине замечательном эффекте; некоторые люди верят им, а другие отвергают. Через несколько дней это сообщение было подтверждено письмом, полученным мною от парижанина Жака Бадовера, что побудило меня всецело предаться изучению средств и способов изобретения такого инструмента. Вскоре мне удалось сделать это исходя из принципа рефракции».
   На основании своих инженерных и математических навыков Галилей изготовил ряд телескопов с гораздо лучшими оптическими свойствами, чем у голландского инструмента. Его первый телескоп давал примерно четырехкратное увеличение и был сделан из линз, уже имевшихся в его распоряжении. Для улучшения качества своих телескопов Галилей научился изготавливать и полировать собственные линзы и в августе 1609 г. получил инструмент с восьми– или девятикратным увеличением. Он быстро осознал коммерческую и военную (особенно для целей мореплавания) ценность своего прибора, который он назвал perspicillum. В холодные ясные ночи зимы 1609 г. Галилей поворачивал свой телескоп к ночному небу, и ему удалось сделать несколько замечательных открытий.
   Астрономические открытия Галилея были описаны в небольшой книге под названием «Звездные послания», изданной в Венеции в мае следующего года. Они произвели настоящую сенсацию. Помимо всего прочего Галилей утверждал, что Млечный Путь состоит из крошечных звезд и что он видел четыре небольших спутника Юпитера и горы на Луне.
   Научные исследования Галилея легко могли пасть жертвой католической церкви, если бы его изображения Луны стали достоянием общественности. Согласно христианской традиции Солнце и Луна были безупречными незапятнанными сферами. Они просто не могли быть иными, поскольку их создал Господь, чьи творения не могли содержать изъянов. В конце концов папа римский поместил Галилея под постоянный домашний арест за богохульное утверждение, что Солнце находится в центре Солнечной системы. Возможно, Галилей знал о Луне гораздо больше, чем был готов признать публично.
   Для объяснения элементов лунного ландшафта, не противоречащего церковным доктринам, в христианских странах был предложен целый ряд гипотез. Вероятно, наиболее популярной из них – по крайней мере в течение некоторого времени – было предположение о том, что Луна является совершенным зеркалом. Таким образом на поверхности Луны люди видели не элементы лунного ландшафта, а отражение элементов земного ландшафта. Никому не пришло в голову, что, поскольку Луна вращается вокруг Земли, отметины на лунном диске должны постоянно изменяться, так как Земля под ним не остается неизменной.
   Другая гипотеза, принятая в некоторых кругах, заключалась в существовании таинственных испарений между Землей и Луной. Считалось, что образы, присутствовавшие в солнечном свете, отражались от этих «паров». Но самая популярная теория, не нарушавшая церковную доктрину, гласила, что вариации плотности Луны создают оптические иллюзии, которые мы видим как отметины на лунной поверхности. Это странное объяснение было безопасным, хотя едва ли могло убедить ученых того времени и определенно не производило никакого впечатления на Галилея.
   После Галилея конструкция телескопов была значительно усовершенствована, и всем, кто изучал Луну, стало ясно, что она представляет собой сферу со скалистой и неровной поверхностью. По мере того как церковь постепенно утрачивала свою власть над научной мыслью, многие старые представления о Луне становились неприемлемыми. Но никто не имел представления, откуда взялась Луна и почему она движется именно по такой орбите вокруг Земли.
   Вскоре тема Луны приобрела важное значение для астрономов. Империи, создаваемые Британией, Францией и Испанией, неуклонно расширялись. Это требовало длительных морских путешествий и привело к настойчивым поискам определения долготы на корабле, который находится в море. Довольно легко установить положение на поверхности планеты по линии север – юг (широта), но долгое время было невозможно узнать, где вы находитесь на линии восток – запад (долгота). К примеру, в Северном полушарии широту можно быстро вычислить, измерив угловое расстояние между горизонтом и Полярной звездой. Этот угол также определяет положение наблюдателя к северу от экватора.