новодческих, агрохимических и мелиоративных центров, системы механизации сельскохозяйственных работ, стоящих за спиной всех этих частных систем огромной индустрии машин и материалов. Единственный относительно природный компонент этой системы - поле. Поле, над которым небо то пасмурное и серое, то безоблачное и нестерпимо яркое; поле, над которым порой проносится ураган, а порой стоит полная тишина... Согласитесь, описанная система очень сложна и во многом противоречива. А что бывает со слишком сложными (и тем более противоречивыми) системами, известно очень хорошо...
9 ноября 1965 года произошла "катастрофа века": за 11 минут на огромной территории США и Канады полностью отключилось электричество. Перестали двигаться поезда и лифты, погас свет в операционных и на посадочных полосах аэродромов, остановились заводы, застыл металл в электропечах. Зрелище погасших окон Нью-Йорка было настолько невыносимо мрачным, что самоубийц в эту ночь было в несколько раз больше обычного.
Причиной катастрофы была слишком большая сложность единой энергосистемы "Канада - США Восточная". Она, эта сложность, делала немыслимым дублирование всех подсистем общей системы, которые, по теории вероятностей, могли когда-нибудь выйти из строя.
В результате достаточно было отказа одного из реле, чтобы...
В сложной системе современного сельского хозяйства мы не в состоянии задублировать все ее подсистемы уже потому, что не все они в нашей власти. Поэтому дальнейшее усложнение приводит не только к увеличению продуктивности, но и к увеличению потенциальной "опасности срыва". Последствия реализации такой опасности (пусть она даже будет крайне редкой) могут быть куда более катастрофичными, чем результаты описанной "катастрофы века". И уж, во всяком случае, абсолютная "цена потерь" будет значительно выше любых неурожаев прошлых веков.
Отсюда-то и следует вывод об относительной призрачности нашей независимости от природы. Похоже, что с течением времени она не только не уменьшается, но и увеличивается: достаточно не сработать одному реле, и...
Обсуждая проблему "земледелия под крышей", надо обязательно иметь в виду эту сторону вопроса.
Ведь в таком земледелии есть возможность контролировать все части системы. Кроме того, здесь легко решаются проблемы засорения среды и максимальной концентрации энергии и техники на единице производственной площади. Впрочем, термин "закрытый грунт"
все больше стареет. Человек переходит от эксплуатации естественной почвы к использованию искусственных сред.
То, что луковица может расти в стакане с водой, было известно с незапамятных времен. На Нижегородской ярмарке в конце XIX века К. Тимирязев демонстрировал "водную культуру" многочисленных сельскохозяйственных растений, однако окончательно "гидропоника" (что в переводе с греческого означает "работа с водой") как производственное направление оформилась лишь в 1940 году, после выхода в свет работ нескольких американских исследователей.
Первая промышленная гидропонная установка - корыто с питательным раствором и вместо земли поддерживающее пористое или перфорированное устройство для растений (модель - луковица в стакане).
Очень скоро оказалось, что, ставшие когда-то сухопутными, растения не слишком склонны к воспоминаниям. Их корни не выдерживают постоянного контакта с водой, поражаются разными заболеваниями; в результате снижение урожаев по сравнению с "контролем", обычной почвой. Выход нашли в продувании питательного раствора воздухом, однако это удорожает установку.
Тогда гидропоника трансформировалась в "аэропонику". Ее изобретатели утверждают, что их предшественницей была известная ассирийская царица Семирамида, устроившая, по библии, висячие сады.
Одно из чудес света в современной интерпретации выглядит следующим образом. Посадим луковицу (это для наглядности, точно так же можно сажать и любые другие семена) в "стакан" без дна. "Поле" - это длинное решето, в отверстиях которого размещаются семена. Над и под решетом проходят трубы с мелкими отверстиями. По ним насосами подается: внизу - питательный раствор, вверху - обычная вода.
Первый кормит корни, вторая освежает листья, чтобы они лучше трудились.
У аэропоники есть и другие варианты, но все они базируются на одном принципе - периодическом опрыскивании растений. Тем самым в отличие от чисто водной культуры к корням получает доступ и воздух. А аэрация им совершенно необходима: какими бы водохлебами ни были огурцы, они все же не водоросли.
В аэропонике плохо одно - быстрое подсыхание корней (на то и теплица, чтобы в ней было тепло!).
Поэтому приходится поддерживать повышенную влажность в прикорневой зоне или защищать корни специальными полиэтиленовыми мешочками со сливом (вот вам и индивидуальная теплая уборная!).
Дорого и сложно? Тогда давайте посмотрим, как выглядит агрегатопоника. Она в качестве "корнеобитаемой среды" (более древнее название - земля) использует: песок, гравий, разный по составу и происхождению щебень, шлаки - отходы металлургии, торф, солому и многое другое (в том числе и искусственные синтетические материалы).
Первые десять лет увлечения агрегатопоникой привели исследователей к ошеломляющим результатам:
съем растений с одного квадратного метра бетонных корыт, набитых гравием (или другими вышеперечисленными средами) поражал и величиной и дешевизной. В самом деле, в "земляных теплицах" почву приходится периодически обеззараживать - пропаривать, прожигать, а иногда и полностью удалять, заменяя новой. Возни с ней куда больше чем в геле. А здесь не почва - гравий...
Очень скоро "агрегатопонисты" с огорчением убедились, что они сгибаются. Им пришлось вспомнить, что естественная почва не что иное как продукт, получившийся из того же мелкого гравия, песка и щебня, продукт эрозии горных пород. В тот день, когда самая храбрая водоросль выползла на берег и уцепилась за эбломки скалы, в тот день и начался процесс почвообразования. В ходе этого процесса растения кое-что добавляли в камень - собственные отходы, собственные тела... Потом появились черви, нематоды, животные...
Когда первый "агрегатопонист" наполнил гравием первое корыто, посадил в него огурцы и включил насос, он включил и процесс первичного почвообразования.
Остатки корней, отходы, потом - микроорганизмы, грибы и бактерии... Через 5-7 лет урожай в гравийной культуре падает до минимума. Приходится опорожнять корыта. А жаль, здесь все так просто: насос прокачивает сквозь гравий питательный раствор, излишки его сливаются во второе - нижнее корыто (поддон), откуда вновь забираются насосом...
Из создавшегося положения есть два выхода: либо использовать для изготовления почвозаменителей совершенно инертные материалы, либо сделать что-то вроде почвы, но такой, чтобы она не изменялась во времени.
И, конечно, во всех случаях хорошо бы иметь такие растения, у которых были бы съедобны и вершки и корешки (вышеупомянутый редисо-салат, например).
Первое направление реализуется с помощью синтетики: разных вариантов гранулированных полихлорвинилов, пенополпстиролов и т. д. и т. п. Второе ориентируется на так называемые ионообменные смолы. Изготавливают их в виде гранул-шариков. В каждой грануле есть все необходимые растению элементы питания.
Достаточно заполнить корыто с гранулами чистой водой, как начинается обмен ионами. В воде смолы не растворяются, зато в ее присутствии отдают корням нужные им ионы калия, кальция, магния и железа, а также катионы соединений серы, азота и фосфора. Взамен они получают продукты жизнедеятельности корней:
ионы водорода и тому подобные отходы.
Дожив до гидропоники, растениеводство дожило и до того долгожданного момента, когда его можно наконец величать "промышленным". При этом новый титул отвечает вовсе не форме, а самому содержанию принципиально новых процессов выращивания растений. Эти процессы приобрели все основные черты индустриальных:
они протекают в полностью искусственной стандартной среде, с оптимальными, регулируемыми параметрами и основываются на использовании стандартных по свойствам материалов - почвы, растений. Не мудрено поэтому, что выращивание последних может теперь производиться не только с помощью машин, но и непосредственно "в машинах", как это принято в металлургии или в машиностроении. Вот несколько примеров...
Представьте себе диск, разделенный на множество одинаковых по размерам лотков-секторов, заполненных стандартной корнеобитаемой средой. Диск медленно вращается, входит в сектор посева, где неподвижно (вот она, полная стационарность техники с сопутствующей ей полной автоматизацией и кибернетизацией!) закреплена сеялка. Устройство, лишь отдельными чертами напоминающее сеялку, производит абсолютно точный посев.
Далее лоток попадает в секторы проращивания и выращивания, где строго по заданной программе идет дождь, сияет солнце (чаще электрическое), веет ветер (часто углекислый), где умеренно тепло и в меру влажно... В секторе уборки стационарные машины чуткими руками изымают растение из "земли", а последнюю тщательно дезинфицируют, промывают и продувают...
Под руководством академика Г.Давтяна, директора единственного в нашей стране Института гидропоники, сейчас разработаны первые автоматизированные гидропонные фабрики, производящие зеленую подкормку для коров и другого скота и птицы, рассаду, лекарственные растения и многое другое. Освоены и выпускаются промышленностью многоярусные гидропонные установки, в которых выращиваются лук, рассада, зеленый корм.
Итак, растениеводство становится растениепроизводством. Постепенно оно заимствует у индустрии еще одну важную черту - возможность роста не вширь, а вверх, что особенно важно для густонаселенного мира.
Первые многоэтажные фабрики растений в нашей стране построены в Прибалтике и Армении, а за рубежом - в Австрии и Кувейте. Внешне они выглядят, как вертикальные башни - теплицы. Внутри движутся вертикально замкнутые или спиральные конвейеры, несущие растения от одной фазы их жизни к другой. Башни в три раза полнее вбирают в себя солнечную энергию, чем это могут сделать распластанные по земле одноэтажные теплицы, механизация их проще и дешевле, главное же - они занимают мало места и органически вписываются в городской пейзаж (который, вероятно, скоро станет наиболее распространенным на Земле).
Расчеты показывают: чтобы выращивание пшеницы в полностью контролируемой среде стало выгодным, нужно, чтобы эта среда повысила урожай в 200 раз.
Согласно Б. Мошкову, возможный урожай пшеницы - 10 тысяч центнеров. Это только в 125 раз больше, но...
...Мировая статистика показывает: уже несколько столетий идет процесс удорожания сельскохозяйственной продукции относительно промышленной. Еще вчера стоимость пишущей машинки равнялась центнеру говядины, сегодня "стоит" всего 10 килограммов, завтра будет стоить в 10 раз меньше.
У промышленной индустрии во много раз больше возможностей, чем у сельскохозяйственной, чтобы "делать быстрее, больше, дешевле". Следовательно, не исключено, что уже в самом недалеком будущем стоимость килограмма хлеба, выращенного методами промышленного растениеводства, окажется меньше, чем выращенного в рамках традиционного растениеводства.
Для некоторых других культур "пересечение кривых"
уже произошло; первыми на поток становятся овощи:
помидоры, огурцы, редис, салат; за ними "тянутся" дыни и кукуруза, лекарственные растения и цветы...
В связи с этим, а также в условиях все большей урбанизации сельское хозяйство многих небольших стран Западной Европы постепенно уходит под крышу.
Специалисты уже подсчитали, когда именно крыша укроет все поля Голландии, Бельгии, ФРГ, если сохранятся современные темпы строительства новых теплиц и фабрик. Цифры называют разные: от десяти до ста лет.
Конечно, было бы по меньшей мере наивно думать, что можно будет когда-нибудь укрыть крышей все поля и пастбища. Представьте себе теплицу размером во всю Среднерусскую равнину...
Но нужно ли укрывать все? Достаточно сделать промышленным производство вышеперечисленных наиболее трудоемких культур, чтобы это оказало огромное влияние и на все остальное растениеводство. Работая "рука об руку" с растениепроизводством, оно могло бы, например, получать от него семена и рассаду, саженцы и сеянцы. Это существенно увеличило бы продуктивность традиционного земледелия и улучшило бы гарантированность и качество получаемого урожая.
- А вот с этим я никак не могу согласиться! Мне кажется, что в теплицах выращивают не огурцы, а нечто их напоминающее. И хоть в огурце 95 процентов воды, все-таки, видимо, в поле эта вода - не совсем та вода...
- Ох, уж этот скепсис! Вы мне напоминаете праотца всех критиков - Мома. Был у греков такой бог: пока Зевс работал над созданием быка, Прометей над человеком, а Афина строила дом, он слонялся без дела и всех критиковал: глаза, мол, у быка не на рогах и ему не видно, кого бодать, сердце у человека внутри тела, и значит, никто не знает, на что он способен, а у дома нет колес, и поэтому домовладелец не может избавиться от докучливых соседей.
- Что же случилось с Момом?
- Зевс низверг его с высот небесных в Тартар...
Вынужденное путешествие Мома из бездн космических в бездны подземные греческой мифологией не описано. А жаль: поскольку оно должно быть достаточно длительным, хорошо бы узнать, ка" в старину решали проблему питания космонавтов. Для коротких космических рейсов она может быть решена с помощью достаточного запаса бутербродов. Другое дело - длительные: на несколько лет бутербродов не напасешь...
Здесь приходит на ум идея замкнутой экологической системы, способной организовать равновесное воспроизводство жизни в ограниченном объеме пространства.
Самый "простой" пример замкнутой экологической системы - это биосфера Земли: вот уже много миллионов лет она продуцирует самое себя, непрерывно обеспечивая условия для своей смерти и возрождения. Как говорил великий мудрец поэт Рудаки: "А мир желает лишь круговращенья".
С тех пор, как человек понял эту истину, а также ту, что он, возможно, уже разорвал замкнутое природное кольцо, ему все настойчивее приходит в голову мысль о создании кольца искусственного. Для длительных полетов в космосе оно совершенно необходимо, однако кто мы, как не космонавты, и что такое наша планета, как не корабль среди звезд? Идея создания замкнутой экологической системы вначале казалась актуальной лишь для тех, кто запускает ракеты, сейчас она не менее актуальна и для более земных профессий...
Любая замкнутая экологическая система (в том числе и биосфера Земли) состоит из трех "подсистем".
Первая - восстановительная - обеспечивает усвоение поступающих извне энергии и неживых (минеральных)
компонентов среды и превращает их в живую материю.
Это растения, или в более широком научном смысле - автотрофные организмы, подготавливающие пищу для остальных, объединенных второй окислительной системой. Основной частью ее являются челюсти и желудочно-кишечный тракт. Они обеспечивают переработку запасенных продуктов в тела гетеротрофов.
Жизнь не могла бы замкнуть круг и обеспечить свое существование, не будь смерти. Последняя, отправив гетеротрофов на тот свет, обеспечивает возможность функционирования следующей подсистемы минерализации останков живого. Входящие в нее организмы перерабатывают органику и возвращают ее в исходное минеральное состояние, чем обеспечивают возможность жизни автотрофов и замыкают круг.
Первой простейшей искусственной замкнутой экологической системой, сознательно сконструированной человеком, была система, состоящая из все тех же трех блоков: его самого, водоросли хлореллы и различных автоматических устройств, разлагающих остатки жизнедеятельности первых двух.
Метод конструирования такой системы достаточно прост. Известно, например, что для обеспечения полного поглощения всего углекислого газа, производящегося одним человеком, достаточно 25-40 литров суспензии (механического раствора в воде) хлореллы. Приняв этот объем за 100-процентное удовлетворение этой потребности человека, найдем количество кислорода, выделяемого указанным объемом. Оно несколько выше потребности человека в кислороде, и, значит, система будет постепенно переполняться кислородом. Белков и жиров названное количество хлореллы произведет также больше, чем нужно, а углеводов и серосодержащих аминокислот - меньше нормы... Переберем все жизненные потребности человека и посчитаем, насколько справляется система с их обеспечением. В результате получим ступенчатую диаграмму. Некоторые ее ступеньки доходят до черты "100 процентов", но большинство либо "вылезает" над ней, либо не доходит до нее. Значит, следует подумать, как срезать выступы и чем заполнить впадины. Сделать это можно либо с помощью других организмов, дополняющих хлореллу, либо - частично - с помощью заменяющих искусственных устройств.
Сейчас уже очевидно, что в далекий космос человек отправится не один и не наедине с хлореллой, а в компании с достаточно большим числом разных растений и животных. В этом путешествии, как и на Земле, жизнь человека будет тем лучше застрахована от неприятных неожиданностей, чем более разнообразен биологический состав путешествующих. Очень уж хрупка и неустойчива простейшая система "человек - хлорелла".
Важнейшая черта искусственной замкнутой экологической системы, как и естественной биосферы в целом,- безотходность. Вот что сейчас привлекает к ней внимание инженера, агронома и зоотехника.
Моделировать круговращение природы - "замыкать круг" человек научился довольно давно, с тех пор, как изобрел конвейер - бесконечную цепь или ленту, бесконечное число раз пробегающую через приводной шкив или звездочку. В 40-х годах текущего столетия он предложил конвейерную систему выращивания растений. Поточная система содержания сельскохозяйственных животных была изобретена немного раньше: первый патент на нее выдали в Шотландии в 1937 году.
Идея "животноводство на конвейере" основывается на принципах, сходных с промышленным растениеводством. Начнем с того же медленно вращающегося плоского круга, имеющего сектора: "кормление", "уход", "уборка отходов", "забой", "дезинфекция"... На его поверхности можно разместить, например, свиней или птиц, разделив их перегородками на ряд отсеков. Соединив несколько таких колец и насадив на общий вертикальный вал, получим башню-ферму...
Экономические расчеты и уже достаточно обширная практика конвейерной системы содержания животных показывают, что в большинстве случаев она слишком дорога и потому малоэффективна. Одной из причин является сложность системы приготовления и раздачи кормов, которая вынуждена сочетать полевую подсистему (в ней увязаны все машины - от плуга до кормоуборочных комбайнов) и подсистему стационарную (машины для переработки растений, их измельчения, смешивания и т. п.). Эта в значительной степени деконцентрированная система плохо согласуется с промышленной конвейерной, основывающейся на применении стационарной техники...
Второй порок промышленного животноводства - тоже в его оторванности от растениеводства. Громадная концентрация техники, энергетических средств и животных - с одной стороны, и "размазанность" производства по огромной территории - с другой. Ближайшее последствие сосредоточения скота на крупных "комплексах" - трудности с возвратом отходов на поле. Когда почти все 100 процентов жителей Земли могли называть себя крестьянами, проблемы возврата экскрементов и других отходов человека на поля не существовало. Появление городов и канализации знаменовало начало конца органической связи человек - поле. Впрочем, пока коровы помещались в маленьких примитивных коровниках, большой беды в этом не было; сохранялась другая связь: домашнее животное - поле...
Но вот коровы (а также свиньи, куры и все остальные) переселились в капитальные сооружения, которые теперь принято называть животноводческим комплексом. Появились целые города для животных... Урбанизация животноводства - это начало конца цепочки животное - почва. Теперь навоз и другие отходы чаще попадают в реки, чем на поле...
А что, если сочетать промышленное животноводство с промышленным растениеводством, что, если накрыть их одной крышей? В начале 70-х годов такая идея пришла в голову Е. Жуку - одному из научных сотрудников Всесоюзного НИИ сельхозмашиностроения. Сейчас она уже облечена в рамки проекта.
Представьте себе круглое многоэтажное здание, чтото вроде цирка по размерам. Внутренняя часть "цирка"
(его "арена") занята под промышленное растениеводство. Здесь движутся горизонтально или вертикально замкнутые конвейеры - "растильни", производящие корм для животных. В качестве основного корма используется зерно ячменя. Оно хранится в центральной башне-хранилище, откуда выбирается специальными механизмами и строго дозированно высевается в лотки гидропонной установки. Корнеобитаемая среда здесь - ячменная солома. Установки-растильни занимают первый кольцевой участок, охватывающий центральное хранилище. Второе кольцо - конвейер животных, периодически движущихся "на поводке".
Два раза в день один из секторов гидропонной растильни выдает созревшую зеленую массу в кормоприготовительную машину. Последняя измельчает ее вместе со "средой обитания" - соломой и сбрасывает в кормушку. Второй конвейер подводит корову к корму...
Встреча растения и животного, таким образом, не разделена ни пространством, ни временем: круглый год один, стандартный по свойствам и всегда свежий корм.
Ну а отходы? С ними тоже не в пример легче, чем на комплексах. Путем метанового сбраживания они превращаются в горючий метан и обеззараженный, без вкуса и запаха ил - великолепное удобрение, которое примешивается к соломе, прежде чем на нее упадут новые семена.
Нетрудно видеть, что описанная система не совсем замкнута: "со стороны" она получает ячменное зерно и солому, а также энергию (метан из навоза покрывает всего 30 процентов потребности). Но зато эта система тоже кое-что поставляет "на сторону" - молоко. Кстати говоря, стоимость его вовсе не так уж ошеломляюща, как кажется на первый взгляд. Напротив, расчеты показывают, что она может быть существенно ниже обычной. Ведь эта система соединяет растениеводство и животноводство, делает их стационарными, предельно энергонасыщенными и автоматизированными. Она не требует расходов на транспорт, на выполнение полевых работ, на неблагодарную работу с навозом и т. д.
Замкнутая экологическая система Е. Жука - одна из наиболее простых. Она состоит всего из нескольких звеньев: растения, животного и бактерий, связывающих их. Существуют и более сложные проекты, на первый взгляд даже сумасшедшие, включающие в вышеописанную систему например... мух (автор этой идеи Ю. Колтыпин.) А между тем уже сегодня муховодство совершившийся факт, возможно, свидетельствующий о рождении новой отрасли производства.
За один раз муха откладывает 100-150 яиц. В нормальных условиях эту операцию она повторяет аккуратно через 2-4 дня. И без расчетов ясно, что обеспечь мы мухе нормальные условия, и яиц станет бесконечно много. Из яиц очень быстро появляются хорошо известные рыбакам черви - опарыши. Рыба не зря считает их лакомством: они очень богаты жирами и белками.
"Звено из мух" в замкнутой экологической системе выглядит так: навоз мухи - личинки - рыба - рыбная мука - свиньи - и снова навоз. Впрочем, цепь может быть и покороче, если имеет полную гарантию того, что прудовая рыба получает чистый корм...
Ученые университета штата Южная Каролина (США) разработали собственный вариант замкнутой экологической системы. Они назвали его "конвертером протеина". Это круглое трехэтажное здание, центр которого занимают хранилища, скотобойня и холодильники, административные помещения, вычислительный центр. Верхний этаж под стеклянной крышей - гидропоникум. Здесь выращивают тритикале - гибрид пшеницы и ржи, зеленые растения которого содержат значительно больше протеина, чем исходные формы. Второй этаж, птичник на 200 тысяч голов, получает корм сверху, а отходы отправляет, вполне естественно, вниз.
Здесь они после некоторой переработки попадают в... гигантский аквариум, выращивающий прудового карпа или... раков (есть и вариант с морскими омарами).
Корм, попадающий на стол водных жителей, производится целиком из навоза (один из вариантов производства - мухи).
Аквариум - самое внутреннее из нескольких жилых колец первого этажа. Следующее за ним населено 22 тысячами свиней (или овец), а два наружных 35 тысячами голов крупного рогатого скота. Навоз этих животных собирается и подвергается сбраживанию, конечным результатом которого являются метан и удобрение. Последнее используется в гидропоникуме, а метан двумя путями: его можно употребить для отопления конвертера или для... выращивания кормового белка.
Все рабочие операции и наблюдение за животными ведутся с помощью кранов, двигающихся под потолком по междуэтажным перекрытиям (вспомните "мостовое земледелие"!). В конвертере все предельно автоматизировано, вплоть до контроля за индивидуальным состоянием здоровья животных. Для этого в ухо каждого обитателя вставляют микродетектор...
9 ноября 1965 года произошла "катастрофа века": за 11 минут на огромной территории США и Канады полностью отключилось электричество. Перестали двигаться поезда и лифты, погас свет в операционных и на посадочных полосах аэродромов, остановились заводы, застыл металл в электропечах. Зрелище погасших окон Нью-Йорка было настолько невыносимо мрачным, что самоубийц в эту ночь было в несколько раз больше обычного.
Причиной катастрофы была слишком большая сложность единой энергосистемы "Канада - США Восточная". Она, эта сложность, делала немыслимым дублирование всех подсистем общей системы, которые, по теории вероятностей, могли когда-нибудь выйти из строя.
В результате достаточно было отказа одного из реле, чтобы...
В сложной системе современного сельского хозяйства мы не в состоянии задублировать все ее подсистемы уже потому, что не все они в нашей власти. Поэтому дальнейшее усложнение приводит не только к увеличению продуктивности, но и к увеличению потенциальной "опасности срыва". Последствия реализации такой опасности (пусть она даже будет крайне редкой) могут быть куда более катастрофичными, чем результаты описанной "катастрофы века". И уж, во всяком случае, абсолютная "цена потерь" будет значительно выше любых неурожаев прошлых веков.
Отсюда-то и следует вывод об относительной призрачности нашей независимости от природы. Похоже, что с течением времени она не только не уменьшается, но и увеличивается: достаточно не сработать одному реле, и...
Обсуждая проблему "земледелия под крышей", надо обязательно иметь в виду эту сторону вопроса.
Ведь в таком земледелии есть возможность контролировать все части системы. Кроме того, здесь легко решаются проблемы засорения среды и максимальной концентрации энергии и техники на единице производственной площади. Впрочем, термин "закрытый грунт"
все больше стареет. Человек переходит от эксплуатации естественной почвы к использованию искусственных сред.
То, что луковица может расти в стакане с водой, было известно с незапамятных времен. На Нижегородской ярмарке в конце XIX века К. Тимирязев демонстрировал "водную культуру" многочисленных сельскохозяйственных растений, однако окончательно "гидропоника" (что в переводе с греческого означает "работа с водой") как производственное направление оформилась лишь в 1940 году, после выхода в свет работ нескольких американских исследователей.
Первая промышленная гидропонная установка - корыто с питательным раствором и вместо земли поддерживающее пористое или перфорированное устройство для растений (модель - луковица в стакане).
Очень скоро оказалось, что, ставшие когда-то сухопутными, растения не слишком склонны к воспоминаниям. Их корни не выдерживают постоянного контакта с водой, поражаются разными заболеваниями; в результате снижение урожаев по сравнению с "контролем", обычной почвой. Выход нашли в продувании питательного раствора воздухом, однако это удорожает установку.
Тогда гидропоника трансформировалась в "аэропонику". Ее изобретатели утверждают, что их предшественницей была известная ассирийская царица Семирамида, устроившая, по библии, висячие сады.
Одно из чудес света в современной интерпретации выглядит следующим образом. Посадим луковицу (это для наглядности, точно так же можно сажать и любые другие семена) в "стакан" без дна. "Поле" - это длинное решето, в отверстиях которого размещаются семена. Над и под решетом проходят трубы с мелкими отверстиями. По ним насосами подается: внизу - питательный раствор, вверху - обычная вода.
Первый кормит корни, вторая освежает листья, чтобы они лучше трудились.
У аэропоники есть и другие варианты, но все они базируются на одном принципе - периодическом опрыскивании растений. Тем самым в отличие от чисто водной культуры к корням получает доступ и воздух. А аэрация им совершенно необходима: какими бы водохлебами ни были огурцы, они все же не водоросли.
В аэропонике плохо одно - быстрое подсыхание корней (на то и теплица, чтобы в ней было тепло!).
Поэтому приходится поддерживать повышенную влажность в прикорневой зоне или защищать корни специальными полиэтиленовыми мешочками со сливом (вот вам и индивидуальная теплая уборная!).
Дорого и сложно? Тогда давайте посмотрим, как выглядит агрегатопоника. Она в качестве "корнеобитаемой среды" (более древнее название - земля) использует: песок, гравий, разный по составу и происхождению щебень, шлаки - отходы металлургии, торф, солому и многое другое (в том числе и искусственные синтетические материалы).
Первые десять лет увлечения агрегатопоникой привели исследователей к ошеломляющим результатам:
съем растений с одного квадратного метра бетонных корыт, набитых гравием (или другими вышеперечисленными средами) поражал и величиной и дешевизной. В самом деле, в "земляных теплицах" почву приходится периодически обеззараживать - пропаривать, прожигать, а иногда и полностью удалять, заменяя новой. Возни с ней куда больше чем в геле. А здесь не почва - гравий...
Очень скоро "агрегатопонисты" с огорчением убедились, что они сгибаются. Им пришлось вспомнить, что естественная почва не что иное как продукт, получившийся из того же мелкого гравия, песка и щебня, продукт эрозии горных пород. В тот день, когда самая храбрая водоросль выползла на берег и уцепилась за эбломки скалы, в тот день и начался процесс почвообразования. В ходе этого процесса растения кое-что добавляли в камень - собственные отходы, собственные тела... Потом появились черви, нематоды, животные...
Когда первый "агрегатопонист" наполнил гравием первое корыто, посадил в него огурцы и включил насос, он включил и процесс первичного почвообразования.
Остатки корней, отходы, потом - микроорганизмы, грибы и бактерии... Через 5-7 лет урожай в гравийной культуре падает до минимума. Приходится опорожнять корыта. А жаль, здесь все так просто: насос прокачивает сквозь гравий питательный раствор, излишки его сливаются во второе - нижнее корыто (поддон), откуда вновь забираются насосом...
Из создавшегося положения есть два выхода: либо использовать для изготовления почвозаменителей совершенно инертные материалы, либо сделать что-то вроде почвы, но такой, чтобы она не изменялась во времени.
И, конечно, во всех случаях хорошо бы иметь такие растения, у которых были бы съедобны и вершки и корешки (вышеупомянутый редисо-салат, например).
Первое направление реализуется с помощью синтетики: разных вариантов гранулированных полихлорвинилов, пенополпстиролов и т. д. и т. п. Второе ориентируется на так называемые ионообменные смолы. Изготавливают их в виде гранул-шариков. В каждой грануле есть все необходимые растению элементы питания.
Достаточно заполнить корыто с гранулами чистой водой, как начинается обмен ионами. В воде смолы не растворяются, зато в ее присутствии отдают корням нужные им ионы калия, кальция, магния и железа, а также катионы соединений серы, азота и фосфора. Взамен они получают продукты жизнедеятельности корней:
ионы водорода и тому подобные отходы.
Дожив до гидропоники, растениеводство дожило и до того долгожданного момента, когда его можно наконец величать "промышленным". При этом новый титул отвечает вовсе не форме, а самому содержанию принципиально новых процессов выращивания растений. Эти процессы приобрели все основные черты индустриальных:
они протекают в полностью искусственной стандартной среде, с оптимальными, регулируемыми параметрами и основываются на использовании стандартных по свойствам материалов - почвы, растений. Не мудрено поэтому, что выращивание последних может теперь производиться не только с помощью машин, но и непосредственно "в машинах", как это принято в металлургии или в машиностроении. Вот несколько примеров...
Представьте себе диск, разделенный на множество одинаковых по размерам лотков-секторов, заполненных стандартной корнеобитаемой средой. Диск медленно вращается, входит в сектор посева, где неподвижно (вот она, полная стационарность техники с сопутствующей ей полной автоматизацией и кибернетизацией!) закреплена сеялка. Устройство, лишь отдельными чертами напоминающее сеялку, производит абсолютно точный посев.
Далее лоток попадает в секторы проращивания и выращивания, где строго по заданной программе идет дождь, сияет солнце (чаще электрическое), веет ветер (часто углекислый), где умеренно тепло и в меру влажно... В секторе уборки стационарные машины чуткими руками изымают растение из "земли", а последнюю тщательно дезинфицируют, промывают и продувают...
Под руководством академика Г.Давтяна, директора единственного в нашей стране Института гидропоники, сейчас разработаны первые автоматизированные гидропонные фабрики, производящие зеленую подкормку для коров и другого скота и птицы, рассаду, лекарственные растения и многое другое. Освоены и выпускаются промышленностью многоярусные гидропонные установки, в которых выращиваются лук, рассада, зеленый корм.
Итак, растениеводство становится растениепроизводством. Постепенно оно заимствует у индустрии еще одну важную черту - возможность роста не вширь, а вверх, что особенно важно для густонаселенного мира.
Первые многоэтажные фабрики растений в нашей стране построены в Прибалтике и Армении, а за рубежом - в Австрии и Кувейте. Внешне они выглядят, как вертикальные башни - теплицы. Внутри движутся вертикально замкнутые или спиральные конвейеры, несущие растения от одной фазы их жизни к другой. Башни в три раза полнее вбирают в себя солнечную энергию, чем это могут сделать распластанные по земле одноэтажные теплицы, механизация их проще и дешевле, главное же - они занимают мало места и органически вписываются в городской пейзаж (который, вероятно, скоро станет наиболее распространенным на Земле).
Расчеты показывают: чтобы выращивание пшеницы в полностью контролируемой среде стало выгодным, нужно, чтобы эта среда повысила урожай в 200 раз.
Согласно Б. Мошкову, возможный урожай пшеницы - 10 тысяч центнеров. Это только в 125 раз больше, но...
...Мировая статистика показывает: уже несколько столетий идет процесс удорожания сельскохозяйственной продукции относительно промышленной. Еще вчера стоимость пишущей машинки равнялась центнеру говядины, сегодня "стоит" всего 10 килограммов, завтра будет стоить в 10 раз меньше.
У промышленной индустрии во много раз больше возможностей, чем у сельскохозяйственной, чтобы "делать быстрее, больше, дешевле". Следовательно, не исключено, что уже в самом недалеком будущем стоимость килограмма хлеба, выращенного методами промышленного растениеводства, окажется меньше, чем выращенного в рамках традиционного растениеводства.
Для некоторых других культур "пересечение кривых"
уже произошло; первыми на поток становятся овощи:
помидоры, огурцы, редис, салат; за ними "тянутся" дыни и кукуруза, лекарственные растения и цветы...
В связи с этим, а также в условиях все большей урбанизации сельское хозяйство многих небольших стран Западной Европы постепенно уходит под крышу.
Специалисты уже подсчитали, когда именно крыша укроет все поля Голландии, Бельгии, ФРГ, если сохранятся современные темпы строительства новых теплиц и фабрик. Цифры называют разные: от десяти до ста лет.
Конечно, было бы по меньшей мере наивно думать, что можно будет когда-нибудь укрыть крышей все поля и пастбища. Представьте себе теплицу размером во всю Среднерусскую равнину...
Но нужно ли укрывать все? Достаточно сделать промышленным производство вышеперечисленных наиболее трудоемких культур, чтобы это оказало огромное влияние и на все остальное растениеводство. Работая "рука об руку" с растениепроизводством, оно могло бы, например, получать от него семена и рассаду, саженцы и сеянцы. Это существенно увеличило бы продуктивность традиционного земледелия и улучшило бы гарантированность и качество получаемого урожая.
- А вот с этим я никак не могу согласиться! Мне кажется, что в теплицах выращивают не огурцы, а нечто их напоминающее. И хоть в огурце 95 процентов воды, все-таки, видимо, в поле эта вода - не совсем та вода...
- Ох, уж этот скепсис! Вы мне напоминаете праотца всех критиков - Мома. Был у греков такой бог: пока Зевс работал над созданием быка, Прометей над человеком, а Афина строила дом, он слонялся без дела и всех критиковал: глаза, мол, у быка не на рогах и ему не видно, кого бодать, сердце у человека внутри тела, и значит, никто не знает, на что он способен, а у дома нет колес, и поэтому домовладелец не может избавиться от докучливых соседей.
- Что же случилось с Момом?
- Зевс низверг его с высот небесных в Тартар...
Вынужденное путешествие Мома из бездн космических в бездны подземные греческой мифологией не описано. А жаль: поскольку оно должно быть достаточно длительным, хорошо бы узнать, ка" в старину решали проблему питания космонавтов. Для коротких космических рейсов она может быть решена с помощью достаточного запаса бутербродов. Другое дело - длительные: на несколько лет бутербродов не напасешь...
Здесь приходит на ум идея замкнутой экологической системы, способной организовать равновесное воспроизводство жизни в ограниченном объеме пространства.
Самый "простой" пример замкнутой экологической системы - это биосфера Земли: вот уже много миллионов лет она продуцирует самое себя, непрерывно обеспечивая условия для своей смерти и возрождения. Как говорил великий мудрец поэт Рудаки: "А мир желает лишь круговращенья".
С тех пор, как человек понял эту истину, а также ту, что он, возможно, уже разорвал замкнутое природное кольцо, ему все настойчивее приходит в голову мысль о создании кольца искусственного. Для длительных полетов в космосе оно совершенно необходимо, однако кто мы, как не космонавты, и что такое наша планета, как не корабль среди звезд? Идея создания замкнутой экологической системы вначале казалась актуальной лишь для тех, кто запускает ракеты, сейчас она не менее актуальна и для более земных профессий...
Любая замкнутая экологическая система (в том числе и биосфера Земли) состоит из трех "подсистем".
Первая - восстановительная - обеспечивает усвоение поступающих извне энергии и неживых (минеральных)
компонентов среды и превращает их в живую материю.
Это растения, или в более широком научном смысле - автотрофные организмы, подготавливающие пищу для остальных, объединенных второй окислительной системой. Основной частью ее являются челюсти и желудочно-кишечный тракт. Они обеспечивают переработку запасенных продуктов в тела гетеротрофов.
Жизнь не могла бы замкнуть круг и обеспечить свое существование, не будь смерти. Последняя, отправив гетеротрофов на тот свет, обеспечивает возможность функционирования следующей подсистемы минерализации останков живого. Входящие в нее организмы перерабатывают органику и возвращают ее в исходное минеральное состояние, чем обеспечивают возможность жизни автотрофов и замыкают круг.
Первой простейшей искусственной замкнутой экологической системой, сознательно сконструированной человеком, была система, состоящая из все тех же трех блоков: его самого, водоросли хлореллы и различных автоматических устройств, разлагающих остатки жизнедеятельности первых двух.
Метод конструирования такой системы достаточно прост. Известно, например, что для обеспечения полного поглощения всего углекислого газа, производящегося одним человеком, достаточно 25-40 литров суспензии (механического раствора в воде) хлореллы. Приняв этот объем за 100-процентное удовлетворение этой потребности человека, найдем количество кислорода, выделяемого указанным объемом. Оно несколько выше потребности человека в кислороде, и, значит, система будет постепенно переполняться кислородом. Белков и жиров названное количество хлореллы произведет также больше, чем нужно, а углеводов и серосодержащих аминокислот - меньше нормы... Переберем все жизненные потребности человека и посчитаем, насколько справляется система с их обеспечением. В результате получим ступенчатую диаграмму. Некоторые ее ступеньки доходят до черты "100 процентов", но большинство либо "вылезает" над ней, либо не доходит до нее. Значит, следует подумать, как срезать выступы и чем заполнить впадины. Сделать это можно либо с помощью других организмов, дополняющих хлореллу, либо - частично - с помощью заменяющих искусственных устройств.
Сейчас уже очевидно, что в далекий космос человек отправится не один и не наедине с хлореллой, а в компании с достаточно большим числом разных растений и животных. В этом путешествии, как и на Земле, жизнь человека будет тем лучше застрахована от неприятных неожиданностей, чем более разнообразен биологический состав путешествующих. Очень уж хрупка и неустойчива простейшая система "человек - хлорелла".
Важнейшая черта искусственной замкнутой экологической системы, как и естественной биосферы в целом,- безотходность. Вот что сейчас привлекает к ней внимание инженера, агронома и зоотехника.
Моделировать круговращение природы - "замыкать круг" человек научился довольно давно, с тех пор, как изобрел конвейер - бесконечную цепь или ленту, бесконечное число раз пробегающую через приводной шкив или звездочку. В 40-х годах текущего столетия он предложил конвейерную систему выращивания растений. Поточная система содержания сельскохозяйственных животных была изобретена немного раньше: первый патент на нее выдали в Шотландии в 1937 году.
Идея "животноводство на конвейере" основывается на принципах, сходных с промышленным растениеводством. Начнем с того же медленно вращающегося плоского круга, имеющего сектора: "кормление", "уход", "уборка отходов", "забой", "дезинфекция"... На его поверхности можно разместить, например, свиней или птиц, разделив их перегородками на ряд отсеков. Соединив несколько таких колец и насадив на общий вертикальный вал, получим башню-ферму...
Экономические расчеты и уже достаточно обширная практика конвейерной системы содержания животных показывают, что в большинстве случаев она слишком дорога и потому малоэффективна. Одной из причин является сложность системы приготовления и раздачи кормов, которая вынуждена сочетать полевую подсистему (в ней увязаны все машины - от плуга до кормоуборочных комбайнов) и подсистему стационарную (машины для переработки растений, их измельчения, смешивания и т. п.). Эта в значительной степени деконцентрированная система плохо согласуется с промышленной конвейерной, основывающейся на применении стационарной техники...
Второй порок промышленного животноводства - тоже в его оторванности от растениеводства. Громадная концентрация техники, энергетических средств и животных - с одной стороны, и "размазанность" производства по огромной территории - с другой. Ближайшее последствие сосредоточения скота на крупных "комплексах" - трудности с возвратом отходов на поле. Когда почти все 100 процентов жителей Земли могли называть себя крестьянами, проблемы возврата экскрементов и других отходов человека на поля не существовало. Появление городов и канализации знаменовало начало конца органической связи человек - поле. Впрочем, пока коровы помещались в маленьких примитивных коровниках, большой беды в этом не было; сохранялась другая связь: домашнее животное - поле...
Но вот коровы (а также свиньи, куры и все остальные) переселились в капитальные сооружения, которые теперь принято называть животноводческим комплексом. Появились целые города для животных... Урбанизация животноводства - это начало конца цепочки животное - почва. Теперь навоз и другие отходы чаще попадают в реки, чем на поле...
А что, если сочетать промышленное животноводство с промышленным растениеводством, что, если накрыть их одной крышей? В начале 70-х годов такая идея пришла в голову Е. Жуку - одному из научных сотрудников Всесоюзного НИИ сельхозмашиностроения. Сейчас она уже облечена в рамки проекта.
Представьте себе круглое многоэтажное здание, чтото вроде цирка по размерам. Внутренняя часть "цирка"
(его "арена") занята под промышленное растениеводство. Здесь движутся горизонтально или вертикально замкнутые конвейеры - "растильни", производящие корм для животных. В качестве основного корма используется зерно ячменя. Оно хранится в центральной башне-хранилище, откуда выбирается специальными механизмами и строго дозированно высевается в лотки гидропонной установки. Корнеобитаемая среда здесь - ячменная солома. Установки-растильни занимают первый кольцевой участок, охватывающий центральное хранилище. Второе кольцо - конвейер животных, периодически движущихся "на поводке".
Два раза в день один из секторов гидропонной растильни выдает созревшую зеленую массу в кормоприготовительную машину. Последняя измельчает ее вместе со "средой обитания" - соломой и сбрасывает в кормушку. Второй конвейер подводит корову к корму...
Встреча растения и животного, таким образом, не разделена ни пространством, ни временем: круглый год один, стандартный по свойствам и всегда свежий корм.
Ну а отходы? С ними тоже не в пример легче, чем на комплексах. Путем метанового сбраживания они превращаются в горючий метан и обеззараженный, без вкуса и запаха ил - великолепное удобрение, которое примешивается к соломе, прежде чем на нее упадут новые семена.
Нетрудно видеть, что описанная система не совсем замкнута: "со стороны" она получает ячменное зерно и солому, а также энергию (метан из навоза покрывает всего 30 процентов потребности). Но зато эта система тоже кое-что поставляет "на сторону" - молоко. Кстати говоря, стоимость его вовсе не так уж ошеломляюща, как кажется на первый взгляд. Напротив, расчеты показывают, что она может быть существенно ниже обычной. Ведь эта система соединяет растениеводство и животноводство, делает их стационарными, предельно энергонасыщенными и автоматизированными. Она не требует расходов на транспорт, на выполнение полевых работ, на неблагодарную работу с навозом и т. д.
Замкнутая экологическая система Е. Жука - одна из наиболее простых. Она состоит всего из нескольких звеньев: растения, животного и бактерий, связывающих их. Существуют и более сложные проекты, на первый взгляд даже сумасшедшие, включающие в вышеописанную систему например... мух (автор этой идеи Ю. Колтыпин.) А между тем уже сегодня муховодство совершившийся факт, возможно, свидетельствующий о рождении новой отрасли производства.
За один раз муха откладывает 100-150 яиц. В нормальных условиях эту операцию она повторяет аккуратно через 2-4 дня. И без расчетов ясно, что обеспечь мы мухе нормальные условия, и яиц станет бесконечно много. Из яиц очень быстро появляются хорошо известные рыбакам черви - опарыши. Рыба не зря считает их лакомством: они очень богаты жирами и белками.
"Звено из мух" в замкнутой экологической системе выглядит так: навоз мухи - личинки - рыба - рыбная мука - свиньи - и снова навоз. Впрочем, цепь может быть и покороче, если имеет полную гарантию того, что прудовая рыба получает чистый корм...
Ученые университета штата Южная Каролина (США) разработали собственный вариант замкнутой экологической системы. Они назвали его "конвертером протеина". Это круглое трехэтажное здание, центр которого занимают хранилища, скотобойня и холодильники, административные помещения, вычислительный центр. Верхний этаж под стеклянной крышей - гидропоникум. Здесь выращивают тритикале - гибрид пшеницы и ржи, зеленые растения которого содержат значительно больше протеина, чем исходные формы. Второй этаж, птичник на 200 тысяч голов, получает корм сверху, а отходы отправляет, вполне естественно, вниз.
Здесь они после некоторой переработки попадают в... гигантский аквариум, выращивающий прудового карпа или... раков (есть и вариант с морскими омарами).
Корм, попадающий на стол водных жителей, производится целиком из навоза (один из вариантов производства - мухи).
Аквариум - самое внутреннее из нескольких жилых колец первого этажа. Следующее за ним населено 22 тысячами свиней (или овец), а два наружных 35 тысячами голов крупного рогатого скота. Навоз этих животных собирается и подвергается сбраживанию, конечным результатом которого являются метан и удобрение. Последнее используется в гидропоникуме, а метан двумя путями: его можно употребить для отопления конвертера или для... выращивания кормового белка.
Все рабочие операции и наблюдение за животными ведутся с помощью кранов, двигающихся под потолком по междуэтажным перекрытиям (вспомните "мостовое земледелие"!). В конвертере все предельно автоматизировано, вплоть до контроля за индивидуальным состоянием здоровья животных. Для этого в ухо каждого обитателя вставляют микродетектор...