«АХИЛЛ И ЧЕРЕПАХА» ЗЕНОНА
   А( – место, откуда стартует Ахилл, Т( – место, откуда стартует черепаха. К тому времени, как Ахилл добегает из А( в А2, черепаха перемещается в Т2; пока Ахилл бежит из А2 в А3, черепаха снова перемещается вперед из Т2 в Т3; и так до бесконечности. Эта схема тоже как будто подтверждает, что черепаха выигрывает состязание.
 
   Третий парадокс Зенона, парадокс о стреле, самый простой из четырех, но, как показала история, самый сильный из них стимулятор для мысли. «Если летящая стрела в каждый момент времени находится в покое и занимает пространство, равное ее длине, то когда она движется?» В самом деле, когда? Этот вопрос хорошо бы задавать математикам и физикам, когда они начинают говорить нам о «состояниях» или «моментах», которые представляют собой «вещи в нерастянутом отрезке времени». Как можно построить движение из таких статических моментальных кадров покоя? Этот вопрос будет интересен для них и для любого другого человека тоже.
   Четвертая загадка Зенона заставляет нас еще раз вернуться на стадион. Ахилл и черепаха ушли – может быть, вопреки Зенону, они все-таки дошли до двери, – и вместо них перед нами три движущихся «тела» – повозки или колесницы, – выстроенные в определенном порядке. Одна стоит, вторая проезжает мимо нее. Сколько времени нужно второй, чтобы проехать расстояние, равное длине колесницы?
   Это, разумеется, зависит от скорости движущейся колесницы. Но какую бы скорость мы себе ни представили, нас просят принять «время проезда расстояния, равного одной длине колесницы», за единицу времени. (Здесь нужно заметить, что для здравомыслящего грека, любителя гонок на колесницах, длина колесницы была естественной мерой и расстояния, на которое одна колесница обгоняет другую, и времени, на которое раньше она финиширует.) А теперь представим себе, что третья колесница движется с той же скоростью, что вторая, но в противоположном направлении. Когда эти две колесницы проезжают одна мимо другой, время, необходимое каждой из них, чтобы проехать расстояние, равное одной длине колесницы, равно лишь половине исходной единицы. Итак, заключает Зенон свой парадокс, пол-единицы времени равняются целой единице времени. Этот его аргумент, когда оказывается понят, сильно озадачивает любого человека, который всегда считал само собой разумеющимся, что движение и покой – абсолютные противоположности. Те ответы, которые приходят в этом случае на ум нам самим, пришли в наш здравый смысл из теории относительности. Мы понимаем, что движение, конечно, всегда происходит относительно какой-то системы координат, то есть одна и та же колесница имеет разные скорости в зависимости от способа, которым измеряется скорость. Для слушателей Зенона эта мысль вовсе не была привычной. Если бы Зенон сказал в своем выводе: «Поэтому одно и то же движущееся тело одновременно имеет разные скорости», слушатели посчитали бы это такой же нелепостью, как то, что он им предложил: что целый отрезок времени равен половине этого отрезка.
 
   ПАРАДОКС ЗЕНОНА «СТАДИОН»
   AAA находится в покое, BBB движется от знака поворота, а CCC движется к знаку поворота с той же скоростью. Если мы примем «время проезда расстояния, равного одной длине колесницы», за единицу времени и измерим его по движению B относительно A, то B проедет мимо C за половину этого времени. Это противоречит представлению о том, что исходная выбранная единица времени была неделимой. Этот аргумент можно применить, чтобы показать, что не может быть наименьшего неделимого отрезка времени.
 
   Хотя современному читателю ясно, что Зенон действительно обнаружил важную истину, наш здравый смысл XX века настолько привык к тому, что скорость относительна, что эта четвертая задача для нас менее интересна, чем остальные три. Однако, если мы посмотрим на эти парадоксы как на критические выпады против «научных» идей о движении, которые излагали прифагорейцы, мы обнаружим, что в этом последнем из четырех парадоксов Зенон спрятал еще одну задачу.
   В то время, когда жили Зенон и Парменид, пифагорейцы были в западном мире экспертами по естественным наукам и математике. Выполняют ли четыре парадокса Зенона свою функцию критики распространенных тогда более точных определений пространства, времени и движения?
   Пифагорейцы, похоже, пришли к соглашению, что физический мир, включая пространство и время, складывается из отдельных «точек» и «моментов». Поэтому они определили бы движение примерно так, как мы определяем скорость, – как перемещение через определенное количество точек пространства за определенное количество моментов времени. В физике и геометрии пифагорейцы также единогласно признавали положение, что любой непрерывный объект, имеющий длину, – например, линия или ее часть – может быть разделен на две части. Но помимо этого согласованного общего мнения не было ни одного принятого всей их школой взгляда на то, каков размер моментов и точек: они могли не иметь вообще никакого размера или могли иметь соответственно конечную длину и конечную длительность. Не было согласованного единого мнения и на то, следует ли рассматривать линию, определяемую точками, как ряд точек, расположенных одна вплотную к другой, или считать, что точки на линии отмечают границы интервалов, а промежутки между точками заняты какой-то разновидностью пустоты или пространства3.
   Отсутствие согласия по поводу конкретных деталей означало, что Зенон должен был рассмотреть четыре возможных случая, чтобы показать, что ни одно точное описание не может быть свободно от противоречий. Похоже, он чувствовал, что Парменид уже доказал нелепость попыток заполнить промежутки между точками каким-то видом пустоты4. Такая пустота была бы формой небытия, а поскольку ничто не может что-то делать и не может иметь какие-то свойства, было бы нелогичным считать, что оно разделяет точки или связывает их. Поэтому не вызывают возражений с точки зрения логики только те варианты, в которых сегменты пространства (и времени) вплотную прилегают один к другому.
   Четыре возможных у пифагорейцев способа описать движение объединяются в две группы: либо (1) сегменты пространства и части времени не похожи друг на друга, либо (2) они похожи. Если (1) они не похожи, то либо (1a) каждый момент времени имеет определенную протяженность, а сегменты пространства ее не имеют, либо (1b) дело обстоит наоборот: точки имеют конечную длину, а моменты времени не имеют длительности. Если (2) время и пространство подобны одно другому, то либо (2a) элементы и того и другого не имеют никакой протяженности, либо (2b) элементы и того и другого имеют какую-то минимальную конечную длину [то есть либо T = 1, S = 1, либо T = 0, S = 0]5.
   Именно эти четыре возможности и рассмотрены по порядку в четырех парадоксах движения. Зримо представить это в компактной форме вам может помочь таблица:
 
   Для начала вернемся к задаче «Деление на два» и обратим внимание на то, что в этой головоломке предполагается, что пространство между вами и ведущей наружу дверью можно делить бесконечно. И для Зенона, и для Пифагора это означало, что пространственные точки не имеют длины. В то же время, когда Зенон сказал: «Чтобы пройти через каждую точку пространства, нужно какое-то время», он предполагал, что у моментов времени есть какая-то «длина» и поэтому, если сложить бесконечное количество моментов, в сумме получится бесконечное время. Это противоречие происходит оттого, что к пространству применяется пифагорейский постулат о том, что любое непрерывное количество можно разделить на две части, а к времени применяется другая пифагорейская теорема, что непрерывное количество представляет собой последовательность бесконечного числа отдельных точек. (С точки зрения арифметики раз пространственные точки не имеют длины и поэтому их длина равна нулю, то при их сложении не может получиться длина больше нуля. Но поскольку моменты времени имеют длительность, сумма любого количества этих моментов будет больше, чем нуль. Если теперь описать движение как отношение расстояния к времени s/t, получится 0/t, то есть неподвижность.)
   
Конец бесплатного ознакомительного фрагмента