Невольно напрашивается вопрос: что может вращаться в голове у дельфина? Оказывается, поворотный механизм звуковому лучу не нужен. Если иметь несколько источников звука и возможность гибко управлять их работой, специально подбирая параметры излучаемых посылок, и в первую очередь фазу звуковой волны, суммарный звуковой луч можно послать в любом направлении. Для этого достаточно всего двух источников звука, а у дельфина их может быть гораздо больше.
Ряд наблюдений как будто опровергает высказанную гипотезу. Исследователи перерезали нерв, иннервирующий область воздушных мешков на одной стороне головы дельфина. Предполагалось, что потеря управления половиной мышц приведет к полному нарушению работы звукоизлучателя. Однако никаких существенных изменений в звукоизлучении не произошло.
Полученные результаты поставили под сомнение предположение о вращении звукового луча. Но ее защитники парировали удар предположив, что при генерации локационных посылок воздушные мешки одной стороны работают в постоянном режиме. Подобный характер работы так прост, что она может и не пострадать из-за отсутствия нерва. Воздушные мешки на здоровой стороне продолжают подстраивать характеристики генерируемых колебаний, и звуковой прожектор нормально работает.
Вероятно, дельфины могут менять направление звукового луча и с помощью жировой подушки. Как уже говорилось выше, «акустическая линза» окружена мышечными слоями, и, следовательно, легко предположить, что она может менять конфигурацию, формируя звуковой пучок более широким или фокусируя его, а сдвигаясь вправо, влево, вверх или вниз, направлять звуковые волны в заданные точки пространства.
Пока никто не привел бесспорных доказательств в пользу подобного механизма работы звукового прожектора (хотя весьма вероятно, что прожектор работает именно так). Однако жировая подушка — слишком массивное образование, чтобы 1000 раз в секунду менять свое положение на голове животного.
Гипотеза о способности дельфина вращать звуковым лучом была привлекательна еще и потому, что объясняла происхождение многих особенностей локационных посылок. Первая из них — быстрое нарастание интенсивности звука. Как говорят акустики, локационная посылка имеет крутой передний фронт.
Если бы локационный луч вращался, перемещаясь в пространстве, он мог бы накрывать гидрофон в тот момента когда звук уже набрал полную силу, и тем создавать иллюзию очень быстрого его нарастания.
Большинство исследователей, изучавших звуки дельфинов, записывали локационные посылки на некотором расстоянии от животного. Этот метод имеет ряд недостатков. На пути от дельфина к гидрофону звук сильно меняется. Он поглощается, рассеивается, подвергается дисперсии[4] — и в таком искаженном виде доходит до гидрофона. Недаром исследователи всегда мечтали записать звук непосредственно в момент излучения в воду.
Американцы первыми укрепили гидрофоны на голове дельфина, а звуковые сигналы с помощью радиоприемника передавали на берег. Однако как ни совершенна современная радиоаппаратура, она вносит известные искажения в передаваемые звуки. Слишком сложен и многоступенчат путь от гидрофона на голове животного до магнитофона, находящегося на берегу. Попробовали гидрофон, укрепленный на голове дельфина, соединить проводами с магнитофоном, находящимся на берегу. Сами понимаете, насколько провода ограничили движение животного, как повлияли на его поведение и сколько внесли искажений в генерацию звуков.
Позже ученые пошли по другому пути. Они сконструировали миниатюрный магнитофон, который крепился на спину дельфина. Работой магнитофона ученые управляли с помощью радиосигналов. Созданный прибор уникален. Запись в нем осуществляется не на магнитную пленку, а на специальную проволоку, и вся записывающая часть сделана из материалов, совершенно не боящихся воды и потому не требующих футляра. По существу, это были три соединенных вместе магнитофона, позволяющих одновременно регистрировать акустические сигналы, которые записывались тремя гидрофонами, прикрепленными к коже специальными присосками.
Дельфин очень скоро привык к магнитофону и совершенно не обращал на него внимания. Исследователям удалось получить интересные результаты. Гидрофон, установленный слева от дыхала, регистрировал свист, а гидрофон, расположенный симметрично справа, не обнаруживал никаких звуков.
Следовательно, свисты генерируются одной половиной воздухоносных путей, однако благодаря акустической линзе могут посылаться вперед.
Анализируя записи звуков с разных участков головы животного, ученые убедились, что гортань и одна пара мешков не принимают участия в образовании звуков. Где они возникают — по-прежнему остается тайной. Как резюмировал в своей монографии известный советский биоакустик Е. Романенко, достоверно известно лишь, что звуки исходят из головы животных.
Тайный шифр
Плененная волна
Умейте задавать вопросы
Все, что творится в мире...
Зачем зайцу длинные уши?
Ряд наблюдений как будто опровергает высказанную гипотезу. Исследователи перерезали нерв, иннервирующий область воздушных мешков на одной стороне головы дельфина. Предполагалось, что потеря управления половиной мышц приведет к полному нарушению работы звукоизлучателя. Однако никаких существенных изменений в звукоизлучении не произошло.
Полученные результаты поставили под сомнение предположение о вращении звукового луча. Но ее защитники парировали удар предположив, что при генерации локационных посылок воздушные мешки одной стороны работают в постоянном режиме. Подобный характер работы так прост, что она может и не пострадать из-за отсутствия нерва. Воздушные мешки на здоровой стороне продолжают подстраивать характеристики генерируемых колебаний, и звуковой прожектор нормально работает.
Вероятно, дельфины могут менять направление звукового луча и с помощью жировой подушки. Как уже говорилось выше, «акустическая линза» окружена мышечными слоями, и, следовательно, легко предположить, что она может менять конфигурацию, формируя звуковой пучок более широким или фокусируя его, а сдвигаясь вправо, влево, вверх или вниз, направлять звуковые волны в заданные точки пространства.
Пока никто не привел бесспорных доказательств в пользу подобного механизма работы звукового прожектора (хотя весьма вероятно, что прожектор работает именно так). Однако жировая подушка — слишком массивное образование, чтобы 1000 раз в секунду менять свое положение на голове животного.
Гипотеза о способности дельфина вращать звуковым лучом была привлекательна еще и потому, что объясняла происхождение многих особенностей локационных посылок. Первая из них — быстрое нарастание интенсивности звука. Как говорят акустики, локационная посылка имеет крутой передний фронт.
Если бы локационный луч вращался, перемещаясь в пространстве, он мог бы накрывать гидрофон в тот момента когда звук уже набрал полную силу, и тем создавать иллюзию очень быстрого его нарастания.
Большинство исследователей, изучавших звуки дельфинов, записывали локационные посылки на некотором расстоянии от животного. Этот метод имеет ряд недостатков. На пути от дельфина к гидрофону звук сильно меняется. Он поглощается, рассеивается, подвергается дисперсии[4] — и в таком искаженном виде доходит до гидрофона. Недаром исследователи всегда мечтали записать звук непосредственно в момент излучения в воду.
Американцы первыми укрепили гидрофоны на голове дельфина, а звуковые сигналы с помощью радиоприемника передавали на берег. Однако как ни совершенна современная радиоаппаратура, она вносит известные искажения в передаваемые звуки. Слишком сложен и многоступенчат путь от гидрофона на голове животного до магнитофона, находящегося на берегу. Попробовали гидрофон, укрепленный на голове дельфина, соединить проводами с магнитофоном, находящимся на берегу. Сами понимаете, насколько провода ограничили движение животного, как повлияли на его поведение и сколько внесли искажений в генерацию звуков.
Позже ученые пошли по другому пути. Они сконструировали миниатюрный магнитофон, который крепился на спину дельфина. Работой магнитофона ученые управляли с помощью радиосигналов. Созданный прибор уникален. Запись в нем осуществляется не на магнитную пленку, а на специальную проволоку, и вся записывающая часть сделана из материалов, совершенно не боящихся воды и потому не требующих футляра. По существу, это были три соединенных вместе магнитофона, позволяющих одновременно регистрировать акустические сигналы, которые записывались тремя гидрофонами, прикрепленными к коже специальными присосками.
Дельфин очень скоро привык к магнитофону и совершенно не обращал на него внимания. Исследователям удалось получить интересные результаты. Гидрофон, установленный слева от дыхала, регистрировал свист, а гидрофон, расположенный симметрично справа, не обнаруживал никаких звуков.
Следовательно, свисты генерируются одной половиной воздухоносных путей, однако благодаря акустической линзе могут посылаться вперед.
Анализируя записи звуков с разных участков головы животного, ученые убедились, что гортань и одна пара мешков не принимают участия в образовании звуков. Где они возникают — по-прежнему остается тайной. Как резюмировал в своей монографии известный советский биоакустик Е. Романенко, достоверно известно лишь, что звуки исходят из головы животных.
Тайный шифр
Исследователей давно волнует вопрос, каковы локационные посылки дельфина, продуцируемые длинными сериями из десятков и сотен щелчков. Стандартны ли они или каждая посылка индивидуальна? Способны ли животные произвольно менять акустические характеристики локационных посылок или их генерация не поддается тонкому контролю и каждый щелчок случаен? Речь идет не о способности грубо менять параметры локационных посылок. Уже давно замечено, что самые первые и самые последние щелчки значительно отличаются от остальных щелчков серии. Две серии локационных посылок, особенно записанные в разных условиях, не похожи друг на друга. Совершенно очевидно, что дельфины формируют их в известной мере произвольно.
Читателю может показаться странным, что при наличии десятков километров магнитной пленки с записями локационных щелчков дельфинов в этом вопросе могут быть еще какие-то неясности. К сожалению, пока еще не удается создать такие условия эксперимента, которые не вносили бы помех в продуцируемые дельфином сигналы, и нет аппаратуры, способной без искажения и потери информации записать локационную посылку в первозданном виде.
Попробуем подойти к решению этого вопроса с чисто теоретических позиций. Широко известно, что даже на самом лучшем токарном станке невозможно выточить две совершенно одинаковые по размерам детали. Нет оснований думать, что звукогенератор дельфина в этом отношении совершеннее творений человеческих рук. Следовательно, быть совершенно одинаковыми локационные посылки не могут. Насколько велико их разнообразие? Абсолютно точно ответить на этот вопрос пока нельзя. Однако очевидно, что оно достаточно велико.
Два совершенно одинаковых импульса не должны появиться чаще, чем один раз на 1050 локационных посылок. Можно быть уверенным, что стадо лоцирующих дельфинов, зондируя заинтересовавший их предмет, ни в коем случае не пошлет в его сторону двух совершенно одинаковых посылок.
Другой вопрос, имеют ли существенное значение небольшие различия между двумя следующими друг за другом локационными импульсами и замечают ли эти различия сами дельфины. Большинство исследователей считает, что животные хранят в памяти представление о только что произведенной локационной посылке до возвращения эха, чтобы иметь возможность оценить, насколько оно отличается от зондирующего сигнала.
Весьма вероятно, что эха от одной локационной посылки недостаточно, чтобы разобраться в создавшейся ситуации, и животные накапливают последовательно поступающие эхосигналы. В сложной обстановке для быстрого сбора информации имеет смысл увеличить скорость генерации локационных посылок. Так на самом деле и происходит, однако это увеличение никогда не бывает значительным. Прежде чем послать очередную локационную посылку, дельфин обязательно должен дождаться, когда угаснет эхо от предыдущей. Вероятно, животным выгодно получить информацию с помощью десятков, а то и сотен очень похожих друг на друга локационных импульсов, чтобы иметь возможность разобраться, что в эхо зависит от особенностей отразившего звук предмета, а что — от наличия помех. Если используемые зондирующие посылки не дают возможности решить локационную проблему, приходится резко изменить их характер в надежде, что новые посылки окажутся более адекватными для распознавания заинтересовавшего животных предмета. Отдельные исследователи высказывали подозрения, что дельфин способен подстраивать параметры локализационных посылок под параметры исследуемого объекта. Но это только предположение. Достоверно известно лишь то, что животные могут генерировать десятки очень похожих друг на друга локационных посылок, но могут и резко менять их характер. Пока неясно, облегчает ли уникальность каждого локационного импульса решение локационных задач или дельфины стремятся генерировать строго одинаковые стандартные посылки, а их некоторые различия всего лишь дефект поточного производства.
Акустический скорострельный пулемет дельфина стреляет импульсами-бумерангами. Это тайный шифр китообразных. С помощью локационных посылок шифруются вопросы, задаваемые окружающему пространству. В отличие от охотничьих бумерангов австралийских аборигенов, возвращающихся к хозяину, если он промахнется, импульсы-бумеранги вернутся к дельфину только в том случае, если попадут в цель или наткнутся на какую-нибудь преграду. Они возвращаются, обогащенные информацией об окружающем мире. Чтобы уловит ее, собрать и отсеять от ненужного балласта, животному приходится проделать огромную работу. Она напоминает труд золотоискателей, промывающих тонны породы, чтобы отделить от нее крупицы золотого песка. Для этого локатор дельфина снабжен второй, еще более важной частью — приемно-анализирующим устройством.
Читателю может показаться странным, что при наличии десятков километров магнитной пленки с записями локационных щелчков дельфинов в этом вопросе могут быть еще какие-то неясности. К сожалению, пока еще не удается создать такие условия эксперимента, которые не вносили бы помех в продуцируемые дельфином сигналы, и нет аппаратуры, способной без искажения и потери информации записать локационную посылку в первозданном виде.
Попробуем подойти к решению этого вопроса с чисто теоретических позиций. Широко известно, что даже на самом лучшем токарном станке невозможно выточить две совершенно одинаковые по размерам детали. Нет оснований думать, что звукогенератор дельфина в этом отношении совершеннее творений человеческих рук. Следовательно, быть совершенно одинаковыми локационные посылки не могут. Насколько велико их разнообразие? Абсолютно точно ответить на этот вопрос пока нельзя. Однако очевидно, что оно достаточно велико.
Два совершенно одинаковых импульса не должны появиться чаще, чем один раз на 1050 локационных посылок. Можно быть уверенным, что стадо лоцирующих дельфинов, зондируя заинтересовавший их предмет, ни в коем случае не пошлет в его сторону двух совершенно одинаковых посылок.
Другой вопрос, имеют ли существенное значение небольшие различия между двумя следующими друг за другом локационными импульсами и замечают ли эти различия сами дельфины. Большинство исследователей считает, что животные хранят в памяти представление о только что произведенной локационной посылке до возвращения эха, чтобы иметь возможность оценить, насколько оно отличается от зондирующего сигнала.
Весьма вероятно, что эха от одной локационной посылки недостаточно, чтобы разобраться в создавшейся ситуации, и животные накапливают последовательно поступающие эхосигналы. В сложной обстановке для быстрого сбора информации имеет смысл увеличить скорость генерации локационных посылок. Так на самом деле и происходит, однако это увеличение никогда не бывает значительным. Прежде чем послать очередную локационную посылку, дельфин обязательно должен дождаться, когда угаснет эхо от предыдущей. Вероятно, животным выгодно получить информацию с помощью десятков, а то и сотен очень похожих друг на друга локационных импульсов, чтобы иметь возможность разобраться, что в эхо зависит от особенностей отразившего звук предмета, а что — от наличия помех. Если используемые зондирующие посылки не дают возможности решить локационную проблему, приходится резко изменить их характер в надежде, что новые посылки окажутся более адекватными для распознавания заинтересовавшего животных предмета. Отдельные исследователи высказывали подозрения, что дельфин способен подстраивать параметры локализационных посылок под параметры исследуемого объекта. Но это только предположение. Достоверно известно лишь то, что животные могут генерировать десятки очень похожих друг на друга локационных посылок, но могут и резко менять их характер. Пока неясно, облегчает ли уникальность каждого локационного импульса решение локационных задач или дельфины стремятся генерировать строго одинаковые стандартные посылки, а их некоторые различия всего лишь дефект поточного производства.
Акустический скорострельный пулемет дельфина стреляет импульсами-бумерангами. Это тайный шифр китообразных. С помощью локационных посылок шифруются вопросы, задаваемые окружающему пространству. В отличие от охотничьих бумерангов австралийских аборигенов, возвращающихся к хозяину, если он промахнется, импульсы-бумеранги вернутся к дельфину только в том случае, если попадут в цель или наткнутся на какую-нибудь преграду. Они возвращаются, обогащенные информацией об окружающем мире. Чтобы уловит ее, собрать и отсеять от ненужного балласта, животному приходится проделать огромную работу. Она напоминает труд золотоискателей, промывающих тонны породы, чтобы отделить от нее крупицы золотого песка. Для этого локатор дельфина снабжен второй, еще более важной частью — приемно-анализирующим устройством.
Плененная волна
Умейте задавать вопросы
Каждый, кому приходится постоянно общаться с животными, может много интересного рассказать о своих четвероногих друзьях. Жаль только, что животные не говорят. Владей они даром речи, мы узнали бы о них гораздо больше. А так о самых обычных вещах — о том, что видят, слышат или какие запахи ощущают звери, — нам приходится только гадать.
Ученые, естественно, не берут в расчет догадки. Им нужны точные сведения, и они умеют их получать. Ученые давно научились задавать животным вопросы и получать на них ответы.
Современная наука располагает целым арсеналом средств, с помощью которых можно изучить функцию органов чувств, или, как называют их физиологи, анализаторов животных.
Самый непосредственный и самый наглядный способ — наблюдение за ориентировочным рефлексом. Внешние анализаторы — глаза, уши, нос — непрерывно сообщают мозгу обо всем, что происходит вокруг. Мозг всю полученную информацию анализирует, взвешивает и некоторое время хранит в памяти.
Пока вблизи ничего существенного не происходит, животное спокойно занимается своими делами, разыскивает корм, греется на солнце или просто спит. Но вот впереди что-то мелькнуло, донесся незнакомый звук или запах. Мозг не терпит неопределенной информации. Он тотчас посылает указание внешним анализаторам провести ориентировку, т. е. собрать дополнительные сведения,чтобы выяснить, что это такое было. Недаром ориентировочный рефлекс называют рефлексом «Что такое?» Получив от мозга распоряжение, глаза, уши, нос немедленно поворачиваются в ту сторону, откуда пришел незнакомый сигнал. Подобную реакцию у животных наблюдал каждый.
Ориентировочный рефлекс не исчерпывается перечисленными выше реакциями. Незнакомый раздражитель может быть предвестником опасности или, что не менее важно, явиться сигналом о приближении добычи. В том и другом случае следует быть начеку, привести свой организм в боевую готовность. Вот почему ориентировочный рефлекс сопровождается увеличением секреции некоторых гормонов, изменением работы сердца, органов дыхания, тонуса кровеносных сосудов. Организм подготавливается к срочным действиям.
Все менее срочные дела, например работа органов пищеварения, притормаживаются. В руках ученых много показателей, позволяющих следить за ориентировочным рефлексом, но не все их удобно использовать.
Ученые не очень полагаются на движения ушей животного: ведь можно прислушиваться, не шевеля ушами.
У ориентировочного рефлекса есть крупный недостаток: он быстро угасает. Раздастся какой-то новый звук, насторожит уши лисица. Станет принюхиваться, присматриваться, прислушиваться. Нет, кажется, ничего неожиданного звук не предвещает — ни опасности, ни пищи. Если тот же звук раздастся во второй, третий, четвертый раз и по-прежнему ничего особенного вслед за ним не произойдет, лисица перестает волноваться. С каждым разом ее уши настораживаются более лениво, менее активно работают нос, глаза. Смотришь — на пятый, восьмой, десятый звук лисица перестала реагировать совсем. К чему зря тратить энергию, если раздражитель никакой полезной информации не сообщает. Вот почему в лаборатории редко пользуются показаниями ориентировочного рефлекса. Слишком уж неустойчивы получаемые с его помощью результаты.
Итак, ориентировочный рефлекс не годится для серьезной обстоятельной беседы с животным. Наиболее удобный вид диалога — образование у животного условного рефлекса. Чтобы выяснить, какие звуки собака слышит и как тонко их различает, у нее вырабатывают условный рефлекс на звуковой раздражитель. Скажем, поставлена задача узнать, способна ли собака услышать звук с частотой 500 Гц. Поместив подопытное животное в звуконепроницаемую камеру, чтобы его не отвлекали посторонние раздражители, экспериментатор время от времени включает на 20—30 с нужный звук, а затем позволяет животному съесть небольшую порцию мясосухарного порошка. Пока собака вылизывает чашку из-под быстро исчезнувшего лакомства, специальный приборчик скрупулезно регистрирует на бумажной ленте каждую каплю слюны, выделившейся из околоушной железы. Уже через несколько повторений данной процедуры одно только действие звукового сигнала, задолго до появления пищи станет вызывать у собаки интенсивное слюноотделение. Это убедительно доказывает, что она слышит звуковой сигнал. Теперь можно постепенно уменьшить силу звука (не забывая подкармливать пса), и мы узнаем, сколь слабые звуки способно улавливать ухо собаки.
Если поставлена задача выяснить, как тонко различаются звуковые раздражители, приступают к выработке дифференцировки. Продолжая подкармливать собаку, всякий раз, когда звучит уже знакомый ей тон с частотой 500 Гц, время от времени включают и другой звук, довольно далекий от первого, например тон с частотой 800 Гц, — но никогда не сопровождают его пищей.
Очень скоро собака заметит, что более высокий звук не сопровождается пищей, и выделение слюны при его звучании прекратится. Сомнений быть не может — собака способна различать звуки с частотой 500 и 800 Гц. Теперь можно испытать действие более близкого раздражителя — тона с частотой 700 Гц, также не сопровождая его дачей мяса. Не беда, если при первых предъявлениях он будет вызывать выделение слюны. Немножко терпения, собака разберется и просто так, за здорово живешь слюну выделять не будет. Таким же образом можно испробовать звук с частотой 600 Гц, затем, 550, 520 Гц.
Не у каждого зверя удобно и легко собирать слюну. Тогда применяют другую методику. Крыса, добежав до разветвления узкого коридора, свернет в ту сторону, откуда будет доноситься звук 500 Гц, если он сулит ей завтрак, и даже не заглянет в коридор, откуда будет доноситься звук с частотой 600 Гц.
Чтобы получить от животного ответ на вопрос, его надо уметь поставить. Бессмысленно спрашивать, какие звуки слышит животное. Нужно спросить, слышит ли оно данный звук, способно ли отличить его от другого, вполне определенного звука. Вопросы следует задавать так, чтобы на них можно было ответить «да» или «нет». Вырабатывая условные рефлексы, иногда целые системы условных рефлексов, ученые и добиваются от животных ответа на интересующие их вопросы.
Если у животного вырабатывается условный рефлекс на какой-нибудь определенный звук, а близкие звуки рефлекса не вызывают, можно быть уверенным, что животное слышит этот звук и отличает его от всех остальных раздражителей. Итак, выработка условных рефлексов — наиболее распространенный вид диалога с животными, в том числе с обитателями океанариумов и испытательных полигонов.
Ученые, естественно, не берут в расчет догадки. Им нужны точные сведения, и они умеют их получать. Ученые давно научились задавать животным вопросы и получать на них ответы.
Современная наука располагает целым арсеналом средств, с помощью которых можно изучить функцию органов чувств, или, как называют их физиологи, анализаторов животных.
Самый непосредственный и самый наглядный способ — наблюдение за ориентировочным рефлексом. Внешние анализаторы — глаза, уши, нос — непрерывно сообщают мозгу обо всем, что происходит вокруг. Мозг всю полученную информацию анализирует, взвешивает и некоторое время хранит в памяти.
Пока вблизи ничего существенного не происходит, животное спокойно занимается своими делами, разыскивает корм, греется на солнце или просто спит. Но вот впереди что-то мелькнуло, донесся незнакомый звук или запах. Мозг не терпит неопределенной информации. Он тотчас посылает указание внешним анализаторам провести ориентировку, т. е. собрать дополнительные сведения,чтобы выяснить, что это такое было. Недаром ориентировочный рефлекс называют рефлексом «Что такое?» Получив от мозга распоряжение, глаза, уши, нос немедленно поворачиваются в ту сторону, откуда пришел незнакомый сигнал. Подобную реакцию у животных наблюдал каждый.
Ориентировочный рефлекс не исчерпывается перечисленными выше реакциями. Незнакомый раздражитель может быть предвестником опасности или, что не менее важно, явиться сигналом о приближении добычи. В том и другом случае следует быть начеку, привести свой организм в боевую готовность. Вот почему ориентировочный рефлекс сопровождается увеличением секреции некоторых гормонов, изменением работы сердца, органов дыхания, тонуса кровеносных сосудов. Организм подготавливается к срочным действиям.
Все менее срочные дела, например работа органов пищеварения, притормаживаются. В руках ученых много показателей, позволяющих следить за ориентировочным рефлексом, но не все их удобно использовать.
Ученые не очень полагаются на движения ушей животного: ведь можно прислушиваться, не шевеля ушами.
У ориентировочного рефлекса есть крупный недостаток: он быстро угасает. Раздастся какой-то новый звук, насторожит уши лисица. Станет принюхиваться, присматриваться, прислушиваться. Нет, кажется, ничего неожиданного звук не предвещает — ни опасности, ни пищи. Если тот же звук раздастся во второй, третий, четвертый раз и по-прежнему ничего особенного вслед за ним не произойдет, лисица перестает волноваться. С каждым разом ее уши настораживаются более лениво, менее активно работают нос, глаза. Смотришь — на пятый, восьмой, десятый звук лисица перестала реагировать совсем. К чему зря тратить энергию, если раздражитель никакой полезной информации не сообщает. Вот почему в лаборатории редко пользуются показаниями ориентировочного рефлекса. Слишком уж неустойчивы получаемые с его помощью результаты.
Итак, ориентировочный рефлекс не годится для серьезной обстоятельной беседы с животным. Наиболее удобный вид диалога — образование у животного условного рефлекса. Чтобы выяснить, какие звуки собака слышит и как тонко их различает, у нее вырабатывают условный рефлекс на звуковой раздражитель. Скажем, поставлена задача узнать, способна ли собака услышать звук с частотой 500 Гц. Поместив подопытное животное в звуконепроницаемую камеру, чтобы его не отвлекали посторонние раздражители, экспериментатор время от времени включает на 20—30 с нужный звук, а затем позволяет животному съесть небольшую порцию мясосухарного порошка. Пока собака вылизывает чашку из-под быстро исчезнувшего лакомства, специальный приборчик скрупулезно регистрирует на бумажной ленте каждую каплю слюны, выделившейся из околоушной железы. Уже через несколько повторений данной процедуры одно только действие звукового сигнала, задолго до появления пищи станет вызывать у собаки интенсивное слюноотделение. Это убедительно доказывает, что она слышит звуковой сигнал. Теперь можно постепенно уменьшить силу звука (не забывая подкармливать пса), и мы узнаем, сколь слабые звуки способно улавливать ухо собаки.
Если поставлена задача выяснить, как тонко различаются звуковые раздражители, приступают к выработке дифференцировки. Продолжая подкармливать собаку, всякий раз, когда звучит уже знакомый ей тон с частотой 500 Гц, время от времени включают и другой звук, довольно далекий от первого, например тон с частотой 800 Гц, — но никогда не сопровождают его пищей.
Очень скоро собака заметит, что более высокий звук не сопровождается пищей, и выделение слюны при его звучании прекратится. Сомнений быть не может — собака способна различать звуки с частотой 500 и 800 Гц. Теперь можно испытать действие более близкого раздражителя — тона с частотой 700 Гц, также не сопровождая его дачей мяса. Не беда, если при первых предъявлениях он будет вызывать выделение слюны. Немножко терпения, собака разберется и просто так, за здорово живешь слюну выделять не будет. Таким же образом можно испробовать звук с частотой 600 Гц, затем, 550, 520 Гц.
Не у каждого зверя удобно и легко собирать слюну. Тогда применяют другую методику. Крыса, добежав до разветвления узкого коридора, свернет в ту сторону, откуда будет доноситься звук 500 Гц, если он сулит ей завтрак, и даже не заглянет в коридор, откуда будет доноситься звук с частотой 600 Гц.
Чтобы получить от животного ответ на вопрос, его надо уметь поставить. Бессмысленно спрашивать, какие звуки слышит животное. Нужно спросить, слышит ли оно данный звук, способно ли отличить его от другого, вполне определенного звука. Вопросы следует задавать так, чтобы на них можно было ответить «да» или «нет». Вырабатывая условные рефлексы, иногда целые системы условных рефлексов, ученые и добиваются от животных ответа на интересующие их вопросы.
Если у животного вырабатывается условный рефлекс на какой-нибудь определенный звук, а близкие звуки рефлекса не вызывают, можно быть уверенным, что животное слышит этот звук и отличает его от всех остальных раздражителей. Итак, выработка условных рефлексов — наиболее распространенный вид диалога с животными, в том числе с обитателями океанариумов и испытательных полигонов.
Все, что творится в мире...
Многое из происходящего вокруг нас недоступно нашему взору, слуху, обонянию. Человеческий глаз не видит рентгеновские лучи, а какая-то бесчувственная фотопластинка их «замечает». Мы не ощущаем радиоактивных излучений, не имеем рецепторов, позволяющих оценить величину атмосферного давления, поляризацию световых лучей. Давным-давно люди заметили, что, собаки и слышат несравненно лучше человека, и ощущают запахи, нам совершенно недоступные, а острота зрения большинства хищных птиц намного превосходит человеческую. Подумать только, человек, венец творения природы, весьма далек от совершенства!
Имея весьма чувствительные рецепторы, животные не извлекают всеобъемлющей информации об окружающей среде.
Они видят, слышат и обоняют лишь то, что для них имеет смысл ощущать. Акустический рецептор в крыльях ночных бабочек воспринимает лишь ультразвуковые сигналы охотящихся за ними летучих мышей, а более низкочастотные колебания им совершенно недоступны. Кролик способен ощущать 24 первичных запаха, собака, видимо, — 35, а человек — всего 7—14. Однако это дает возможность человеку с наиболее изощренным обонянием запомнить и узнать около 10 000 сложных запахов. Сколько сложных запахов помнят кролик и собака, пока ученым неизвестно. Может быть, животные используют свои возможности лишь частично.
Изучение анализаторных систем животных — сложное и трудоемкое дело. Особенно если речь идет о таких явлениях, которые недоступны непосредственному восприятию наших органов чувств. Отсюда и проистекают многочисленные неудачи. Нередко выводы отдельных исследователей не удается согласовать между собой. Каждый надеется, что именно ему удастся окончательно решить затронутые в исследовании вопросы. Однако заранее почти невозможно предсказать, кто из ученых сможет добиться успеха, сколько это будет стоить и сколько потребуется времени, чтобы получить исчерпывающий ответ. Чаще всего не представляется возможным и предсказать результаты исследования, даже приблизительно.
Оказалось, что нелегко разобраться даже в таком простом вопросе, как слух дельфина. Еще не забылось время, когда ученые спорили, слышат ли вообще дельфины, и если слышат, то где — под водой или когда высовывают голову наружу.
Теперь широко известно, что животные воспринимают акустические колебания и в воде, и в воздухе. Появление эхолотов подтвердило, что животные слышат и ультразвуки: они уходят от судна, как только начинает работать эхолот.
Первые специальные исследования слуха дельфинов были осуществлены в США вскоре после окончания войны. В бассейн, где жили десять афалин и два длиннорылых дельфина, опустили гидрофон. Ученые время от времени включали на 2—3 с звук, внимательно наблюдая за проявлением ориентировочного рефлекса. Если хоть кто-нибудь из животных в момент излучения звука вздрагивал, останавливался, поворачивался в сторону гидрофона или стремился поскорее отплыть от него подальше, значит, дельфины слышали звук. В результате систематических наблюдений исследователи пришли к выводу, что дельфины хорошо слышат звуки в диапазоне от 100 Гц до 80 кГц.
Через несколько лет две группы американских ученых решили проверить полученный результат. Экспериментируя на афалинах, они применили метод условных рефлексов.
Дельфинов приучили на любой звук подплывать к экспериментатору и каждый раз награждали за усердие рыбкой.
Одна группа обнаружила, что звуки от 150 Гц до 120 кГц их животное не пропускало никогда. Звуки немногим выше 120 кГц оно слышало значительно хуже, а сигналы с частотой 150 кГц замечало лишь иногда. Другая группа пришла к выводу, что животные реагируют на звуки с частотой 20—100 кГц, а сигналы с частотой 150 кГц замечают только, если увеличить их интенсивность.
Четвертая группа американских исследователей, тоже занимавшихся изучением слуха дельфинов, введя в мозг афалин и полосатых стенелл электроды, наблюдала за электрическими реакциями в их мозгу, возникающими под воздействием акустических раздражителей. Оказалось, что звуки в интервале между 10 и 20 кГц животные слышат плохо. Звуки с частотой от 20 до 70 кГц воспринимались хорошо. Затем чувствительность слуха значительно ухудшалась. Самыми высокими звуками, которые дельфины могли еще ощущать, были сигналы с частотой 120—140 кГц.
Знакомство с полученными результатами показывает, что границы наилучшей чувствительности слуха дельфинов лежат где-то посредине воспринимаемого диапазона частот. А каковы верхние границы, пока сказать трудно.
Отдельные ученые называли цифру 300 и даже 500 кГц, но скорее всего это погрешности исследования.
У белобочек и азовок слух изучали советские исследователи. Белобочка оказалась в числе рекордсменов. Предполагается, что этот дельфин слышит звуки в диапазоне от 10 Гц до 320 кГц! Азовки же слышат звуки лишь от 3 до 190 кГц, а лучше всего воспринимают ультразвуковые колебания с частотой в 128 кГц.
Кое-что известно и о слухе других дельфинов. Амазонские инии воспринимают звуки от 1 до 105 кГц. Лучше всего они слышат сигналы с частотой 75—90 кГц. У косатки более узкий диапазон звукового восприятия — между 15 и 32 кГц. По-видимому, это связано с их охотничьими повадками. Более низкие звуки меньше затухают, позволяя вечно голодной косатке обнаруживать добычу издалека. О слухе кашалотов и крупных усатых китов практически ничего достоверного не известно. Имеются лишь свидетельства китобоев об изменении их поведения под воздействием каких-либо звуков, пугающих исполинов. Полагаться на эти сведения не приходится, хотя бы потому, что точная оценка характеристик подобных звуков никем не проводилась. Как ни кажется этот вопрос простым, однако приходится констатировать, что ученые пока еще не придумали способ, как заставить гигантов океана — блювала, финвала и других китов открыть свои секреты.
Имея весьма чувствительные рецепторы, животные не извлекают всеобъемлющей информации об окружающей среде.
Они видят, слышат и обоняют лишь то, что для них имеет смысл ощущать. Акустический рецептор в крыльях ночных бабочек воспринимает лишь ультразвуковые сигналы охотящихся за ними летучих мышей, а более низкочастотные колебания им совершенно недоступны. Кролик способен ощущать 24 первичных запаха, собака, видимо, — 35, а человек — всего 7—14. Однако это дает возможность человеку с наиболее изощренным обонянием запомнить и узнать около 10 000 сложных запахов. Сколько сложных запахов помнят кролик и собака, пока ученым неизвестно. Может быть, животные используют свои возможности лишь частично.
Изучение анализаторных систем животных — сложное и трудоемкое дело. Особенно если речь идет о таких явлениях, которые недоступны непосредственному восприятию наших органов чувств. Отсюда и проистекают многочисленные неудачи. Нередко выводы отдельных исследователей не удается согласовать между собой. Каждый надеется, что именно ему удастся окончательно решить затронутые в исследовании вопросы. Однако заранее почти невозможно предсказать, кто из ученых сможет добиться успеха, сколько это будет стоить и сколько потребуется времени, чтобы получить исчерпывающий ответ. Чаще всего не представляется возможным и предсказать результаты исследования, даже приблизительно.
Оказалось, что нелегко разобраться даже в таком простом вопросе, как слух дельфина. Еще не забылось время, когда ученые спорили, слышат ли вообще дельфины, и если слышат, то где — под водой или когда высовывают голову наружу.
Теперь широко известно, что животные воспринимают акустические колебания и в воде, и в воздухе. Появление эхолотов подтвердило, что животные слышат и ультразвуки: они уходят от судна, как только начинает работать эхолот.
Первые специальные исследования слуха дельфинов были осуществлены в США вскоре после окончания войны. В бассейн, где жили десять афалин и два длиннорылых дельфина, опустили гидрофон. Ученые время от времени включали на 2—3 с звук, внимательно наблюдая за проявлением ориентировочного рефлекса. Если хоть кто-нибудь из животных в момент излучения звука вздрагивал, останавливался, поворачивался в сторону гидрофона или стремился поскорее отплыть от него подальше, значит, дельфины слышали звук. В результате систематических наблюдений исследователи пришли к выводу, что дельфины хорошо слышат звуки в диапазоне от 100 Гц до 80 кГц.
Через несколько лет две группы американских ученых решили проверить полученный результат. Экспериментируя на афалинах, они применили метод условных рефлексов.
Дельфинов приучили на любой звук подплывать к экспериментатору и каждый раз награждали за усердие рыбкой.
Одна группа обнаружила, что звуки от 150 Гц до 120 кГц их животное не пропускало никогда. Звуки немногим выше 120 кГц оно слышало значительно хуже, а сигналы с частотой 150 кГц замечало лишь иногда. Другая группа пришла к выводу, что животные реагируют на звуки с частотой 20—100 кГц, а сигналы с частотой 150 кГц замечают только, если увеличить их интенсивность.
Четвертая группа американских исследователей, тоже занимавшихся изучением слуха дельфинов, введя в мозг афалин и полосатых стенелл электроды, наблюдала за электрическими реакциями в их мозгу, возникающими под воздействием акустических раздражителей. Оказалось, что звуки в интервале между 10 и 20 кГц животные слышат плохо. Звуки с частотой от 20 до 70 кГц воспринимались хорошо. Затем чувствительность слуха значительно ухудшалась. Самыми высокими звуками, которые дельфины могли еще ощущать, были сигналы с частотой 120—140 кГц.
Знакомство с полученными результатами показывает, что границы наилучшей чувствительности слуха дельфинов лежат где-то посредине воспринимаемого диапазона частот. А каковы верхние границы, пока сказать трудно.
Отдельные ученые называли цифру 300 и даже 500 кГц, но скорее всего это погрешности исследования.
У белобочек и азовок слух изучали советские исследователи. Белобочка оказалась в числе рекордсменов. Предполагается, что этот дельфин слышит звуки в диапазоне от 10 Гц до 320 кГц! Азовки же слышат звуки лишь от 3 до 190 кГц, а лучше всего воспринимают ультразвуковые колебания с частотой в 128 кГц.
Кое-что известно и о слухе других дельфинов. Амазонские инии воспринимают звуки от 1 до 105 кГц. Лучше всего они слышат сигналы с частотой 75—90 кГц. У косатки более узкий диапазон звукового восприятия — между 15 и 32 кГц. По-видимому, это связано с их охотничьими повадками. Более низкие звуки меньше затухают, позволяя вечно голодной косатке обнаруживать добычу издалека. О слухе кашалотов и крупных усатых китов практически ничего достоверного не известно. Имеются лишь свидетельства китобоев об изменении их поведения под воздействием каких-либо звуков, пугающих исполинов. Полагаться на эти сведения не приходится, хотя бы потому, что точная оценка характеристик подобных звуков никем не проводилась. Как ни кажется этот вопрос простым, однако приходится констатировать, что ученые пока еще не придумали способ, как заставить гигантов океана — блювала, финвала и других китов открыть свои секреты.
Зачем зайцу длинные уши?
Кому хватило терпенья понаблюдать, как настораживает уши собака, услышав незнакомый звук, или тревожно поводит ушами лошадь, вопрос о заячьих ушах покажется наивным.
Многие животные, обладающие изощренным слухом, имеют большие подвижные ушные раковины. Даже чемпионы по слуху среди птиц — совы и филины вынуждены были обзавестись специальным сооружением из перьев и пуха, имитирующим ушную раковину.
Природа — экономный конструктор. Создав рупор для улавливания звуковых волн, она постаралась извлечь из него как можно больше пользы. Для живущих в тропиках животных остро стоит вопрос о перегревании организма — и ушные раковины заодно приняли на себя функцию охладительных устройств.
В центральных районах Сахары и в Аравийских пустынях обитают маленькие симпатичные лисички — феннеки. Ранней весной в их норах появляются четыре-пять щенят. Жители оазисов, если им посчастливится выследить феннеков, раскапывают нору и приносят домой очаровательных малышей с крохотным хвостиком и маленькими круглыми ушами. Зверята быстро прибывают в весе, но еще быстрее растут их уши.
Когда животные подрастут настолько, что уже годятся в суп (выращивают феннеков отнюдь не для забавы), они, как остроумно заметил американский физиолог К. Шмидт-Нильсен, состоят главным образом из ушей.
Многие относительно небольшие животные пустынь имеют большие уши. Это сразу бросается в глаза, особенно при сравнении с их родичами из умеренных или северных районов планеты. Ушастый еж, обитающий на юге нашей родины (от Ставропольского края до пустынь Средней Азии), обладает необычайно крупными ушными раковинами с точки зрения его северных собратьев. У рыжебокого зайца, широко распространенного в Африке от мыса Доброй Надежды до Алжира, уши несравненно более длинные, чем у нашего беляка или русака. Еще крупнее уши у другого африканца — капского зайца. Весьма длинноухи зайцы из Северной Америки — чернобурый мексиканский. Уши калифорнийского зайца, распространенного не ахти в каких жарких районах планеты, не очень длинны, зато чрезвычайно широки. Но особенно длинноух американский заяц, или, как его называют по-английски, кожаный кролик. Уши кролика больше самого хозяина.
Среди исполинов наиболее большеухи слоны. Африканские слоны любят бродить в сухих жарких саваннах и не меньше мелюзги заинтересованы в подручных средствах для охлаждения.
Ученые долго не понимали причин большеухости пустынных животных. Логично предположить, что большие уши, значительно увеличивая площадь кожной поверхности, должны способствовать перегреву животных. На деле же оказалось, что это не так. Все перечисленные выше существа, за исключением слонов, могут обходиться совершенно без воды.
Многие животные, обладающие изощренным слухом, имеют большие подвижные ушные раковины. Даже чемпионы по слуху среди птиц — совы и филины вынуждены были обзавестись специальным сооружением из перьев и пуха, имитирующим ушную раковину.
Природа — экономный конструктор. Создав рупор для улавливания звуковых волн, она постаралась извлечь из него как можно больше пользы. Для живущих в тропиках животных остро стоит вопрос о перегревании организма — и ушные раковины заодно приняли на себя функцию охладительных устройств.
В центральных районах Сахары и в Аравийских пустынях обитают маленькие симпатичные лисички — феннеки. Ранней весной в их норах появляются четыре-пять щенят. Жители оазисов, если им посчастливится выследить феннеков, раскапывают нору и приносят домой очаровательных малышей с крохотным хвостиком и маленькими круглыми ушами. Зверята быстро прибывают в весе, но еще быстрее растут их уши.
Когда животные подрастут настолько, что уже годятся в суп (выращивают феннеков отнюдь не для забавы), они, как остроумно заметил американский физиолог К. Шмидт-Нильсен, состоят главным образом из ушей.
Многие относительно небольшие животные пустынь имеют большие уши. Это сразу бросается в глаза, особенно при сравнении с их родичами из умеренных или северных районов планеты. Ушастый еж, обитающий на юге нашей родины (от Ставропольского края до пустынь Средней Азии), обладает необычайно крупными ушными раковинами с точки зрения его северных собратьев. У рыжебокого зайца, широко распространенного в Африке от мыса Доброй Надежды до Алжира, уши несравненно более длинные, чем у нашего беляка или русака. Еще крупнее уши у другого африканца — капского зайца. Весьма длинноухи зайцы из Северной Америки — чернобурый мексиканский. Уши калифорнийского зайца, распространенного не ахти в каких жарких районах планеты, не очень длинны, зато чрезвычайно широки. Но особенно длинноух американский заяц, или, как его называют по-английски, кожаный кролик. Уши кролика больше самого хозяина.
Среди исполинов наиболее большеухи слоны. Африканские слоны любят бродить в сухих жарких саваннах и не меньше мелюзги заинтересованы в подручных средствах для охлаждения.
Ученые долго не понимали причин большеухости пустынных животных. Логично предположить, что большие уши, значительно увеличивая площадь кожной поверхности, должны способствовать перегреву животных. На деле же оказалось, что это не так. Все перечисленные выше существа, за исключением слонов, могут обходиться совершенно без воды.