Страница:
Остается объяснить два факта:
а) почему звезды, спектральные классы которых более поздние, чем F5, потеряли почти весь свой вращательный момент?
б) почему это не произошло у более горячих звезд?
Чтобы ответить на эти вопросы, обратим внимание на то, что по мере сжатия туманность (мы можем теперь называть ее "протозвездой") будет вращаться вокруг своей оси все быстрее и быстрее. Можно показать, что при массе протозвезды, равной солнечной, и при радиусе, превышающем солнечный в 40 раз, центробежная сила на экваторе будет уравновешивать силу притяжения. Наступает состояние неустойчивости, и вещество отделяется от звезды, образуя экваториальный диск. Пока это еще соответствует схеме Лапласа.
Однако в формирующейся звезде можно ожидать наличия общего магнитного поля. Если силовые линии этого поля проходят через отделившийся диск (а в процессе отделения диска они не могли "порваться"), вращение оставшейся основной массы протозвезды будет закручивать их. В результате существования такой "магнитной" связи между отделившимся от протозвезды диском и ее основной массой из-за натяжения силовых линий вращение протозвезды будет тормозиться, а диск начнет удаляться от поверхности протозвезды, причем каждая его точка будет уходить наружу по спирали. С течением времени диск вследствие трения "размажется", и часть его вещества превратится в планеты, которые таким образом "унесут" с собой значительную долю момента.
Почему же такой процесс происходит у сравнительно холодных протозвезд, а у более горячих нет? Ответ на этот важный вопрос состоит в следующем. Масса отделившегося от протозвезды диска не очень велика, поэтому диск не может "намотать" на себя большое количество витков силовых линий магнитного поля. В противном случае упругость силовых линий разорвала бы его и дальнейший процесс "наматывания" прекратился. Единственное место, где могут находиться наматываемые витки силовых линий, - это внешние слои протозвезды. В процессе такого наматывания силовые линии должны погружаться в сравнительно глубокие слои протозвезды. Оказывается, что благоприятные условия для такого "погружения" силовых линий имеются только у сравнительно холодных звезд. Именно у таких звезд под поверхностью находится довольно толстый слой вещества, охваченный бурными, беспорядочными движениями вверх и вниз. Первопричиной образования таких слоев является то, что ввиду падения температуры по мере приближения к поверхности звезды водород, до этого ионизованный, становится нейтральным. Из-за этого нарушается тепловой режим, теряется механическая устойчивость и возникают конвективные потоки газа. При этих условиях магнитные силовые линии, как бы "приклеенные" к движущимся потокам газа, могут погружаться на значительные глубины под поверхностью протозвезды.
Если же протозвезда достаточно горяча, водород в ней ионизован вплоть до самых поверхностных слоев и "конвективной зоны" не образуется. Поэтому силовые линии магнитного поля не могут уходить вглубь. Они будут наматываться только в самых поверхностных слоях, причем очень недолго. Довольно скоро вследствие малой плотности вещества в этих слоях упругость силовых линий приведет к сбрасыванию нового газового диска, в то время как старый еще не успеет получить сколько-нибудь значительного момента количества движения.
Таковы в общих чертах основные результаты космогонической гипотезы Хойла. Она довольно непринужденно объясняет резкость обрыва вращения звезд в районе спектрального класса F5. Эта резкость вызвана, в конечном итоге сильной зависимостью ионизации атомов водорода от температуры. Уже у звезд класса F0, температуры поверхностей которых всего лишь на 2000 К выше, чем у F5, конвективная зона начинается так близко от поверхности, что эффективное наматывание силовых линий почти исключается. Приходится только удивляться сложности взаимосвязей явлений, приводящих к такому "жизненно необходимому" для возникновения и развития жизни во Вселенной процессу, как образование планет...
Гипотеза Хойла, однако, имеет ряд трудностей и противоречий. Например, нелегко представить, как могли "отсортироваться" избыточный водород и гелий в первоначальном газовом диске, из которого образовались планеты.
Однако главной трудностью гипотезы Хойла является требование слишком сильного магнитного поля у "протосолнца", резко противоречащее современным астрофизическим представлениям.
В 1962 г. французский астрофизик Шацман обратил внимание на то, что наличие магнитных полей на звездах открывает возможность эффективной потери вращательного момента без образования планет. Известно, что наше Солнце является источником потоков заряженных частиц - корпускул, выбрасываемых из его атмосферы (солнечный ветер). Отдельные сгустки горячего ионизованного газа как бы "выстреливаются" из областей, окружающих солнечные пятна, и движутся от Солнца со скоростями в несколько сот и даже тысяч км/с. Так как ионизованное вещество таких сгустков является хорошим проводником электричества, то их движение должно происходить по силовым линиям солнечных магнитных полей. На больших расстояниях от солнечных пятен магнитные поля имеют почти радиальное направление. Двигаясь радиально вдоль силовых линий, сгустки могут уходить на значительные расстояния от поверхности Солнца, исчисляемые десятками его радиусов.
Теперь необходимо отметить, что силовые линии магнитного поля Солнца, концы которых уходят в его глубокие слои, вращаются вокруг оси с той же угловой скоростью, что и поверхностные слои. Наглядное представление об этом дает проволочный каркас, прикрепленный к вращающемуся шару. Отсюда следует, что выброшенный из Солнца сгусток по мере его движения вдоль силовых линий наружу будет непрерывно увеличивать свой вращательный момент. Если в конце концов он "сорвется" с силовых линий солнечного магнитного поля (которое на больших расстояниях уже значительно ослабеет и не сможет больше определять движение сгустка), то унесет с собой довольно значительный момент.
Представим, например, что такие "срывы" происходят на расстоянии 30 радиусов Солнца от его центра. Тогда, чтобы потерять почти весь свой вращательный момент, Солнце должно выбросить приблизительно 0,001 часть своей массы. Такая сравнительно малая потеря массы за миллиарды лет эволюции вполне возможна. Следует, правда, заметить, что в настоящее время эффективное торможение Солнца этим способом не происходит - его "корпускулярное излучение" слишком мало. Но в прошлом это могло быть и не так... Можно представить, что такой механизм потери вращательного момента действует на всех (или почти всех) звездах, где имеются связанные с активными областями на их поверхностях магнитные поля. Так как такие образования обусловлены наличием у звезд "конвективных зон", то открывается возможность понять, почему наблюдается резкий "обрыв" вращения около спектрального класса F5.
Работа Шацмана имела целью объяснить медленное вращение звезд поздних спектральных классов. Но вместе с тем она поставила под сомнение веру в правильность аргумента, что медленное вращение мало массивных звезд есть аргумент в пользу наличия около них планетных систем. Однако недавно было доказано путем наблюдений, что мало массивные протозвезды вращаются медленно. Тем самым доказано, что механизм Шацмана не объясняет медленное вращение мало массивных звезд.
Наиболее последовательным сторонником гипотезы образования Солнечной системы из первичной "солнечной" туманности является американский астроном Камерон. Он связывает в единый процесс образование звезд и планетных систем. Современная наблюдательная астрономия практически доказала, что звезды образуются путем конденсации облаков межзвездной среды в результате их гравитационной неустойчивости (см. гл. 4). Первоначально такая конденсация происходит с облаками, масса которых во много тысяч раз превосходит солнечную. Следует подчеркнуть, что в определенную эпоху только малая часть таких облаков находится в стадии гравитационного сжатия, в то время как подавляющее большинство их имеют плотности, недостаточные для этого. Важно подчеркнуть, что время от времени сторонние причины увеличивают плотность облаков, после чего последние начинают сжиматься. Такими причинами могут быть взрывы сверхновых неподалеку от облаков. Образовавшаяся после такого взрыва в межзвездной среде сильная ударная волна сжимает газ в близлежащем облаке, создавая тем самым условия для его дальнейшего сжатия уже под влиянием внутренней силы тяготения. Таким образом, вспышки сверхновых могут служить как бы "триггерами", "стимуляторами" процесса звездообразования. Эта идея, высказанная четверть века назад замечательным эстонским астрономом Эпиком, сейчас подтверждается наблюдениями.
То, что "у колыбели" нашей Солнечной системы стояла взорвавшаяся звезда, Камерон обосновывает аномальным изотопным составом метеоритов, являющихся частью вещества Солнечной системы. В частности, из подобного анализа следует, что в первичном веществе Солнечной системы должен был присутствовать радиоактивный изотоп алюминия 26Al, период полураспада которого меньше миллиона лет.
По мере сжатия массивного облака оно разбивалось на более мелкие сгустки, один из которых и был "солнечной" туманностью. Первоначально газ, образовавший эту туманность, находился в состоянии быстрого, беспорядочного движения и по этой причине обладал значительным вращательным моментом. Это обстоятельство мешало ему сразу же сконденсироваться в одно компактное тело - протозвезду. Вместо этого образовался довольно уплощенный диск с радиусом в несколько десятков астрономических единиц.
Теоретический анализ дальнейшей эволюции такого диска с учетом вязкости образующего его газа позволяет сделать вывод о возникновении в нем неустойчивости, которая приводит к образованию нескольких (2-3) газовых колец. Заметим, что это должно произойти на ранней стадии эволюции диска, когда центральное тело (т. е. будущее Солнце) еще не сформировалось. Дальнейшие теоретические расчеты показывают, что каждое такое кольцо довольно быстро превратится в огромный газовый сгусток. Такие сгустки Камерон называет "гигантскими газовыми протопланетами". Заметим, что размеры этих сгустков должны быть порядка астрономической единицы. Образование таких протопланет в ситуации, когда протосолнце еще не образовалось, имело весьма существенное значение для дальнейшей эволюции Солнечной системы. В частности, этот вариант гипотезы "солнечной туманности", по-видимому, решает классическую проблему распределения вращательного момента Солнечной системы.
Камерон рассматривает дальнейшую эволюцию гигантских газовых протопланет. При этих расчетах принималось, что масса протопланеты равна массе Юпитера. В процессе эволюции протопланеты сжимаются, причем температура в их центральных областях достигает 3-4 тыс. кельвинов. При такой температуре и соответствующем давлении все твердые фракции становятся жидкими. Большую роль в эволюции протопланет должна была играть конвекция, приводящая к перемешиванию вещества. Во внутренних частях Солнечной системы благодаря приливным возмущениям оболочки протопланет как бы "обдирались" и входящее в них вещество попадало обратно в межпланетную среду, обогащая ее включениями кусочков твердых фракций, которые прошли через стадию расплавления во внутренних частях гигантских протопланет. На более поздней стадии эволюции солнечной туманности, когда она уже потеряла большую часть газа, истраченного на образование Солнца или диссипировавшего, входящие в нее твердые частицы образуют тонкий слой в экваториальной плоскости диска. В дальнейшем по причине все той же гравитационной неустойчивости из этого слоя образуются астероиды.
# Другой сценарий эволюции "солнечной туманности" предполагает, что не только астероиды, но и все планеты земной группы (Меркурий, Венера, Земля, Маре) сформировались из этого слоя в результате столкновения твердых частиц, их слипания, образования и роста планетных зародышей - планетезималей. В. С. Сафронов, детально изучивший этот вариант, показал, что для "сборки" Земли потребовалось бы около 100 миллионов лет.
Многие метеориты содержат загадочные стекловидные включения - хондры. Их структура показывает, что вещество хондр по крайней мере один раз было в расплавленном состоянии. В гипотезе Камерона это естественно объясняется, если предположить, что вещество хондр прошло через недра протопланет. Однако расплавление и даже испарение могло произойти и непосредственно в газопылевой среде, если ее потоки проходили через ближайшие окрестности рождающегося Солнца. #
Итак, мы разобрали основные современные гипотезы об образовании Солнечной системы. Хотя автор старался быть беспристрастным, его симпатии всегда были на стороне гипотезы "солнечной туманности". По нашему мнению, основным достоинством этой продолжающей и развивающей классическую космогоническую традицию гипотезы является ее неразрывная связь с фундаментальной проблемой происхождения звезд из межзвездной газопылевой среды. Как мы уже неоднократно подчеркивали, эта проблема в последние годы стала предметом изучения наблюдательной астрономии. В гл. 8 было показано, что статистика кратных звездных систем непосредственно подводит нас к представлению, что образование планетных систем неразрывно связано с образованием звезд.
В чем коренная причина кратности звезд? В конце концов,- в законе сохранения вращательного момента сжимающегося под действием собственного притяжения межзвездного газового облака. Обладающее значительным вращательным моментом облако на основании законов механики просто не может превратиться в одиночную медленно вращающуюся звезду (вроде Солнца, но без планет). Вернее сказать, если бы такая звезда образовалась - это было бы большой редкостью. Ведь для этого надо приписать первичному сжимающемуся облаку вращательный момент, в сотни раз меньший, чем у "нормальных" сжимающихся облаков, число которых составляет во всяком случае больше 90% всех таких облаков! Сразу же видно, что такие облака будут встречаться чрезвычайно редко. Почти наверняка практически все звезды типа Солнца, которых пока считают одиночными, имеют невидимые спутники с достаточно малой массой и светимостью. И среди них можно ожидать звезды, окруженные семьей планет. Вопрос, однако, состоит в следующем: как часто среди систем этого типа попадаются (наряду с карликовыми звездами и большими планетами) планеты земного типа? В "оптимистическом" случае доля таких систем по отношению ко всем звездам солнечного типа будет 10%, как это следует из статистического анализа Абта и Леви (см. гл. 8), в "пессимистическом" - неопределенно меньше. То обстоятельство, что Солнце представляет собой зауряднейшую звезду спектрального класса G, лишенную каких бы то ни было особенностей, есть некоторый аргумент в пользу "оптимистического" варианта. В этом случае полное число галактических планетных систем, в состав которых входят планеты земного типа, может быть порядка нескольких десятков миллионов, а если прибавить еще звезды спектрального класса K, то это число ~ 108. В этом "оптимистическом" случае расстояние до ближайших к нам планетных систем будет ~ 50 световых лет. Заметим, однако, что эти оценки носят сугубо ориентировочный характер.
В последнее время появился дополнительный, очень важный аргумент в пользу гипотезы солнечной гуманности как первоосновы происхождения Солнечной системы. В гл. 4 мы уже говорили о космических мазерах и связали их с проблемой звездообразования. Накопившийся большой наблюдательный материал по "гидроксильным" и, особенно, "водяным" мазерам, позволил недавно построить их модель. Оказалось, что лучше всего данные наблюдений объясняются моделью массивного газового диска, в общих чертах напоминающего камероновскую солнечную туманность. Это направление радиоастрономии сейчас быстро развивается и можно ожидать, что в самом близком будущем начальные стадии эволюции планетных систем будут поняты и уточнены. Заметим, что первая попытка связать космические мазеры с протопланетами была сделана советскими учеными В. С. Стрельницким и Р. А. Сюняевым. Экстраполяция данных наблюдений Абта и Леви (см. рис. 43) вплоть до малых значений отношений масс M2/M1 приводит к выводу, что все 123 близкие звезды класса G входят в состав кратных звезд; 67% вторичных компонент - нормальные звезды, 15% - невидимые слабые звезды ("черные" карлики) и 20%, по-видимому, имеют планетные системы. Естественно считать, что короткопериодические системы образовались из одного газового сгустка, который в процессе образования диска распадается на две конденсации с примерно одинаковыми массами. Между тем долгопериодические системы с самого начала конденсировались в двух центрах, гравитационное взаимодействие которых было незначительным. При этом вращательный момент сжимающегося облака оказался сосредоточенным в орбитальном движении этих сгустков.
Таким образом, развитие современной наблюдательной астрономии естественно приводит к выводу о множественности планетных систем во Вселенной.
Часть вторая.
ЖИЗНЬ ВО ВСЕЛЕННОЙ
11. Условия, необходимые для возникновения и развития жизни на планетах
Для эволюции живых организмов от простейших форм (вирусы, бактерии) к разумным существам необходимы огромные интервалы времени, так как "движущей силой" такой эволюции являются мутации и естественный отбор - процессы, носящие случайный, статистический характер. Именно через большое количество случайных процессов реализуется закономерное развитие от низших форм жизни к высшим. На примере нашей планеты Земли мы знаем, что этот интервал времени, по-видимому, превосходит 3,5 миллиарда лет. Поэтому только на планетах, обращающихся вокруг достаточно старых звезд, мы можем ожидать присутствия высокоорганизованных живых существ. Отсюда сразу же следует естественный вывод, что высокоорганизованная (в частности, разумная) жизнь может быть только на планетах, обращающихся вокруг звезд, спектральный класс которых более "поздний", чем F0 (см. табл. 2). С другой стороны, довольно ненадежные аргументы, основанные на анализе особенностей вращения звезд вокруг своих осей и статистике кратных звездных систем, говорят о том, что только у звезд более "поздних" классов, чем F5, можно ожидать планетных систем. Здесь мы еще раз должны подчеркнуть, что при современном состоянии астрономии можно говорить только об аргументах в пользу гипотезы множественности планетных систем. Строгим доказательством этого важнейшего утверждения астрономия пока не располагает (см. гл. 10).
С этой весьма существенной оговоркой мы будем в дальнейшем считать, что некоторое, пока еще не известное нам количество звезд главной последовательности, спектральные классы которых более "поздние", чем F5, имеют планетные системы.
С другой стороны, имеются основания полагать, что у звезд "первого поколения" (субкарликов) планет типа Земли быть не может, так как среда, из которой они образовались, была весьма бедна тяжелыми элементами. На это обстоятельство обратил внимание Э. А. Дибай.
Для возникновения и развития жизни на планете необходимо, чтобы выполнялся ряд условий весьма общего характера. Совершенно очевидно, что далеко не на всякой планете может возникнуть жизнь. Хорошим примером является Луна, практически лишенная атмосферы и полностью лишенная водной оболочки гидросферы. Конечно, при таких условиях говорить о какой бы то ни было жизни на Луне не приходится.
Жизнедеятельность любого организма есть прежде всего совокупность различных согласованных между собой сложных химических процессов. Жизнь может возникнуть только тогда, когда на планете уже имеются достаточно сложные молекулярные соединения. Само образование таких соединений, химические реакции между ними, в конечном итоге давшие начало живому веществу, и жизнедеятельность образовавшихся на планете организмов требуют, в частности, подходящих температурных условий. Слишком высокие и слишком низкие температуры исключают возможность возникновения и развития жизни. В равной степени губительны для возникновения и развития жизни очень резкие колебания температуры.
Мы можем представить себе вокруг каждой звезды, имеющей планетную систему, область или зону, где температурные условия на планетах не исключают возникновения и развития жизни. Ясно, что в достаточной близости от звезды температуры планет будут слишком высокими для возникновения жизни. Хорошей иллюстрацией сказанному является Меркурий, температура обращенной к Солнцу части которого выше температуры плавления свинца. На достаточно большом удалении от звезды температура планет будет слишком низкой. Нелегко себе представить, например, жизнь на Уране и Нептуне, температура поверхностей которых -200 °С. Нельзя, однако, недооценивать огромную приспособляемость ("адаптацию") живых организмов к неблагоприятным условиям внешней среды. Следует еще заметить, что для жизнедеятельности организмов значительно "опаснее" очень высокие температуры, чем низкие, так как простейшие виды вирусов и бактерий могут, как известно, находиться в состоянии анабиоза при температуре, близкой к абсолютному нулю.
Температура планеты определяется прежде всего количеством излучения от звезды, падающим на единицу площади ее поверхности за единицу времени. По этой причине размеры "зон обитаемости" для разных звезд различны. Они тем больше, чем выше светимость звезды, т. е. чем более "ранним" является ее спектральный класс.
У красных карликов спектрального класса M, а также поздних подклассов K внешний радиус "зоны обитаемости" становится очень маленьким, меньше, например, радиуса орбиты "нашего" Меркурия. Поэтому вероятность того, что хотя бы одна из планет, обращающихся вокруг таких карликов красных звезд, находится в пределах "зоны обитаемости", как можно думать, невелика. Следует, однако, заметить, что планетные системы, окружающие звезды, могут по своим характеристикам значительно отличаться от единственной планетной системы, которую мы пока знаем, - нашей Солнечной системы. В частности, не исключено, что вокруг красных карликовых звезд планеты могут обращаться по сравнительно небольшим орбитам.
Если сделать весьма "оптимистическое" предположение, что планеты, на которых возможна жизнь, имеются у всех звезд главной последовательности, спектральные классы которых более "поздние", чем F5, и более "ранние", чем K5, то окажется, что лишь 1-2% всех звезд в Галактике могут быть "обитаемы". Учитывая, что число всех звезд в нашей звездной системе около 150 млрд., мы приходим к довольно "утешительному" выводу: по крайней мере у миллиарда звезд нашей Галактики могут быть планетные системы, на которых в принципе возможна жизнь.
Нужно, впрочем, считаться с еще одним обстоятельством. Как известно, около половины всех звезд входит в состав кратных систем. Представим себе планету в системе двойной звезды. Вообще говоря, ее орбита будет довольно сложной незамкнутой кривой. Вычисление характеристик такой орбиты представляет достаточно трудную математическую задачу. Это так называемая "ограниченная" задача трех тел. По сравнению с общей задачей о движении трех тел, взаимно притягивающихся по закону Ньютона, "ограниченная" задача проще, так как масса планеты ничтожна по сравнению со звездами и не оказывает влияния на движение звезд.
Двигаясь по своей сложной орбите, планета временами может приближаться к одной из звезд на небольшие расстояния, а временами удаляться от звезд очень далеко. В соответствии с этим температура поверхности планеты будет меняться в недопустимых для возникновения и развития жизни пределах. Поэтому вначале считали, что около кратных звезд не могут быть обитаемые планеты. Но свыше 30 лет назад Су Шухуанг пересмотрел этот вопрос и показал, что в отдельных случаях может быть такое движение планет по периодическим орбитам, при котором температура их поверхностей меняется в допустимых для развития жизни пределах. Для этого нужно, чтобы относительные орбиты звезд были близки к круговым. На рис. 50 приведены сечения плоскостью некоторых "критических поверхностей" в ограниченной задаче трех тел. Периодические орбиты планет, допускающие развитие жизни, лежат либо внутри поверхности, проходящей через L1, либо снаружи поверхности, проходящей через L2. Если массы обеих звезд одинаковы, то внутри поверхности, проходящей через L1 , орбиты, подходящие для развития жизни, будут существовать при условии, что расстояние между звездами a >> 2 l l/2 ( a выражено в астрономических единицах), где l - светимость каждой из звезд (в единицах светимости Солнца). Когда a станет больше 13 l 1/2, каждую из компонент двойной системы можно рассматривать для интересующей нас задачи как одиночную звезду.
Заметим, что у многих двойных систем расстояние между компонентами превосходит это "критическое" значение. Следовательно, в принципе вокруг достаточно удаленных друг от друга компонент двойной системы, движущихся по почти круговой орбите, возможно наличие обитаемых планет. В случае, когда компоненты двойной системы достаточно близки друг к другу, подходящие периодические орбиты могут быть вне поверхности, проходящей через L2 (рис. 50). Как показывают вычисления Су Шухуанга, при равных массах компонент двойной системы орбиты, подходящие для возникновения и развития жизни, могут быть при условии, что a << 0,4 l 1/2. Таким образом, в области значений 2 l 1/2 > a > 0,4 l 1/2 исключается возможность существования обитаемых планет.
а) почему звезды, спектральные классы которых более поздние, чем F5, потеряли почти весь свой вращательный момент?
б) почему это не произошло у более горячих звезд?
Чтобы ответить на эти вопросы, обратим внимание на то, что по мере сжатия туманность (мы можем теперь называть ее "протозвездой") будет вращаться вокруг своей оси все быстрее и быстрее. Можно показать, что при массе протозвезды, равной солнечной, и при радиусе, превышающем солнечный в 40 раз, центробежная сила на экваторе будет уравновешивать силу притяжения. Наступает состояние неустойчивости, и вещество отделяется от звезды, образуя экваториальный диск. Пока это еще соответствует схеме Лапласа.
Однако в формирующейся звезде можно ожидать наличия общего магнитного поля. Если силовые линии этого поля проходят через отделившийся диск (а в процессе отделения диска они не могли "порваться"), вращение оставшейся основной массы протозвезды будет закручивать их. В результате существования такой "магнитной" связи между отделившимся от протозвезды диском и ее основной массой из-за натяжения силовых линий вращение протозвезды будет тормозиться, а диск начнет удаляться от поверхности протозвезды, причем каждая его точка будет уходить наружу по спирали. С течением времени диск вследствие трения "размажется", и часть его вещества превратится в планеты, которые таким образом "унесут" с собой значительную долю момента.
Почему же такой процесс происходит у сравнительно холодных протозвезд, а у более горячих нет? Ответ на этот важный вопрос состоит в следующем. Масса отделившегося от протозвезды диска не очень велика, поэтому диск не может "намотать" на себя большое количество витков силовых линий магнитного поля. В противном случае упругость силовых линий разорвала бы его и дальнейший процесс "наматывания" прекратился. Единственное место, где могут находиться наматываемые витки силовых линий, - это внешние слои протозвезды. В процессе такого наматывания силовые линии должны погружаться в сравнительно глубокие слои протозвезды. Оказывается, что благоприятные условия для такого "погружения" силовых линий имеются только у сравнительно холодных звезд. Именно у таких звезд под поверхностью находится довольно толстый слой вещества, охваченный бурными, беспорядочными движениями вверх и вниз. Первопричиной образования таких слоев является то, что ввиду падения температуры по мере приближения к поверхности звезды водород, до этого ионизованный, становится нейтральным. Из-за этого нарушается тепловой режим, теряется механическая устойчивость и возникают конвективные потоки газа. При этих условиях магнитные силовые линии, как бы "приклеенные" к движущимся потокам газа, могут погружаться на значительные глубины под поверхностью протозвезды.
Если же протозвезда достаточно горяча, водород в ней ионизован вплоть до самых поверхностных слоев и "конвективной зоны" не образуется. Поэтому силовые линии магнитного поля не могут уходить вглубь. Они будут наматываться только в самых поверхностных слоях, причем очень недолго. Довольно скоро вследствие малой плотности вещества в этих слоях упругость силовых линий приведет к сбрасыванию нового газового диска, в то время как старый еще не успеет получить сколько-нибудь значительного момента количества движения.
Таковы в общих чертах основные результаты космогонической гипотезы Хойла. Она довольно непринужденно объясняет резкость обрыва вращения звезд в районе спектрального класса F5. Эта резкость вызвана, в конечном итоге сильной зависимостью ионизации атомов водорода от температуры. Уже у звезд класса F0, температуры поверхностей которых всего лишь на 2000 К выше, чем у F5, конвективная зона начинается так близко от поверхности, что эффективное наматывание силовых линий почти исключается. Приходится только удивляться сложности взаимосвязей явлений, приводящих к такому "жизненно необходимому" для возникновения и развития жизни во Вселенной процессу, как образование планет...
Гипотеза Хойла, однако, имеет ряд трудностей и противоречий. Например, нелегко представить, как могли "отсортироваться" избыточный водород и гелий в первоначальном газовом диске, из которого образовались планеты.
Однако главной трудностью гипотезы Хойла является требование слишком сильного магнитного поля у "протосолнца", резко противоречащее современным астрофизическим представлениям.
В 1962 г. французский астрофизик Шацман обратил внимание на то, что наличие магнитных полей на звездах открывает возможность эффективной потери вращательного момента без образования планет. Известно, что наше Солнце является источником потоков заряженных частиц - корпускул, выбрасываемых из его атмосферы (солнечный ветер). Отдельные сгустки горячего ионизованного газа как бы "выстреливаются" из областей, окружающих солнечные пятна, и движутся от Солнца со скоростями в несколько сот и даже тысяч км/с. Так как ионизованное вещество таких сгустков является хорошим проводником электричества, то их движение должно происходить по силовым линиям солнечных магнитных полей. На больших расстояниях от солнечных пятен магнитные поля имеют почти радиальное направление. Двигаясь радиально вдоль силовых линий, сгустки могут уходить на значительные расстояния от поверхности Солнца, исчисляемые десятками его радиусов.
Теперь необходимо отметить, что силовые линии магнитного поля Солнца, концы которых уходят в его глубокие слои, вращаются вокруг оси с той же угловой скоростью, что и поверхностные слои. Наглядное представление об этом дает проволочный каркас, прикрепленный к вращающемуся шару. Отсюда следует, что выброшенный из Солнца сгусток по мере его движения вдоль силовых линий наружу будет непрерывно увеличивать свой вращательный момент. Если в конце концов он "сорвется" с силовых линий солнечного магнитного поля (которое на больших расстояниях уже значительно ослабеет и не сможет больше определять движение сгустка), то унесет с собой довольно значительный момент.
Представим, например, что такие "срывы" происходят на расстоянии 30 радиусов Солнца от его центра. Тогда, чтобы потерять почти весь свой вращательный момент, Солнце должно выбросить приблизительно 0,001 часть своей массы. Такая сравнительно малая потеря массы за миллиарды лет эволюции вполне возможна. Следует, правда, заметить, что в настоящее время эффективное торможение Солнца этим способом не происходит - его "корпускулярное излучение" слишком мало. Но в прошлом это могло быть и не так... Можно представить, что такой механизм потери вращательного момента действует на всех (или почти всех) звездах, где имеются связанные с активными областями на их поверхностях магнитные поля. Так как такие образования обусловлены наличием у звезд "конвективных зон", то открывается возможность понять, почему наблюдается резкий "обрыв" вращения около спектрального класса F5.
Работа Шацмана имела целью объяснить медленное вращение звезд поздних спектральных классов. Но вместе с тем она поставила под сомнение веру в правильность аргумента, что медленное вращение мало массивных звезд есть аргумент в пользу наличия около них планетных систем. Однако недавно было доказано путем наблюдений, что мало массивные протозвезды вращаются медленно. Тем самым доказано, что механизм Шацмана не объясняет медленное вращение мало массивных звезд.
Наиболее последовательным сторонником гипотезы образования Солнечной системы из первичной "солнечной" туманности является американский астроном Камерон. Он связывает в единый процесс образование звезд и планетных систем. Современная наблюдательная астрономия практически доказала, что звезды образуются путем конденсации облаков межзвездной среды в результате их гравитационной неустойчивости (см. гл. 4). Первоначально такая конденсация происходит с облаками, масса которых во много тысяч раз превосходит солнечную. Следует подчеркнуть, что в определенную эпоху только малая часть таких облаков находится в стадии гравитационного сжатия, в то время как подавляющее большинство их имеют плотности, недостаточные для этого. Важно подчеркнуть, что время от времени сторонние причины увеличивают плотность облаков, после чего последние начинают сжиматься. Такими причинами могут быть взрывы сверхновых неподалеку от облаков. Образовавшаяся после такого взрыва в межзвездной среде сильная ударная волна сжимает газ в близлежащем облаке, создавая тем самым условия для его дальнейшего сжатия уже под влиянием внутренней силы тяготения. Таким образом, вспышки сверхновых могут служить как бы "триггерами", "стимуляторами" процесса звездообразования. Эта идея, высказанная четверть века назад замечательным эстонским астрономом Эпиком, сейчас подтверждается наблюдениями.
То, что "у колыбели" нашей Солнечной системы стояла взорвавшаяся звезда, Камерон обосновывает аномальным изотопным составом метеоритов, являющихся частью вещества Солнечной системы. В частности, из подобного анализа следует, что в первичном веществе Солнечной системы должен был присутствовать радиоактивный изотоп алюминия 26Al, период полураспада которого меньше миллиона лет.
По мере сжатия массивного облака оно разбивалось на более мелкие сгустки, один из которых и был "солнечной" туманностью. Первоначально газ, образовавший эту туманность, находился в состоянии быстрого, беспорядочного движения и по этой причине обладал значительным вращательным моментом. Это обстоятельство мешало ему сразу же сконденсироваться в одно компактное тело - протозвезду. Вместо этого образовался довольно уплощенный диск с радиусом в несколько десятков астрономических единиц.
Теоретический анализ дальнейшей эволюции такого диска с учетом вязкости образующего его газа позволяет сделать вывод о возникновении в нем неустойчивости, которая приводит к образованию нескольких (2-3) газовых колец. Заметим, что это должно произойти на ранней стадии эволюции диска, когда центральное тело (т. е. будущее Солнце) еще не сформировалось. Дальнейшие теоретические расчеты показывают, что каждое такое кольцо довольно быстро превратится в огромный газовый сгусток. Такие сгустки Камерон называет "гигантскими газовыми протопланетами". Заметим, что размеры этих сгустков должны быть порядка астрономической единицы. Образование таких протопланет в ситуации, когда протосолнце еще не образовалось, имело весьма существенное значение для дальнейшей эволюции Солнечной системы. В частности, этот вариант гипотезы "солнечной туманности", по-видимому, решает классическую проблему распределения вращательного момента Солнечной системы.
Камерон рассматривает дальнейшую эволюцию гигантских газовых протопланет. При этих расчетах принималось, что масса протопланеты равна массе Юпитера. В процессе эволюции протопланеты сжимаются, причем температура в их центральных областях достигает 3-4 тыс. кельвинов. При такой температуре и соответствующем давлении все твердые фракции становятся жидкими. Большую роль в эволюции протопланет должна была играть конвекция, приводящая к перемешиванию вещества. Во внутренних частях Солнечной системы благодаря приливным возмущениям оболочки протопланет как бы "обдирались" и входящее в них вещество попадало обратно в межпланетную среду, обогащая ее включениями кусочков твердых фракций, которые прошли через стадию расплавления во внутренних частях гигантских протопланет. На более поздней стадии эволюции солнечной туманности, когда она уже потеряла большую часть газа, истраченного на образование Солнца или диссипировавшего, входящие в нее твердые частицы образуют тонкий слой в экваториальной плоскости диска. В дальнейшем по причине все той же гравитационной неустойчивости из этого слоя образуются астероиды.
# Другой сценарий эволюции "солнечной туманности" предполагает, что не только астероиды, но и все планеты земной группы (Меркурий, Венера, Земля, Маре) сформировались из этого слоя в результате столкновения твердых частиц, их слипания, образования и роста планетных зародышей - планетезималей. В. С. Сафронов, детально изучивший этот вариант, показал, что для "сборки" Земли потребовалось бы около 100 миллионов лет.
Многие метеориты содержат загадочные стекловидные включения - хондры. Их структура показывает, что вещество хондр по крайней мере один раз было в расплавленном состоянии. В гипотезе Камерона это естественно объясняется, если предположить, что вещество хондр прошло через недра протопланет. Однако расплавление и даже испарение могло произойти и непосредственно в газопылевой среде, если ее потоки проходили через ближайшие окрестности рождающегося Солнца. #
Итак, мы разобрали основные современные гипотезы об образовании Солнечной системы. Хотя автор старался быть беспристрастным, его симпатии всегда были на стороне гипотезы "солнечной туманности". По нашему мнению, основным достоинством этой продолжающей и развивающей классическую космогоническую традицию гипотезы является ее неразрывная связь с фундаментальной проблемой происхождения звезд из межзвездной газопылевой среды. Как мы уже неоднократно подчеркивали, эта проблема в последние годы стала предметом изучения наблюдательной астрономии. В гл. 8 было показано, что статистика кратных звездных систем непосредственно подводит нас к представлению, что образование планетных систем неразрывно связано с образованием звезд.
В чем коренная причина кратности звезд? В конце концов,- в законе сохранения вращательного момента сжимающегося под действием собственного притяжения межзвездного газового облака. Обладающее значительным вращательным моментом облако на основании законов механики просто не может превратиться в одиночную медленно вращающуюся звезду (вроде Солнца, но без планет). Вернее сказать, если бы такая звезда образовалась - это было бы большой редкостью. Ведь для этого надо приписать первичному сжимающемуся облаку вращательный момент, в сотни раз меньший, чем у "нормальных" сжимающихся облаков, число которых составляет во всяком случае больше 90% всех таких облаков! Сразу же видно, что такие облака будут встречаться чрезвычайно редко. Почти наверняка практически все звезды типа Солнца, которых пока считают одиночными, имеют невидимые спутники с достаточно малой массой и светимостью. И среди них можно ожидать звезды, окруженные семьей планет. Вопрос, однако, состоит в следующем: как часто среди систем этого типа попадаются (наряду с карликовыми звездами и большими планетами) планеты земного типа? В "оптимистическом" случае доля таких систем по отношению ко всем звездам солнечного типа будет 10%, как это следует из статистического анализа Абта и Леви (см. гл. 8), в "пессимистическом" - неопределенно меньше. То обстоятельство, что Солнце представляет собой зауряднейшую звезду спектрального класса G, лишенную каких бы то ни было особенностей, есть некоторый аргумент в пользу "оптимистического" варианта. В этом случае полное число галактических планетных систем, в состав которых входят планеты земного типа, может быть порядка нескольких десятков миллионов, а если прибавить еще звезды спектрального класса K, то это число ~ 108. В этом "оптимистическом" случае расстояние до ближайших к нам планетных систем будет ~ 50 световых лет. Заметим, однако, что эти оценки носят сугубо ориентировочный характер.
В последнее время появился дополнительный, очень важный аргумент в пользу гипотезы солнечной гуманности как первоосновы происхождения Солнечной системы. В гл. 4 мы уже говорили о космических мазерах и связали их с проблемой звездообразования. Накопившийся большой наблюдательный материал по "гидроксильным" и, особенно, "водяным" мазерам, позволил недавно построить их модель. Оказалось, что лучше всего данные наблюдений объясняются моделью массивного газового диска, в общих чертах напоминающего камероновскую солнечную туманность. Это направление радиоастрономии сейчас быстро развивается и можно ожидать, что в самом близком будущем начальные стадии эволюции планетных систем будут поняты и уточнены. Заметим, что первая попытка связать космические мазеры с протопланетами была сделана советскими учеными В. С. Стрельницким и Р. А. Сюняевым. Экстраполяция данных наблюдений Абта и Леви (см. рис. 43) вплоть до малых значений отношений масс M2/M1 приводит к выводу, что все 123 близкие звезды класса G входят в состав кратных звезд; 67% вторичных компонент - нормальные звезды, 15% - невидимые слабые звезды ("черные" карлики) и 20%, по-видимому, имеют планетные системы. Естественно считать, что короткопериодические системы образовались из одного газового сгустка, который в процессе образования диска распадается на две конденсации с примерно одинаковыми массами. Между тем долгопериодические системы с самого начала конденсировались в двух центрах, гравитационное взаимодействие которых было незначительным. При этом вращательный момент сжимающегося облака оказался сосредоточенным в орбитальном движении этих сгустков.
Таким образом, развитие современной наблюдательной астрономии естественно приводит к выводу о множественности планетных систем во Вселенной.
Часть вторая.
ЖИЗНЬ ВО ВСЕЛЕННОЙ
11. Условия, необходимые для возникновения и развития жизни на планетах
Для эволюции живых организмов от простейших форм (вирусы, бактерии) к разумным существам необходимы огромные интервалы времени, так как "движущей силой" такой эволюции являются мутации и естественный отбор - процессы, носящие случайный, статистический характер. Именно через большое количество случайных процессов реализуется закономерное развитие от низших форм жизни к высшим. На примере нашей планеты Земли мы знаем, что этот интервал времени, по-видимому, превосходит 3,5 миллиарда лет. Поэтому только на планетах, обращающихся вокруг достаточно старых звезд, мы можем ожидать присутствия высокоорганизованных живых существ. Отсюда сразу же следует естественный вывод, что высокоорганизованная (в частности, разумная) жизнь может быть только на планетах, обращающихся вокруг звезд, спектральный класс которых более "поздний", чем F0 (см. табл. 2). С другой стороны, довольно ненадежные аргументы, основанные на анализе особенностей вращения звезд вокруг своих осей и статистике кратных звездных систем, говорят о том, что только у звезд более "поздних" классов, чем F5, можно ожидать планетных систем. Здесь мы еще раз должны подчеркнуть, что при современном состоянии астрономии можно говорить только об аргументах в пользу гипотезы множественности планетных систем. Строгим доказательством этого важнейшего утверждения астрономия пока не располагает (см. гл. 10).
С этой весьма существенной оговоркой мы будем в дальнейшем считать, что некоторое, пока еще не известное нам количество звезд главной последовательности, спектральные классы которых более "поздние", чем F5, имеют планетные системы.
С другой стороны, имеются основания полагать, что у звезд "первого поколения" (субкарликов) планет типа Земли быть не может, так как среда, из которой они образовались, была весьма бедна тяжелыми элементами. На это обстоятельство обратил внимание Э. А. Дибай.
Для возникновения и развития жизни на планете необходимо, чтобы выполнялся ряд условий весьма общего характера. Совершенно очевидно, что далеко не на всякой планете может возникнуть жизнь. Хорошим примером является Луна, практически лишенная атмосферы и полностью лишенная водной оболочки гидросферы. Конечно, при таких условиях говорить о какой бы то ни было жизни на Луне не приходится.
Жизнедеятельность любого организма есть прежде всего совокупность различных согласованных между собой сложных химических процессов. Жизнь может возникнуть только тогда, когда на планете уже имеются достаточно сложные молекулярные соединения. Само образование таких соединений, химические реакции между ними, в конечном итоге давшие начало живому веществу, и жизнедеятельность образовавшихся на планете организмов требуют, в частности, подходящих температурных условий. Слишком высокие и слишком низкие температуры исключают возможность возникновения и развития жизни. В равной степени губительны для возникновения и развития жизни очень резкие колебания температуры.
Мы можем представить себе вокруг каждой звезды, имеющей планетную систему, область или зону, где температурные условия на планетах не исключают возникновения и развития жизни. Ясно, что в достаточной близости от звезды температуры планет будут слишком высокими для возникновения жизни. Хорошей иллюстрацией сказанному является Меркурий, температура обращенной к Солнцу части которого выше температуры плавления свинца. На достаточно большом удалении от звезды температура планет будет слишком низкой. Нелегко себе представить, например, жизнь на Уране и Нептуне, температура поверхностей которых -200 °С. Нельзя, однако, недооценивать огромную приспособляемость ("адаптацию") живых организмов к неблагоприятным условиям внешней среды. Следует еще заметить, что для жизнедеятельности организмов значительно "опаснее" очень высокие температуры, чем низкие, так как простейшие виды вирусов и бактерий могут, как известно, находиться в состоянии анабиоза при температуре, близкой к абсолютному нулю.
Температура планеты определяется прежде всего количеством излучения от звезды, падающим на единицу площади ее поверхности за единицу времени. По этой причине размеры "зон обитаемости" для разных звезд различны. Они тем больше, чем выше светимость звезды, т. е. чем более "ранним" является ее спектральный класс.
У красных карликов спектрального класса M, а также поздних подклассов K внешний радиус "зоны обитаемости" становится очень маленьким, меньше, например, радиуса орбиты "нашего" Меркурия. Поэтому вероятность того, что хотя бы одна из планет, обращающихся вокруг таких карликов красных звезд, находится в пределах "зоны обитаемости", как можно думать, невелика. Следует, однако, заметить, что планетные системы, окружающие звезды, могут по своим характеристикам значительно отличаться от единственной планетной системы, которую мы пока знаем, - нашей Солнечной системы. В частности, не исключено, что вокруг красных карликовых звезд планеты могут обращаться по сравнительно небольшим орбитам.
Если сделать весьма "оптимистическое" предположение, что планеты, на которых возможна жизнь, имеются у всех звезд главной последовательности, спектральные классы которых более "поздние", чем F5, и более "ранние", чем K5, то окажется, что лишь 1-2% всех звезд в Галактике могут быть "обитаемы". Учитывая, что число всех звезд в нашей звездной системе около 150 млрд., мы приходим к довольно "утешительному" выводу: по крайней мере у миллиарда звезд нашей Галактики могут быть планетные системы, на которых в принципе возможна жизнь.
Нужно, впрочем, считаться с еще одним обстоятельством. Как известно, около половины всех звезд входит в состав кратных систем. Представим себе планету в системе двойной звезды. Вообще говоря, ее орбита будет довольно сложной незамкнутой кривой. Вычисление характеристик такой орбиты представляет достаточно трудную математическую задачу. Это так называемая "ограниченная" задача трех тел. По сравнению с общей задачей о движении трех тел, взаимно притягивающихся по закону Ньютона, "ограниченная" задача проще, так как масса планеты ничтожна по сравнению со звездами и не оказывает влияния на движение звезд.
Двигаясь по своей сложной орбите, планета временами может приближаться к одной из звезд на небольшие расстояния, а временами удаляться от звезд очень далеко. В соответствии с этим температура поверхности планеты будет меняться в недопустимых для возникновения и развития жизни пределах. Поэтому вначале считали, что около кратных звезд не могут быть обитаемые планеты. Но свыше 30 лет назад Су Шухуанг пересмотрел этот вопрос и показал, что в отдельных случаях может быть такое движение планет по периодическим орбитам, при котором температура их поверхностей меняется в допустимых для развития жизни пределах. Для этого нужно, чтобы относительные орбиты звезд были близки к круговым. На рис. 50 приведены сечения плоскостью некоторых "критических поверхностей" в ограниченной задаче трех тел. Периодические орбиты планет, допускающие развитие жизни, лежат либо внутри поверхности, проходящей через L1, либо снаружи поверхности, проходящей через L2. Если массы обеих звезд одинаковы, то внутри поверхности, проходящей через L1 , орбиты, подходящие для развития жизни, будут существовать при условии, что расстояние между звездами a >> 2 l l/2 ( a выражено в астрономических единицах), где l - светимость каждой из звезд (в единицах светимости Солнца). Когда a станет больше 13 l 1/2, каждую из компонент двойной системы можно рассматривать для интересующей нас задачи как одиночную звезду.
Заметим, что у многих двойных систем расстояние между компонентами превосходит это "критическое" значение. Следовательно, в принципе вокруг достаточно удаленных друг от друга компонент двойной системы, движущихся по почти круговой орбите, возможно наличие обитаемых планет. В случае, когда компоненты двойной системы достаточно близки друг к другу, подходящие периодические орбиты могут быть вне поверхности, проходящей через L2 (рис. 50). Как показывают вычисления Су Шухуанга, при равных массах компонент двойной системы орбиты, подходящие для возникновения и развития жизни, могут быть при условии, что a << 0,4 l 1/2. Таким образом, в области значений 2 l 1/2 > a > 0,4 l 1/2 исключается возможность существования обитаемых планет.