В результате мы сейчас достаточно хорошо знаем физические условия в атмосфере и на поверхности этой планеты, бывшей до сравнительно недавнего времени едва ли не самым загадочным членом Солнечной системы. Кратко изложим теперь основные результаты этих исследований.
   Атмосфера Венеры на 97 % состоит из молекул углекислого газа CO2. Обнаружено некоторое количество водяных паров (около 0,05% по атмосфере в среднем).
   Кроме того, как это следует из последних наземных наблюдений, в атмосфере Венеры обнаружены сравнительно незначительные примеси газов CO (0,01 %), HCl (6 10-5 %), NF (5 10-7 %). (Вообще существуют соединения HF и NF3, но нет NF. Прим. OCR.) Очень важным является результат, полученный на советских автоматических станциях: количество молекулярного азота плюс благородные газы не превышает 5 %. Таким образом, эти компоненты атмосферы, столь существенные на Земле, в атмосфере Венеры играют заведомо второстепенную роль.
   Давление у поверхности планеты достигает гигантского значения около 100 атмосфер! Измерения на станции "Венера-7" показали, что температура атмосферы у поверхности Венеры около 480 °С. Интересно, что высота тропопаузы и верхней границы облачного слоя Венеры составляет около 70 км. Фотометр, установленный на "Венере-8", показал, что облачный слой хорошо пропускает рассеянное солнечное излучение - освещенность на поверхности всего лишь в несколько десятков раз меньше, чем над облаками.
   По-прежнему большой интерес представляет вопрос о составе частиц облачного слоя Венеры. Следует заметить, что, несмотря на все успехи в исследованиях этой планеты, нам пока еще не известно, из чего состоят ее облака. Соблазнительная возможность считать, что частицами, образующими облака Венеры, являются льдинки (так же, как в случае земных облаков), не проходит. Этому противоречат спектральные и поляризационные наблюдения. Было отмечено, что этим наблюдениям удовлетворяет предположение, по которому венерианские облака состоят из сферических частиц, образуемых водным раствором серной кислоты.
   1975 год ознаменовался новым выдающимся достижением советской космонавтики. Автоматические межпланетные станции "Венера-9" и "Венера-10" были выведены на орбиту вокруг Венеры и стали искусственными спутниками этой планеты. Спускаемые аппараты этих станций совершили мягкую посадку на поверхность Венеры. Пожалуй, самым впечатляющим результатом этих экспериментов является получение панорамных фотографий поверхности Венеры, отличающихся удивительной отчетливостью. Впоследствии были запущены к Венере и другие советские космические аппараты.
   # В марте 1986 г. завершился проект "Вега" ("Венера - Галлей") - самый сложный и результативный в истории советских исследований Солнечной системы при помощи космических аппаратов. Он состоял из трех частей: изучение атмосферы и поверхности Венеры при помощи посадочных аппаратов; изучение динамики атмосферы Венеры посредством аэростатных зондов (аэростаты были впервые в мире запущены в атмосферу другой планеты); пролет через газопылевую атмосферу (кому) кометы Галлея и детальное изучение ее ядра. Научный руководитель проекта "Вега" - академик Р. 3. Сагдеев. Станция "Вега-1" совершила пролет через кому 6 марта 1986 г., а станция "Вега-2" - 9 марта.
   Научные организации многих стран (СССР, Австралии, НРБ, ВНР, ГДР, ПНР, Франции, ФРГ) участвовали в разработке научных приборов для "Вега", а также систем обеспечения научных экспериментов на борту и на Земле. Впервые в наших космических проектах возможности международной кооперации были использованы столь широко.
   По каждому из трех направлений, о которых говорилось, выше, были получены интереснейшие результаты. Самое любопытное среди них - это физические характеристики ядра кометы Галлея. Ядра комет - их центральные тела наблюдались до сих пор с Земли только как звездообразные объекты на большом расстоянии от Солнца (~ 10 а. е.), когда активность кометы отсутствовала, да и таких наблюдений было очень мало. Во время пролета аппаратов "Вега-1" и "Вега-2" впервые ядро кометы исследовалось как пространственно-разрешенный объект; были определены его структура, размеры, инфракрасная температура. С помощью этих аппаратов были произведены оценки состава ядра и характеристики поверхностного слоя. Ядро кометы Галлея - это монолитное тело неправильной формы: его большая ось равна 14 км, а малая - около 7 км (рис. 69, не сканировался). Ядро покидает около 1030 молекул воды в секунду; Это означает, что испарение идет по всей поверхности, следовательно, состоит оно изо льда. Вместе с тем поверхность черная (альбедо около 5%) и горячая (яркостная температура более 375 К). Эта, казалось бы, противоречивая картина укладывается в простую модель - так называемую модель "мартовского сугроба": лед отделен от внешнего пространства слоем черного пористого вещества с низкой теплопроводностью. Этот слой принимает солнечное излучение, часть его переизлучает в инфракрасном диапазоне, часть передает еще и ледяному конгломерату. Молекулы H2O, образующиеся в результате испарения последнего, диффундируют вверх и покидают комету. При этом они отрывают отдельные частицы от поверхностного слоя, и к потоку газа добавляется поток пыли. Поверхностный слой в отдельных местах поверхности время от времени взламывается (если слой становится слишком толстым и поры закупориваются); тогда образуется активная область с мощным истечением вещества. Толщина пористого слоя невелика (~ 1 см), он очень быстро обновляется - верхний слой "сдирается", а снизу налипают новые частицы. Характерное время полного обновления слоя - около суток.
   Исследование кометы Галлея, проведенное на аппаратах "Вега", позволило сделать выбор среди нескольких обсуждавшихся ранее моделей кометного, ядра монолит, группа нескольких крупных тел, рой частиц - в пользу первой из них и существенно ее уточнить. Грубая схема приобрела черты живого природного явления. Оказалось, например, что в состав кометного ядра входят органические соединения. В принципе это не так уж удивительно, если вспомнить, что радиоастрономы нашли множество органических молекул в межзвездной среде. #
   Большой вклад в изучение ближайших к Солнцу планет - Венеры и Меркурия был сделан запущенной в 1973 г, американской автоматической станцией "Маринер-10". Очень интересна орбита этого объекта. Аппарат был выведен на орбиту полета к Венере и пролетел от нее на расстоянии около 6000 км. При этом притяжение Венеры снизило орбитальную скорость "Маринера-10", в результате чего он попал на орбиту Меркурия (рис. 70). С тех пор он три раза проходил вблизи Меркурия, причем зимой 1974-1975 гг. на рекордно малом расстоянии около 200 км. Впервые были получены и переданы на Землю сотни изображений поверхности планеты исключительно высокого качества (см. рис. 70).
   Первое впечатление от этих фотографий такое, будто на них изображена Луна. Поверхность Меркурия испещрена кратерами. Изучение кратеров Луны, Марса и Меркурия позволяет сделать вывод, что все они образовались примерно в одну эпоху, удаленную от нас на 4,5 миллиарда лет. Отсюда вытекают важные для планетной космогонии следствия. Например, можно сделать вывод, что на Меркурии никогда не было достаточно плотной атмосферы, способной сгладить рельеф его поверхности. Не было и мощных тектонических процессов, действующих в том же направлении. Поражают перепады температуры Меркурия: на ночной стороне она составляет -175 °C, на дневной +275 °C. Впрочем, этот факт астрономам был известен уже давно по наблюдениям с поверхности Земли.
   Весьма интересные фотографии облачного слоя Венеры в ультрафиолетовых лучах были получены "Маринером-10" во время его сближения с Венерой. Кроме подтверждения периода движения этих облаков в 4 суток (см. выше), был обнаружен совершенно новый феномен, получивший название "Око Венеры". Эта деталь всегда находится вокруг точки поверхности планеты, лежащей на прямой, соединяющей ее центр и Солнце. На фотографии это "око" видно как темное пятно. "Око" состоит из мощных потоков атмосферы, которые создают огромную зону высокого давления. Можно полагать, что энергия потоков атмосферы (берущаяся, в конечном итоге, из солнечной энергии) через "око" распределяется путем циркуляции по всей планете. Если это так, то причиной высокой температуры поверхности планеты может быть не "парниковый эффект", а "венерианская метеорология", неизмеримо более мощная, чем земная. Интересно, что в самых глубоких слоях атмосферы Венеры скорость движения воздушных масс очень мала. Именно по этой причине гористый рельеф Венеры (установленный методами радиолокации) до сих пор не "сглажен". Таким образом, причина высокой температуры поверхности Венеры пока еще не совсем ясна.
   Похоже, что описанные только что природные условия на поверхности нашей космической соседки исключают возможность существования там каких бы то ни было форм жизни. Например, никакие белковые соединения при таких условиях существовать не могут. Наконец, отсутствие гидросферы даже на самой ранней стадии формирования планеты должно было чрезвычайно затруднить само образование первых примитивных живых существ.
   Как это ни может показаться парадоксальным, в настоящее время большие планеты и особенно их спутники можно считать значительно более подходящими для жизни, чем Венера. В частности, такого мнения придерживается американский планетолог К. Саган.
   Простые органические соединения могли синтезироваться в атмосферах больших планет, во многих отношениях напоминающих первичную атмосферу Земли. В качестве внешнего "стимулятора" для такого синтеза можно предположить либо электрические разряды, либо ультрафиолетовое излучение Солнца. Радиоастрономические наблюдения дают некоторые указания на наличие мощных электрических разрядов в атмосфере Юпитера.
   Довольно часто на сравнительно длинных волнах (15-20 м) гигантская планета дает мощные "вспышки" радиоизлучения длительностью в несколько секунд. Возможно (хотя это и не доказано), что такое излучение связано с грозовыми разрядами огромной мощности. Атмосфера Юпитера охвачена бурными конвективными движениями. Образующиеся органические молекулы могут опускаться поэтому на довольно значительную глубину. Возможно, что температурные условия там более подходящие для синтеза сложных органических соединений, чем на более высоких уровнях атмосферы, в частности над плотным облачным слоем, образующим видимую поверхность Юпитера. Очевидно, что на некоторой глубине температура атмосферы должна лежать в пределах 0 - +50 °C, т. е. быть примерно такой же, как на Земле.
   До недавнего времени Марс и его система спутников являлись самыми удаленными от Солнца объектами, которые исследовались "прямыми" методами при помощи космической техники. Но вот в начале марта 1972 г. с американского космодрома имени Кеннеди была запущена автоматическая межпланетная станция "Пионер-10". Пролетев за 21 месяц свыше миллиарда километров, эта станция 4 декабря 1973 г. прошла на минимальном расстоянии 130000 км от поверхности Юпитера (вернее, от густого слоя облаков, закрывающих поверхность этой гигантской планеты). При осуществлении этого полета пришлось преодолевать значительные трудности. Например, из-за того, что Юпитер удален от Солнца в 5,2 раза больше чем Земля, поток солнечного излучения там в 27 раз меньше. Это заставило организаторов полета отказаться от солнечных батарей - основного источника энергии на борту "марсианских" и "венерианских" автоматических межпланетных станций. Вместо этих батарей на борту "Пионера-10" были установлены два радиоизотопных термоэлектрических генератора мощностью 140 Вт, которые непрерывно и безотказно работали.
   Одним из важнейших результатов полета "Пионера-10" было преодоление разного рода опасностей, связанных с некоторыми неприятными областями околосолнечного космоса. Прежде всего определенное беспокойство вызывало прохождение этого аппарата через пояс астероидов, где частота метеорных ударов могла быть угрожающе высока. Но все обошлось благополучно, и космонавты будущего это, конечно, учтут. Ученые также выражали сомнения, смогут ли приборы "Пионера-10" выдержать ожидаемую огромную интенсивность радиационных поясов гигантской планеты. Эти опасения были не напрасны. Уже на расстоянии 700 000 км от планеты установленные на борту "Пионера-10" приборы стали указывать на весьма быстрый рост уровня радиации, который удваивался через каждые десять часов. Уровень жесткой радиации почти достиг предельно допустимого значения, но все же приборы не вышли из строя.
   Существование мощных радиационных поясов Юпитера установлено было свыше 15 лет назад из анализа радиоастрономических наблюдений этой гигантской планеты. Полет "Пионера-10" позволил существенно уточнить характеристики этих поясов, несравненно более мощных, чем околоземные. Приборы, установленные на этом аппарате, позволили измерить магнитное поле Юпитера, среднее значение которого 4 Э. Очень интересна структура этого поля. На самом деле там имеются два магнитных поля: одно типа земного ("дипольное"), но только несимметричное по отношению к телу планеты, и второе, связанное с его мощными радиационными поясами. Взаимодействие быстро вращающейся магнитосферы Юпитера с солнечным ветром приводит к ускорению заряженных частиц до весьма высоких энергий. Эти частицы могут попадать даже во внутренние области Солнечной системы.
   Хотя специальных телевизионных камер на борту "Пионера-10" не было, с помощью особого сканирующего радиолокационного устройства по телеметрическому каналу была передана информация, позволившая с исключительной четкостью получать цветные изображения облачного слоя, покрывающего Юпитер. Качество этих изображений несравненно лучше полученных на лучших земных телескопах. С большой детальностью было получено изображение знаменитого "красного пятна", было открыто несколько меньших "красных пятен", а также масса других деталей, которые весьма быстро меняются со временем. Вообще, весь облачный слой Юпитера охвачен бурными движениями, связанными с переносом большого количества энергии.
   Установленный на "Пионере-10" ультрафиолетовый спектрометр позволил по измеренным спектральным линиям определить химический состав атмосферы гигантской планеты. Оказалось, что на 82 процента (по числу атомов) она состоит из водорода, на 17 процентов из гелия и только 1 % дают все остальные элементы вместе взятые, которые входят в состав разных химических соединений. Химический состав атмосферы Юпитера до удивления похож на солнечный и резко отличается от земного. Сходство со звездой - Солнцем - еще более усиливается по следующей причине. Несколько лет назад было установлено, что в далекой инфракрасной области спектра Юпитер излучает в 2,5 раза больше энергии, чем получает от Солнца во всем спектр е, в том числе и в видимой его части. Следовательно, в отличие от остальных планет, Юпитер есть "самосветящееся" космическое тело. Источником энергии излучения Юпитера скорее всего является его непрерывное сжатие. Подсчеты показывают, что для этого достаточно сжиматься на 1 миллиметр в год. Таким образом, строго говоря. Юпитер является не планетой, а маленькой протозвездой (см. гл. 4).
   Подобно Земле, Марсу и Венере Юпитер окружен водородной "короной", простирающейся вплоть до орбиты его ближайшего большого ("галилеевского") спутника Ио. Этот спутник, так же как и другой, называемый Ганимедом, имеет атмосферу, плотность которой в миллион раз меньше земной. Спутник Ио замечателен еще тем, что сильно влияет на мощность всплесков длинноволнового радиоизлучения Юпитера (см. выше). Он как бы выполняет функции "космического громоотвода". Наблюдения с борта "Пионера-10" позволили уточнить массу Ио, которая составляет 1,22 массы Луны.
   Через год после "Пионера-10" был запущен "Пионер-11" с той же научной программой, которая была успешно выполнена после сближения его с Юпитером в декабре 1974 г. В отличие от "Пионера-10", который силой юпитерова притяжения будет выброшен за пределы Солнечной системы и в 1987 г. пересечет орбиту Плутона (см. гл. 19), "Пионер-11" осенью 1979 г. прошел через систему Сатурна, между поверхностью этой планеты и ее знаменитым кольцом. Об этом будет сказано немного дальше.
   Выдающиеся результаты были получены в 1979 г. на двух межпланетных автоматических станциях "Вояджер". Поражают воображение великолепные фотографии Юпитера, в том числе его знаменитого Красного пятна (рис. 71, не сканировался). Сенсационным было открытие кольца вокруг Юпитера (рис. 72, не сканировался), состоящего, как и кольцо Сатурна, из огромного количества мелких твердых частиц. В этой связи заметим, что существование кольца вокруг Юпитера несколько лет назад было предсказано советским астрономом С. К. Всехсвятским. К этому выводу он пришел, анализируя старые фотографии Юпитера, на которых одна экваториальная полоса (меняющаяся со временем) была истолкована им как тень от кольца. Никто, однако, к этой работе серьезно не отнесся...
   Но, пожалуй, самым выдающимся результатом, полученным на "Вояджерах", является обнаружение действующих вулканов на Ио - самом внутреннем из галактических спутников Юпитера (рис. 73 и 74, рис. 74 не сканировался). Этот спутник обращается вокруг гигантской планеты в ее мощной магнитосфере, что и определяет целый ряд его особенностей. На "Вояджере-2" были получены великолепные фотографии и другие галилеевых спутников (рис. 75, 76 и 77, не сканировались).
   В начале сентября 1979 г. после 6 1/2 лет полета через систему Сатурна прошла знаменитая автоматическая межпланетная станция "Пионер-11", о которой речь шла выше. На этой станции были получены уникальные фотографии колец Сатурна, в частности, была открыта новая система колец. Выяснилось, наконец, что кольца Сатурна состоят из мелких кусочков льда размерами ~ 1 см. Еще был открыт новый маленький спутник. Особый интерес представляет проведенное на "Пионере-11" исследование атмосферы крупного спутника Сатурна - Титана. Наконец, было доказано, что Сатурн подобно Юпитеру излучает в инфракрасных лучах примерно в два раза больше энергии, чем получает от Солнца. Это означает, что Сатурн имеет свой внутренний источник энергии, который, несомненно, связан с непрерывным сжатием этой гигантской планеты. "Пионер-11", честно поработав для науки, уходит из нашей Солнечной системы в межзвездное пространство, неся на себе весточку о нашей цивилизации (см. гл. 19).
   Не исключено, что образующиеся в атмосфере Юпитера (а также других больших планет) органические соединения должны растворяться в аммиачных или водяных капельках, из которых состоят нижние ярусы облаков.
   Представляет определенный интерес обсуждение возможности жизни на аммиачной основе. Оказывается, что можно провести далеко идущую аналогию между процессами растворения в аммиаке и воде, а также между "аммиачными" органическими соединениями и "обычными", являющимися основой живого вещества на Земле, где "жизненной средой" была вода. Температура плавления аммиака достаточно высокая. То же следует сказать и о температуре кипения. У аммиака высокая удельная теплоемкость и достаточно большая (хотя и меньшая чем у воды) диэлектрическая постоянная. Он является очень хорошим растворителем. Все перечисленные свойства жидкого аммиака делают его потенциально способным при некоторых условиях сыграть роль "жизненной среды", подобно воде на заре возникновения жизни на нашей планете.
   Можно установить полное соответствие между "обычными" солями и органическими соединениями, с одной стороны, а "аммиачными" - с другой. Оказывается, что для этого надо заменить ион O= на аминовую группу NH=, а ион гидроксила OH= на амин NH2=. При такой замене, например, муравьиной кислоте HCOOH будет соответствовать соединение HCNHNH2, а метиловому эфиру CH3OCH3 соединение CH3NHCH3. На аммиачной основе таким способом можно построить аналоги "обычных" аминокислот, а затем сколь угодно сложные аналоги всевозможных белковых соединений. Вполне допустимы аммиачные аналоги нуклеиновых кислот, пуринов и пиридинов. Наконец, можно представить аналоги ДНК и РНК с их кодом наследственности.
   Аналогом окисления при такой "аммиачной" жизни является присоединение ионов NH= или N= , в то время как конечным продуктом жизнедеятельности вместо воды и углекислого газа будет аммиак и циан. Таким образом, можно сказать, что гипотетические аммиачные организмы "пьют" аммиак и "дышат" азотом, в то время как земные "водные" организмы пьют воду и дышат кислородом...
   Не будем фантазировать, как могут выглядеть аммиачные организмы. Это во всяком случае преждевременно. В результате спектроскопических исследований Юпитера был обнаружен водяной пар в его атмосфере, так что необходимость в подобных фантазиях может быть не столь уж велика. Мы хотели бы только подчеркнуть, что современной науке не противоречит гипотеза о возможном существовании примитивных организмов на больших планетах, хотя, по мнению автора, вероятность того, что эта гипотеза справедлива, весьма мала, если не равна нулю.
   В заключение этой главы нужно сказать хотя бы несколько слов об открытии сложных органических соединений внутри некоторых метеоритов. Среди каменных метеоритов иногда наблюдаются так называемые "углистые хондриты". Они составляют примерно 1 % от всех каменных метеоритов. У этих метеоритов отмечаются повышенное содержание углерода (до 3 %). Кроме того, углистые хондриты богаты серой, водой и некоторыми другими сравнительно легко испаряющимися веществами. Именно в таких хондритах еще в первой половине XIX в. были обнаружены органические вещества. В настоящее время в составе некоторых углистых хондритов обнаружены довольно сложные органические соединения: высокомолекулярные парафиновые углеводороды и жирные кислоты. В 1960 г. из одного метеорита было выделено весьма сложное органическое соединение, подобное цитозину. Известно, что цитозин входит в состав молекулы ДНК. Большой интерес вызвал тонкий химический анализ метеорита, упавшего в Австралии в 1969 г. Среди углеводородных соединений, обнаруженных внутри этого "космического гостя", следует отметить 16 видов аминокислот. Из них пять относятся к числу тех 20 видов, из которых "конструируются" живые белки, a 11 - из числа тех 80, которые в состав земных белков не входят. Очень существенно, что среди обнаруженных аминокислот одна половина имеет "левую" асимметрию, а другая - "правую" (см. гл. 13). Так как все "живые" молекулы аминокислот на нашей планете имеют "левую" асимметрию, ясно, что их "космические сестры", обнаруженные в австралийском метеорите, имеют небиологическое происхождение. Вместе с тем это очевидное доказательство того, что обнаруженные в метеорите аминокислоты действительно синтезировались в космосе, а не являются результатом загрязнения космического гостя земным веществом, так как в последнем случае наблюдалась бы только "левая" асимметрия.
   Неоднократно появлялись сообщения об обнаружении в углистых хондритах включений овальной формы, имеющих внешнее сходство со спорами водорослей. При облучении ультрафиолетовым цветом эти включения люминесцировали. Кроме того, при применении особых реактивов, используемых для выявления веществ "биологического" происхождения, они окрашивались.
   По этим признакам некоторые исследователи считали (и считают) эти включения окаменевшими остатками микроорганизмов. Появились даже гипотезы, объясняющие их происхождение. Бернал, например, считал, что мыслимы две гипотезы, объясняющие это явление.
   Согласно первой гипотезе, метеорит некогда был выброшен с поверхности планеты, на которой была жизнь. Не совсем тривиальна вторая гипотеза. Некогда, полагал Бернал, вместе с земной пылью при вулканическом извержении в межпланетное пространство могли быть выброшены микроорганизмы и споры. Блуждая в Солнечной системе, такие пылинки могли "прилипнуть" к какому-нибудь метеориту и вместе с ним вернуться на свою "родину" - Землю.
   Что можно сказать по поводу изложенного? Прежде всего, никак нельзя считать доказанным, что обнаруженные в некоторых углистых метеоритах маленькие включения действительно являются отпечатками микроорганизмов. Одно только морфологическое сходство, конечно, не может быть основанием для такого вывода. Вполне возможно, что эти включения представляют собой минералы или высокомолекулярные углеводороды абиогенного происхождения. Нельзя также полностью исключить возможность "загрязнения" метеоритов после их падения земными микроорганизмами. Такие загрязнения могут возникнуть в процессе микробиологического исследования метеоритов.
   В последние годы как в американской, так и в советской печати появилось несколько сенсационных сообщений об "открытии" в углистых метеоритах живых микроорганизмов. Так, например, Банриев и Мамедов "обнаружили" в железном Сихотэ-Алинском метеорите особую разновидность живых бактерий. Однако скоро выяснилось, что это "открытие" является недоразумением и что эксперименты были поставлены исследователями неграмотно. Всегда следует помнить, что в истории науки известно много случаев, когда желаемое принималось за действительное. Не случайно старая китайская пословица гласит: "Если ты очень ждешь друга - не принимай стук своего сердца за топот копыт его коня"...
   Впрочем, история науки знает и другое. Например, долгие десятилетия официальная наука не признавала, что с неба могут падать камни. Но, во всяком случае, тщательное изучение и скрупулезная проверка фактов при всех условиях совершенно необходимы.