Множественность планетных систем.
   В самое последнее время видный английский астроном В. Мак-Кри развил космогоническую теорию, в которой вышеизложенные качественные соображения даны количественно. По мысли Мак-Кри, первоначальная туманность в процессе ее конденсации разбивалась на большое число сгустков. В результате взаимодействия этих сгустков в конечном итоге образовалось массивное центральное тело Солнце и некоторое количество планет, причем, согласно его расчетам, 96% момента количества движения системы сосредоточено в орбитальном движении планет. Это находится в превосходном согласии с наблюдаемым распределением момента количества движения в Солнечной системе.
   Хотя расчеты Мак-Кри, разумеется, еще нельзя считать строгим доказательством, все же они подтверждают вывод, к которому астрофизика пришла в последние годы чисто эмпирически, т. е. с большой степенью вероятности можно утверждать, что большинство звезд-карликов спектральных классов G, K, M должны быть окружены семействами планет. Но это означает, что по крайней мере несколько миллиардов звезд в Галактике могут (или, вернее, должны) обладать планетными системами. Напомним, что всего в Галактике насчитывается свыше 150 миллиардов звезд всех типов. Как известно, наше Солнце расположено вблизи плоскости галактического экватора, около одного из спиральных рукавов. В сфере радиусом в 100 световых лет насчитывается около 10000 звезд, причем значительная часть их, если не большинство, - карлики спектральных классов G, K, M.
   Где может возникнуть жизнь?
   Вполне естественно предположить, что при благоприятных обстоятельствах на планетах, окружающих эти звезды, должна возникнуть и развиваться жизнь. Проблема возникновения жизни на Земле есть одна из основных проблем естествознания. В 1957 г. в Москве впервые состоялся Международный конгресс, на котором эта проблема подверглась всестороннему обсуждению. Рядом виднейших специалистов было показано, что образование сложных органических молекул "кирпичей жизни" - с необходимостью должно иметь место на сравнительно раннем этапе эволюции планеты.
   На протяжении дальнейшей эволюции жизни, насчитывающей сотни миллионов и миллиарды лет, организмы постепенно развивались, достигая высокой степени совершенства, причем одни виды непрерывно сменяли другие. На достаточно позднем этапе эволюции на Земле появилось разумное существо - человек.
   Коль скоро есть все основания предполагать, что планетных систем, сходных с Солнечной, в Галактике насчитывается несколько миллиардов, вполне естественно принять, что процесс зарождения жизни и ее эволюции там в общих чертах по своему характеру сходен с тем, что было на Земле. Разумеется, не на каждой планете возможно зарождение и развитие жизни.
   1. Планеты, на которых возможно зарождение и развитие жизни, не могут обращаться вокруг звезды слишком близко или слишком далеко. Необходимо, чтобы температуры их поверхностей были благоприятны для развития жизни. Учитывая, однако, что одновременно с звездой должно образоваться сравнительно большое число планет (скажем, ~ 10), с большой вероятностью можно ожидать, что хотя бы одна или две планеты будут обращаться на расстоянии, при котором температура лежит в нужных пределах.
   Заметим еще, что по мере перехода от сравнительно горячих звезд главной последовательности к более холодным зона расстояний планет от звезды, при которых температурные условия благоприятствуют развитию жизни, непрерывно уменьшается и приближается к поверхности звезды. Поэтому красные карлики спектрального класса M и даже поздние подклассы K вряд ли можно рассматривать как очаги, поддерживающие на своих планетах жизнь, так как энергия их излучения для этого недостаточна.
   2. Массы образовавшихся планет не должны быть ни слишком большими, ни слишком маленькими. Это обстоятельство в свое время подчеркивал В. Г. Фесенков. В первом случае гигантские атмосферы этих планет, богатые водородом и его соединениями, исключают возможность развития жизни. Во втором случае за время эволюции атмосферы будут рассеиваться (тому пример Меркурий). Однако, учитывая сравнительно большое число образующихся планет, можно ожидать, что некоторое, пусть малое количество их, будет обладать нужной массой. При этом необходимо, чтобы такие планеты одновременно удовлетворяли первому условию.
   Заметим, что первое и второе условия не являются независимыми. Ведь не случайно планеты Солнечной системы со сравнительно малой массой (так называемые планеты земной группы) находятся относительно близко от Солнца, а планеты-гиганты с атмосферами, богатыми водородными соединениями, находятся сравнительно далеко от Солнца. Поэтому мы можем считать, что по крайней мере значительная часть образовавшихся планет с подходящей для развития жизни массой в то же время находится и на подходящем расстоянии от звезды.
   3. Высокоорганизованная жизнь может быть только на планетах, обращающихся вокруг достаточно старых звезд, возраст которых насчитывает несколько миллиардов лет. Ибо для того, чтобы в процессе эволюции такая жизнь возникла, необходимы огромные промежутки времени. Заметим, что третьему условию удовлетворяют почти все звезды-карлики интересующих нас спектральных классов.
   4. Звезда в течение нескольких миллиардов лет не должна существенно менять своей светимости. И этому условию удовлетворяет подавляющее большинство интересующих нас звезд.
   Звезда не должна быть кратной, ибо в противном случае орбитальное движение планет было бы существенно отлично от кругового, и резкие, если не катастрофические, изменения температуры поверхности планеты исключили бы возможность развития на ней жизни.
   Сколько планет может быть колыбелью разумных существ?
   Если даже учесть все изложенные выше ограничения, мы можем считать, что в Галактике существует по крайней мере миллиард планет, обращающихся вокруг карликовых звезд, подобных нашему Солнцу, или несколько более холодных, на которых возможна высокоорганизованная, а может быть, и разумная жизнь.
   Необходимо, однако, сейчас обратить внимание на одно важное обстоятельство. Известно, что человек как биологический вид появился на Земле всего несколько сот тысяч лет назад. Можно ли утверждать, что человечество, непрерывно развиваясь, будет существовать сколь угодно долго, скажем, миллиарды лет?
   Как нам представляется, вера в вечность человеческого рода на Земле (ибо речь может идти только о вере) столь же нелепа и бессмысленна, как и вера в личное бессмертие индивидуума. Все что возникло - с неизбежностью должно рано или поздно погибнуть. И разумная жизнь на какой-нибудь планете не может составлять исключения.
   Какова длительность в различных мирах психозойских эр, т. е. тех периодов, в которые начала развиваться жизнь мыслящих существ? На такой вопрос очень трудно ответить. Это могут быть сотни тысяч и даже многие миллионы лет.
   Ограниченность психозойской эры во времени на различных планетах существенно уменьшает количество миров, где одновременно с нами обитают разумные существа. Так, например, если среднюю длительность такой эры принять за миллион лет, то в современную эпоху в Галактике может быть только несколько миллионов планет, населенных разумными существами с достаточно высоким уровнем цивилизации. В этом случае, в сфере радиусом 100 световых лет, окружающей Солнце, могут быть только одна-две такие планетные системы. Разумеется, сделанная нами только что поправка на ограниченность психозойских эр носит довольно произвольный характер. Однако, на наш взгляд, она совершенно необходима, ибо в противном случае оценка количества обитаемых миров во Вселенной получается грубо преувеличенной. Конечно, нельзя считать полностью исключенным, что миров, обитаемых разумными существами, значительно больше, чем мы предполагаем. Однако все же более вероятно, что их должно быть меньше.
   Таким образом, наука второй половины двадцатого столетия приходит к обоснованию гениальных идей великого итальянского мыслителя Джордано Бруно о множественности обитаемых миров. Возникает естественный вопрос: каковы же перспективы установления контакта с разумными обитателями планетных систем?
   Межзвездная связь.
   Для высокоорганизованных цивилизаций, обитающих на некоторых планетах, наше Солнце должно представляться как звезда, вокруг которой могут обращаться планеты, где возможна разумная жизнь. Вполне естественно, что, располагая мощными техническими средствами, они должны стремиться установить какую-то связь с разумными существами, обитающими на какой-нибудь из планет Солнечной системы. Представим себе, что они уже давно, может быть, много тысяч лет тому назад, установили какой-то канал связи и терпеливо ожидают ответа...
   Какова же природа этого канала связи?
   Этой необычной проблеме была посвящена статья Д. Коккони и Ф. Моррисона в одном из сентябрьских номеров "Nature" за 1959 г. Проведенный этими авторами анализ показывает, что такую связь можно установить только при помощи электромагнитных волн. Необходимо еще иметь в виду, что эти волны не должны существенно ослабляться при прохождении через межзвездное пространство и планетные атмосферы. Кроме того, мощности передатчиков должны быть по возможности незначительными, а используемая техника - простой и надежной. Это сразу же ограничивает возможный диапазон электромагнитных волн радиодиапазоном с интервалом частот 10 - 104 МГц (что соответствует длинам волн от 30 м до ~ 3 см).
   Мощные помехи космических источников радиоизлучения исключают возможность использования достаточно длинных волн, скажем, ? > 50 см. С другой стороны, тепловое радиоизлучение атмосфер планет исключает возможность использования очень коротких волн. Заметим, что при помощи находящихся за пределами атмосферы планеты искусственных спутников можно расширить диапазон в сторону более высоких частот.
   Далеко ли дойдет сигнал?
   Сразу же возникает вопрос: на каких же расстояниях можно уже сейчас установить прямую радиосвязь? Здесь необходимо подчеркнуть поразительно быстрый прогресс радиофизики за последние полвека.
   На памяти нашего старшего поколения произошло важное для того времени событие: установление трансатлантической радиосвязи. В 1945 г. впервые посланный на Луну сигнал, отразившись от нее, был принят на Земле. В прошлом, 1959 г. была осуществлена радиолокация Венеры. Это гораздо более трудная задача, чем локация Луны, ибо, как известно, при радиолокации необходима мощность передатчика, пропорциональная четвертой степени расстояния до лоцируемого объекта. Как следует из сообщения нашей печати, а также печати США, сейчас обсуждается возможность посылки космических ракет в направлении к Марсу и Венере. Это потребует осуществления надежной радиосвязи на расстояниях порядка 100 млн. км. При этом следует иметь в виду, что бортовая радиоаппаратура по ряду естественных причин будет малогабаритной и маломощной.
   Между тем уже в настоящее время размеры зеркал радиотелескопов достигают 75 м, а чувствительность приемной аппаратуры на сантиметровом и дециметровом диапазонах, благодаря применению новых типов усилителей (например, молекулярных), резко выросла. Отсюда следует (как это будет показано ниже), что уже сейчас вполне возможно, используя самые большие из существующих антенн и самую чувствительную приемную аппаратуру, осуществлять радиосвязь на расстоянии ~ 10 световых лет.
   Как преодолеть помехи?
   При расчете линии радиосвязи между двумя мирами нужно учитывать уровень помех. Следует иметь в виду два типа помех. Во-первых, радиоизлучение звезды, вокруг которой обращается населенная разумными существами планета; во-вторых, интенсивность радиопередатчика должна быть такой, чтобы его сигнал надежно выделялся на фоне неизбежных помех космического радиоизлучения. Прежде всего ясно, что мощность передатчика в нужном направлении (т. е. в направлении на звезду, с которой пытаются установить связь) в некотором интервале частот должна быть больше теплового радиоизлучения звезды. Можно убедиться, что это условие реализуется легко. Поток радиоизлучения от передатчика, как показывают подсчеты, будет больше потока теплового излучения звезды даже при незначительной мощности передатчика. В самом деле, поток теплового радиоизлучения от Солнца на расстоянии R, выраженном в метрах, равен 10-15 f2/R2 Вт/м2Гц (где f - частота), а от передатчика W G/R2, где W - мощность передатчика, а G - коэффициент направленного действия передающей антенны, определяемый ее диаметром:
   G = 4?d2/?2.
   Таким образом, при d ? 100 м для волн дециметрового диапазона G ? 105. Отсюда следует, что при f = 103 МГц поток радиоизлучения от передатчика будет больше потока теплового излучения от звезды при W > 10-2 Вт/Гц.
   Значительно более существенны помехи от фона космического радиоизлучения. Здесь следует уточнить возможную область частот, на которых можно пытаться установить интересующую нас радиосвязь.
   Моррисон и Коккони выдвинули весьма изящную идею, что такого рода связь, вероятнее всего, будут пытаться установить на волне 21 см. Хорошо известно, что это длина волны радиолинии водорода. Разумные существа, находящиеся на высоком уровне развития, должны проводить интенсивные исследования космоса именно на этой волне. Подобные исследования уже сейчас обогатили астрономическую науку рядом открытий первостепенного научного значения. Особенно следует подчеркнуть, что они будут неограниченно развиваться в дальнейшем, ибо успех таких исследований неразрывно связан с общим прогрессом радиофизики. Таким образом, особенно чувствительная приемная аппаратура должна быть именно на этой волне. Кроме того, на этой волне должны проводиться длительные и систематические исследования различных объектов на небе, что значительно увеличивает вероятность обнаружения сигнала. Наконец, водород самый распространенный элемент во Вселенной, и поэтому его радиолиния является как бы природным эталоном частоты, эталоном, к которому с неизбежностью должна прийти всякая развивающаяся цивилизация.
   В каком направлении производить поиск?
   Для сравнительно больших угловых расстояний от полосы Млечного Пути, составляющих примерно 2/3 небосвода, интенсивность IV межзвездной радиолинии не превосходит интенсивности непрерывного радиоизлучения Галактики в этом же спектральном участке, которая равна 10-21,5 Вт/(м2срГц). В полосе Млечного Пути интенсивность радиолинии водорода в несколько десятков раз больше этой величины.
   Поэтому выгоднее пытаться установить радиосвязь с объектами, находящимися в сравнительно высоких галактических широтах, где уровень помех (определяемый фоном космического радиоизлучения) много меньше.
   Расчеты (см. ниже) показывают, что установление радиосвязи между цивилизациями, разделенными межзвездными пространствами, находится в пределах возможности техники сегодняшнего дня.
   Если в качестве передатчика используется зеркало диаметра d1, то мощность, которую следует излучать в соответствующем направлении (например, в направлении нашей Солнечной системы), при условии, чтобы на приемной станции с диаметром зеркала d2 сигнал превысил космический фон, должна быть:
   W ? IV (?/d1)2 (?/d2)2 R2 = 10-24,2 R 2 /(d1d2) Вт/Гц
   Отсюда следует, что при d1 = d2 = 80 м и при R = 10 световых лет W = 100 Вт/Гц, что технически осуществимо уже сейчас.
   Заметим, однако, что размеры передающих антенн и мощность передатчиков у высокоорганизованных цивилизаций могут быть, конечно, значительно больше принятых нами.
   Можно предположить, что на каких-нибудь планетах обитающие там высокоорганизованные разумные существа непрерывно в течение огромных промежутков времени "держат" в главных лепестках своих гигантских антенн в ожидании ответного сигнала некоторое число (скажем, ~ 100) сравнительно близких к ним звезд, где, по их предположениям, возможна разумная жизнь. Для высокоорганизованного общества такая своеобразная, длящаяся многие тысячелетия "служба космической радиосвязи" вполне "по средствам". И не исключено, что мы уже очень давно находимся в пучке электромагнитной радиации, непрерывно посылаемой к нам разумными существами, населяющими окрестности какой-нибудь хорошо нам знакомой звезды, отдаленной от нас на расстояние в несколько десятков световых лет.
   Посылаемые сигналы должны иметь некоторые свойства, резко отличающие их от естественных космических радиошумов. Они могут представлять простейший код, например, первые несколько цифр натурального ряда в непрерывно повторяющейся последовательности или такие числа, как число ? или e - основание натурального логарифма. Полоса частот, использованная для космической радиосвязи, должна быть сравнительно узкой. Орбитальное движение планеты, на которой установлен передатчик, вокруг звезды будет приводить к строго периодическим изменениям частоты (из-за эффекта Доплера). Если приблизительно считать, что ожидаемые относительные скорости при таком движении меняются в пределах +- 100 км/с, то вариация частоты сигнала может быть в пределах +- 300 кГц от основной частоты радиолинии водорода, равной 1420,3 МГц.
   Конечно, не так уж много шансов установить радиосвязь с другими мирами, особенно за сколько-нибудь обозримый промежуток времени. Но, как совершенно справедливо замечают Моррисон и Коккони, если не делать никаких попыток в этом направлении, то шансы будут нулевые.
   Идея о возможности установления радиосвязи с другими мирами уже на современном уровне радиофизики недавно стала реализоваться на Национальной радиоастрономической обсерватории в США. Известный американский радиоастроном Ф. Дрэйк разработал проект аппаратуры, способной решить поставленную задачу. Подробное описание этой схемы можно найти в статье Дрэйка, опубликованной в январском номере журнала "Sky and Telescope" за 1960 г. Уже изготовлены блоки этого приемника. Антенной у него будет параболическое зеркало диаметром 25,5 м. Наблюдения предполагается начать уже с 1960 г. Первыми объектами исследования будут две близкие, довольно похожие на Солнце звезды ? Кита и ? Эридана, находящиеся на расстоянии 11 световых лет. В дальнейшем эту аппаратуру предполагается перенести на строящийся радиотелескоп с диаметром зеркала 45 м.
   * * *
   Мы живем в эпоху поразительных научных открытий и великих свершений. Самые невероятные фантазии неожиданно быстро реализуются. С давних пор люди мечтали о связи с разумными существами, обитающими на разбросанных в беспредельных просторах Галактики планетных системах. Приходится только поражаться, как быстро наука подтвердила принципиальную возможность осуществления идеи такой связи и сделала первые шаги на пути ее реализации. Однако надо себе ясно представить огромную величину этого пути и те колоссальные трудности, с которыми предстоит встретиться.
   Будем же надеяться, что эта мечта когда-нибудь станет реальностью.
   Приложение III
   Существуют ли внеземные цивилизации?
   (Последняя статья И. С. Шкловского по проблеме внеземных цивилизаций ("Земля и Вселенная", No 3, 1985) была написана на основе доклада на Всемирном геологическом конгрессе в Москве и вышла в свет после кончины автора.)
   Не приходится доказывать то давно известное обстоятельство, что наука не может получить достаточно полное представление об изучаемом объекте, если он известен в одном-единственном экземпляре. Изучение природы всегда начинается с классификации, систематики. Приведу два примера.
   В настоящее время, несмотря на огромные успехи науки в исследовании планет (прежде всего - прямыми методами космонавтики) и Солнца, вопрос о происхождении нашей Солнечной системы весьма далек от ясности. Напротив, происхождение и эволюция звезд, несравненно более удаленных и потому недоступных исследованиям прямыми методами, стали известны достаточно хорошо. В этой области знания успехи просто поражают воображение. В чем причина такой парадоксальной ситуации? Она очевидна: планетная система нам пока известна в одном экземпляре, между тем как астрономы с помощью мощных инструментальных средств уже давно наблюдают гигантское количество звезд, находящихся на разных стадиях эволюции. (Недавние наблюдения на специализированном спутнике IRAS, оснащенном инфракрасными телескопами, привели к обнаружению вокруг Веги и некоторых других близких звезд пылевых дисков или колец, возможно, являющихся ранней фазой образования планетных систем. Таким образом, эта важнейшая проблема сдвинулась с мертвой точки.)
   Совершенно неясен и полностью запутан вопрос о происхождении жизни на Земле. Дело доходит до того, что один из ведущих биологов современности Ф. Крик сравнительно недавно пытался возродить вариант старинной гипотезы панспермии (корни которой восходят еще к учению отцов церкви о "зародышах жизни"). Неприемлемость гипотезы панспермии видна хотя бы из того, что жизнь есть категория историческая, а отнюдь не вечная, как считал С. Аррениус. Ее не могло быть на ранних этапах эволюции Вселенной, когда не существовало ни звезд, ни галактик, ни даже тяжелых элементов. Поэтому не уйти от ответа на вопрос: как же живое произошло от неживого? Нелепо для этого искать вместо первобытной Земли какие-то другие космические объекты с совершенно неясными физическими условиями. Столь плачевное состояние этой проблемы объясняется тем простым обстоятельством, что других форм жизни во Вселенной (кроме земной) мы не знаем. Поэтому возникает важный вопрос о распространенности жизни во Вселенной. Не следует, однако, впадать в черный пессимизм. Мы, астрономы, возлагаем большие надежды на орбитальный оптический телескоп с диаметром зеркала 2,4 м, который начнет работать через год. Есть основания полагать, что с его помощью удастся обнаружить ближайшие к Солнцу планетные системы. Что касается внеземной жизни, то есть надежда обнаружить ее по тем преобразованиям, которые она в процессе своей эволюции осуществляет в атмосферах материнских планет (вспомним происхождение кислорода в земной атмосфере).
   А пока мы можем только строить более или менее обоснованные гипотезы о распространенности жизни во Вселенной и возможных путях ее развития. При этом следует опираться на огромное количество фактов, уже известных нам о Вселенной, и, конечно, на биофизику, биохимию, генетику и эволюционную биологию. Так как материальными носителями жизни являются сложные и сверхсложные молекулы, в структуре которых решающую роль играют тяжелые элементы (элементы, атомы которых тяжелее гелия), то возникновение жизни во Вселенной следует отнести к эпохе, когда химический состав значительного количества звезд (но, разумеется, не всех) был уже близок к современному. Грубая оценка дает значение параметра красного смещения для этой эпохи z1 ? 4-5, откуда тогдашний возраст Вселенной T = T0 (1 + z1)-1/2 ? 109 лет, где T0 ? 16 млрд. лет - наиболее вероятное значение современного возраста Вселенной. Можно полагать, что с тех пор благоприятные условия для возникновения жизни время от времени возникали в разных галактиках. В нашей Солнечной системе, на одной из ее планет - Земле, такие условия появились довольно скоро после ее образования 4,6 млрд. лет назад. (Проведанные недавно немецким геохимиком Шидловским исследования изотопного отношения 12C/13C для древних пород доказали, что жизнь на Земле возникла по крайней мере 3,8 млрд. лет назад, т. е. не позже, чем спустя 0,8 млрд. лет после ее образования.) Не следует при этом забывать, что сам процесс образования Солнечной системы был растянут на добрую сотню миллионов лет. Так как процесс образования звезд и планетных систем идет во Вселенной непрерывно, можно утверждать, что отдельные очаги жизни в ней могут иметь возраст (а следовательно, и время для своей эволюции) примерно от 15 млрд. до немногих сотен миллионов лет. Следовательно, наша земная жизнь принадлежит к числу довольно древних.
   Мы, однако, в настоящее время решительно ничего не можем сказать о вероятности возникновения жизни на какой-нибудь молодой планете. Пример нашей Солнечной системы, в которой имеется только одна обитаемая планета - Земля, наглядно демонстрирует, что жизнь возникает далеко не на каждой планете. Сейчас нельзя исключить утверждение, что доля обитаемых планет может быть неопределенно малой. И пока мы не откроем за пределами Солнечной системы планет, атмосферы которых преобразованы жизнью, ощутимого продвижения в решении этой увлекательной проблемы, по-видимому, не будет.