Страница:
В то же время и путем тех же умственных процессов являются первые ясные идеи числа. На самых ранних ступенях представление отдельных сходных предметов производит только неопределенное понятие множественности, это и теперь еще видно между австралийцами, бушменами и дамарасами, когда представляемое число превышает три или четыре. Имея такие факты перед собой, мы можем безопасно заключить, что первое ясное численное понятие было понятие двойственности, как противоположное единице. И это понятие двойственности необходимо должно было вырасти рядом с понятиями сходства и равенства, потому что невозможно признать сходство двух вещей, не усмотрев вместе с тем, что их две. С самого начала понятие числа должно было соединяться, как оно до сих пор соединяется, со сходством и равенством исчисляемых вещей. Анализируя простое счисление, мы найдем, что оно есть записывание повторявшихся впечатлений какого-нибудь рода. Чтобы эти впечатления могли быть доступны счислению, необходимо, чтобы они были более или менее сходны; и прежде, чем можно достигнуть абсолютно истинных численных результатов, нужно, чтобы единицы были абсолютно равны. Единственный путь, которым мы можем установить какое-нибудь численное сродство между вещами, не производящими на нас сходных впечатлений, состоит в том, чтобы разделить их на части, которые производили бы на нас сходные впечатления. Две несходные величины притяжения, силы, времени, веса или чего бы то ни было могут быть оценены в своих относительных итогах только посредством какой-либо мелкой единицы, которая содержится много раз в обеих величинах; если мы выражаем большую величину единицей и другую - дробью ее, мы определяем в знаменателе дроби число частей, на которые единица должна быть разделена, чтобы допустить сравнение с дробью. Справедливо, без сомнения, что посредством некоторого, очевидно нового, процесса отвлечения мы иногда прилагаем числа к неравным единицам, как, например, к утвари на аукционе или к различным животным на ферме, - прилагаем просто как ко многим отдельным вещам; но через счисление единиц такого рода нельзя получить никакого истинного результата. И в самом деле, отличительная особенность счисления вообще состоит в том, что оно совершается при гипотезе того безусловного равенства абстрактных его единиц, каким не обладают никакие реальные единицы, и что точность его результатов держится только в силу этой гипотезы. Таким образом, первые идеи числа необходимо произошли из сходных или равных величин, какие усматриваются главнейшим образом в органических предметах; и так как подобные величины, чаще всего наблюдаемые, были величины протяжения, то надо заключить, что геометрия и арифметика имеют одновременное начало.
Не только первые ясные идеи числа связаны с идеями подобия и равенства, но и первые усилия к счислению представляют то же самое сродство. Читая рассказы о различных диких племенах, мы находим, что метод счета посредством пальцев, которому еще и теперь следуют многие дети, есть первобытный метод. Помимо отдельных случаев, в которых способность к счислению не достигает даже полного числа пальцев на одной руке, есть много случаев, в которых она не простирается далее десяти, - предела простого означения посредством пальцев. Факт, что в столь многих случаях отдаленные и, по-видимому, не сообщающиеся одна с другой нации приняли десять за основание численной системы, вместе с фактом, что в остальных случаях основное число есть или пять (пальцы одной руки), или двадцать (пальцы рук и ног), сам по себе почти доказывает, что пальцы были первоначальными единицами счисления. До сих пор удержавшееся употребление слова digit, как общего названия для всякой фигуры в арифметике, многознаменательно, и даже говорят, что наше слово ten (саксонское tyn, голландское tien, немецкое zehri) означало в первоначальной своей форме две руки. Так что в первобытное время сказать, десять вещей было то же самое, что сказать: две руки вещей Из всех этих свидетельств достаточно ясно, что самый ранний способ сообщения идеи какого-нибудь числа вещей состоял в поднятии стольких пальцев, сколько было вещей, т. е. в употреблении символа, который был равен, в отношении множественности, означаемой группе. Без сомнения, сильным подтверждением для этого вывода служит новейший факт, что наши солдаты самобытно усвоили себе этот прием в сношениях с турками во время Крымской войны. Надо заметить, что в этом новом сочетании понятия равенства с понятием множественности, посредством которого делаются первые шаги в счислении, мы можем видеть одно из самых ранних соприкосновений между расходящимися отраслями науки, - соприкосновений, которые впоследствии постоянно встречаются.
Но, прежде чем проследим способ, которым точная наука возникает из приблизительных суждений чувств, и прежде чем покажем нелинейность развития отделов науки, полезно будет заметить нелинейный характер тех предварительных процессов, продолжение которых составляет все последующее развитие. Всякий, кто рассмотрит эти процессы, увидит, что они суть не только расходящиеся отростки от общего корня, не только одновременны в своем развитии, но что они взаимно помогают друг другу и что ни один из них не может идти вперед без остальных. Полнота классификации, для которой прокладывает путь развитие восприятий, невозможна без соответствующего прогресса в языке, посредством которого большее разнообразие предметов становится мыслимо и выразимо. С одной стороны, невозможно вести классификацию без названий, которыми бы обозначались классы, а с другой невозможно создать язык прежде, нежели классифицируются вещи. Далее, самое умножение классов и следующее отсюда стеснение каждого класса предполагают уже большее сходство между вещами, соединенными в один класс; а приближение к понятию совершенного сходства само способствует тому, чтобы классификация была доведена до более высокой степени. Сверх того, классификация необходимо идет вперед pari passu с рациональностью, т е. классификация вещей с классификацией отношений: потому что вещи, принадлежащие к одному и тому же классу, представляют, само собою разумеется, вещи, свойства которых и условия положения - сосуществования и последовательности - суть более или менее те же самые; а познание этого тождества сосуществования и последовательности есть умозаключение. Отсюда следует, что успех классификации необходимо пропорционален успеху обобщений. Но далее, из понятия сходства как в вещах, так и в отношениях одновременно развиваются идеи равенства вещей и равенства отношений, которые суть основания точного конкретного и точного абстрактного умозаключения - математики и логики. Кроме того, эта идея равенства, в самом процессе своего образования, дает начало двум рядам отношений - отношениям величины и отношениям числа, из которых возникли геометрия и счисление. Таким образом, весь процесс есть процесс постоянного подразделения и постоянного взаимного сообщения отделов. С самого начала существовала та связь различных родов познания, которая соответствует связи умственных способностей и которая, как уже сказано, должна существовать между науками.
Перейдем теперь к наблюдению того, как из понятий равенства и числа, образовавшихся указанным способом, возникают постепенно элементы количественного предвидения.
Равенство, раз определенно понятое, тотчас же начало применяться и к другим явлениям, помимо явлений величины. Так как оно оказалось приложимым ко всем вещам, производящим одинаковые впечатления, то естественно возникли идеи о равенстве весов, звуков, цветов и т. д. Едва ли можно сомневаться, что опыты над равными весами, звуками и цветами имели свою долю участия в развитии отвлеченного понятия о равенстве, т. е. что идеи равенства в размерах, отношениях, силах, сопротивлениях и чувствительных свойствах вообще развивались в продолжение того же самого периода. Как бы то ни было, но ясно, что как скоро понятие равенства приобрело определенность, так низший род количественного предвидения, которого достигают без помощи каких бы то ни было приборов, сделался возможен. Способность оценить, как бы ни было грубо, величину предвидимого результата подразумевает понятие того, что эта величина будет равна известному воображаемому количеству; и правильность оценки, очевидно, будет зависеть от точности, до которой достигли восприятия чувствуемого равенства. Дикарь с куском камня в руке, имея перед собой другой кусок большей величины, но того же самого вида (заключение о виде он выводит из равенства обоих камней по цвету и строению), знает приблизительно, какое усилие он должен употребить, чтобы поднять этот другой кусок; и точность его суждения пропорциональна точности, с которой он усмотрел, что один кусок вдвое, втрое или вчетверо больше другого, т. е. пропорциональна точности его идей о равенстве и числе. И заметим здесь, что даже в этих наиболее неопределенных из количественных предвидений заключается также понятие равенства отношений: ибо даже самое грубое приближение может быть достигнуто только в силу некоторого неопределенного усмотрения, что отношение между объемом и весом в одном камне равно отношению между объемом и весом в другом.
Но каким образом совершается переход от этих неопределенных усмотрений равенства, которые даются невооруженными чувствами, к тем определенным усмотрениям, с которыми имеет дело наука? Он совершается посредством сопоставления сравниваемых вещей. Так как равенство утверждается о тех вещах, которые производят на нас неотличимые одно от другого впечатления, и так как точное сравнение впечатлений невозможно, если они не следуют непосредственно одно за другим, то отсюда вытекает, что возможность установить точность равенства находится в прямом отношении к близости сравниваемых предметов. Вследствие этого, когда мы хотим судить о двух оттенках цвета, мы помещаем их рядом; вследствие этого мы не можем с какой-либо точностью сказать, который из двух соединенных звуков громче или выше в диапазоне, если только звуки не следовали один за другим непосредственно; вследствие этого, желая оценить отношение грузов, мы берем по одному в каждую руку, чтобы можно было сравнить их давления, быстро переходя в мысли от одного груза к другому; вследствие этого, играя музыкальную пьесу, мы можем сделать одинаковый такт вслед за предыдущим, не можем быть уверены, что размер такта будет тот же при повторении пьесы; вследствие этого, наконец, является факт, что из всех величин величины линейного протяжения суть такие, равенство которых доступно наиболее точной поверке и на которые вследствие этого сводятся все другие. Особенность линейного протяжения состоит в том, что оно одно дозволяет абсолютно совместить величины или, лучше, поставить их в совпадающее положение; оно одно может проверить равенство двух величин посредством наблюдения, совпадут ли они, как совпадают две равные математические линии, проведенные между теми же самыми точками, оно одно может проверить равенство посредством испытания того, станет ли оно тождеством. Отсюда вытекает факт, что всякая точная наука в окончательном анализе может быть сведена на результаты, измеряемые равными единицами линейного протяжения.
Остается еще заметить, каким образом возникает это определение равенства посредством сравнения линейных величин. Мы можем тут еще раз убедиться, как окружающие естественные предметы служат к тому полезным руководством. С самого начала должен был существовать постоянный опыт над сходными вещами, расположенными рядом, как, например, над людьми, стоящими и гуляющими вместе, над животными одного и того же стада, над рыбами на одной и той же отмели. Беспрестанное повторение этих опытов не могло не привести к наблюдению, что, чем ближе находятся какие-нибудь предметы друг к другу, тем виднее становится всякое неравенство между ними. Отсюда понятная привычка прикладывать друг к другу те вещи, относительные величины которых желают узнать. Отсюда же появилась идея меры. Мы тут неожиданно приходим к группе фактов, которые доставляют твердое основание для основного рассуждения; они же дают сильное доказательство и в подтверждение предыдущих умозрений. Люди, которые смотрят скептически на попытку восстановить самые ранние эпохи умственного развития, и особенно те, которые думают, что относить массу первичных понятий к органическим формам есть вещь довольно натянутая, увидят, быть может, больше вероятности в различных гипотезах, на которые мы здесь отважились, если убедятся, что все меры протяжения и силы произошли из долгот и весов органических тел; а все меры времени - из периодических явлений как в органических, так и в неорганических телах.
Таким образом, из линейных мер еврейский локоть представлял длину передней части руки от локтя до конца среднего пальца; а меньшие библейские меры выражаются в ладонях и пядях. Египетский локоть, происшедший подобным же образом, был разделен на единицы, представлявшие ширину пальца; а ширина пальца выражалась более определенно и принималась равной толщине четырех ячменных зерен. Другие древние меры были обхват, шаг и ладонь. Употребление этих натуральных единиц длины так укоренилось на Востоке, что даже и теперь некоторые из арабов меряют сукно переднею частью руки. То же самое было и с европейскими мерами. Со времен римлян фут представляет преобладающее измерение во всей Европе; длина его в различных местах разнообразится немногим более, нежели длина ступни различных людей. Высота лошадей еще и теперь выражается ладонями. Дюйм есть длина первого сустава большого пальца, как это особенно ясно видно во Франции, где pouce означает и большой палец, и дюйм. Точно таким образом дюйм разделяется у нас на три ячменных зерна (barley corns). Эти органические меры служили субстратами всякого измерения, и только посредством их мы можем составить какую-нибудь оценку некоторых из древних расстояний. Например, длина градуса земной поверхности, как она была определена арабскими астрономами вскоре после смерти Гарун аль-Рашида, равнялась пятидесяти шести милям. Об их миле мы не знаем ничего, кроме того, что она равнялась 4000 локтей; остается сомнительным, были ли это священные локти или обыкновенные, но длина локтя дана в двадцать семь дюймов, а каждый дюйм определялся толщиной шести ячменных зерен. Таким образом, одно из самых древних измерений градуса дошло до нас в ячменных зернах. Но длина органических тел составляла не только те приблизительные меры, которые удовлетворяли человеческим нуждам в более грубые века, - она доставляла также образец мер, требовавшихся во времена позднейшие. Один пример встречается, между прочим, и в нашей истории. Генрих I, чтобы исправить господствовавшие беспорядки, приказал, чтобы ulna (локоть), или древний ell, который соответствует нынешнему ярду, равнялась длине его собственной руки.
Меры веса имеют подобное же происхождение. Зерна, кажется, постоянно доставляли единицу. Оригинал карата, употребляемого для взвешивания в Индии, есть мелкий боб. Наши собственные системы, как аптекарская, так и торговая, основаны на зернах пшеницы. Наш самый мелкий вес, гран, есть зерно (grain) пшеницы. Это не умозрение, а исторически записанный факт. Генрих III постановил законом, чтобы унция была весом в 640 сухих зерен пшеницы из середины колоса. Так как все другие веса были кратными по отношению к этому, то очевидно, что зерно пшеницы составляет основание нашего веса. Пользоваться органическими телами как единицами веса, прежде чем установились искусственные единицы веса, так естественно, что в некоторых отдаленных частях Ирландии народ, говорят, имеет обыкновение, даже и теперь, ставить на весы человека, чтобы он служил мерой для тяжелых товаров.
То же самое нужно сказать и об измерении времени. Астрономическая периодичность и периодичность животной и растительной жизни одновременно употреблялись на первых ступенях прогресса для определения времени. Простейшую единицу времени, день, природа дает нам готовой. Следующий простейший период, месяц, также сам собою представляется вниманию людей посредством видимых изменений, составляющих лунный период. Для делений более обширных древнейшие и нецивилизованные народы пользовались явлениями времен года и некоторыми главными событиями, случающимися после известных промежутков времени. Такое значение у египтян имело возвышение Нила. Новозеландцы начинали свой год с появления плеяд над морем. Одна из полезных сторон, какие древние греки видели в птицах, состояла в том, что переселениями своими птицы указывают времена года. Барроу рассказывает, что готтентоты означают периоды числом месяцев до или после созревания одного из главных элементов их пищи. Далее, он утверждает, что у кафров хронология ведется по луне и записывается посредством зарубок на палках, причем смерть любимого вождя или одержание победы служат новой эрой. Последний факт напоминает вместе с тем, что в первые эпохи истории события обыкновенно записываются как случившиеся в известные царствования и в известные годы известных царствований, вследствие чего царствование государя практически делается мерой времени. Как дальнейший пример склонности делить время при посредстве естественных явлений и естественных событий можно привести тот факт, что даже наши поселяне мало употребляют определенные деления месяцев и годов и в своих разговорах обыкновенно ссылаются на события, как, например: "до стрижки овец", "после жатвы", "около того времени, когда скончался сквайр" и пр. Таким образом, очевидно, что более или менее равные периоды, усмотренные в природе, дали первые единицы меры для времени; точно так же как более или менее равные протяжения и веса в природе дали первые единицы меры для пространства и силы.
Осталось только указать (как на дальнейший пример подобного же развития количественных идей), что меры ценности произошли подобным же образом. Мена, в той или другой форме, существовала между всеми человеческими расами, кроме самых низших. Она, очевидно, основана на понятии равенства ценности. С постепенным переходом мены в торговлю, через введение некоторого рода ходячей монеты, оказывается, что меры ценности, составляющие эту монету, суть органические тела; в одних случаях куари, в других кокосовые орехи, в иных рогатый скот, в других свиньи-, у американских индейцев шкуры или кожи, а в Исландии сушеная рыба.
Когда достигнуты были понятия точного равенства и меры, явились определенные идеи относительных величин как кратных одна другой; а отсюда привычка измерять посредством прямого приложения меры. Определение линейных протяжений посредством этого процесса едва ли может быть названо наукой, хотя оно и составляет ступень к ней; но определение продолжительности времени посредством аналогичного процесса можно рассматривать как один из самых ранних примеров количественного предвидения. Когда уже определено было, что Луна совершает цикл своих изменений в период времени около тридцати дней, - а этот факт известен самым нецивилизованным из племен, которые могут считать далее числа своих пальцев, - тогда, очевидно, стало возможным предсказывать, через какое число дней возвратится данная фаза Луны; и очевидно также, что это предвидение совершалось посредством сопоставления двух времен, по тому же самому способу, как линейное протяжение измеряется посредством сопоставления двух линий. Выразить лунный период в днях значит сказать, сколько этих единиц меры содержится в измеряемом периоде, значит определить расстояние между двумя точками во времени посредством ряда дней, так точно, как мы определяем расстояние между двумя точками в пространстве посредством ряда футов или дюймов: в том и в другом случае ряд совпадает с измеряемой вещью - в одном умственно, в другом видимо. Таким образом в этом самом простом и, может быть, самом раннем случае количественного предвидения явления не только ежедневно представляются вниманию людей, но природа как бы повторяет вечно тот процесс измерения, через наблюдение которого достигается предвидение.
Факт, что уже на самых ранних ступенях общественного прогресса было известно, что Луна совершает свои изменения почти в тридцать дней и что приблизительно через двенадцать лун возвращаются времена года, т. е. тот факт, что хронологическая астрономия приобретает некоторого рода научный характер раньше, нежели геометрия, - обязан своим существованием частью тому обстоятельству, что астрономические деления - день, месяц и год - даны нам готовыми в природе, частью же тем дальнейшим обстоятельством, что земледельческие и другие занятия в первое время регулировались астрономическими данными и что, кроме того, вследствие предполагавшейся божественности небесных тел, их движения определяли периодические религиозные празднества. Одно подтверждение представляется в наблюдении египтян, что возвышение Нила соответствовало гелиакальному восхождению Сириуса, в наставлении, какое находим у Гезиода, касательно жатвы и вспахивания согласно положению плеяд и в положении его, что "пятидесятый день после поворота Солнца есть благополучное время для начала путешествия". Другого рода подтверждение представляется в названии дней по Солнцу, Луне и планетам; в ранних попытках восточных народов установить календарь так, чтобы боги не были оскорбляемы перемещением их жертвоприношений, и в определении великого годичного празднества перуанцев сообразно положению Солнца. Во всех этих фактах мы видим, что наука была первоначально простым орудием религии и промышленности.
После открытий, что лунный период занимает почти тридцать дней и что около двенадцати лунных периодов составляют год, - открытий, о которых нет исторического известия, но которые можно считать самыми ранними, опираясь на тот факт, что ныне существующие нецивилизованные расы знакомы с ними, - мы переходим к первым известным астрономическим заметкам, к заметкам затмений. Халдеи были в состоянии предсказывать их. "Они делали это, - говорит Уэвелль в своей прекрасной истории, из которой извлечена большая часть материалов, какими мы пользуемся, - вероятно, посредством их цикла 223 месяцев или приблизительно восемнадцати лет; потому что в конце этого времени затмения Луны начинают возвращаться с теми же самыми промежутками и в том же самом порядке, как и вначале." Итак, этот метод вычисления затмений посредством возвращающегося цикла - Сарос, как они называли его, представляет более сложный пример предвидения посредством совпадения мер. Посредством каких наблюдений халдеи открыли этот цикл? Очевидно, как заключает Деламбр, посредством рассмотрения своих списков; посредством сравнения последовательных промежутков; посредством усмотрения того, что некоторые из промежутков одинаковы, что эти равные промежутки имеют отдельно по восемнадцать лет; посредством открытия того, что все промежутки, которые имели отдельно по восемнадцать лет, были равны; посредством познания того, что промежутки составляют ряд, который повторяется, так что если один цикл наложить на другой, то деления совпадут. Как только это усмотрено, так становится возможным употреблять цикл как единицу времени для измерения будущих периодов. Таким образом, видя, что процесс предсказания затмений есть, в сущности, такой же, как и процесс предсказания месячных изменений Луны посредством наблюдения числа дней, после которых они повторяются; видя, что оба они различаются только обширностью и неправильностью промежутков, не трудно понять, как можно было столь рано достичь подобной суммы знания. Еще менее будем мы удивляться, если вспомним, что в этих предвидениях ничего не заключается, кроме времени и числа, и что время было некоторым образом самосчисляемо.
Не только первые ясные идеи числа связаны с идеями подобия и равенства, но и первые усилия к счислению представляют то же самое сродство. Читая рассказы о различных диких племенах, мы находим, что метод счета посредством пальцев, которому еще и теперь следуют многие дети, есть первобытный метод. Помимо отдельных случаев, в которых способность к счислению не достигает даже полного числа пальцев на одной руке, есть много случаев, в которых она не простирается далее десяти, - предела простого означения посредством пальцев. Факт, что в столь многих случаях отдаленные и, по-видимому, не сообщающиеся одна с другой нации приняли десять за основание численной системы, вместе с фактом, что в остальных случаях основное число есть или пять (пальцы одной руки), или двадцать (пальцы рук и ног), сам по себе почти доказывает, что пальцы были первоначальными единицами счисления. До сих пор удержавшееся употребление слова digit, как общего названия для всякой фигуры в арифметике, многознаменательно, и даже говорят, что наше слово ten (саксонское tyn, голландское tien, немецкое zehri) означало в первоначальной своей форме две руки. Так что в первобытное время сказать, десять вещей было то же самое, что сказать: две руки вещей Из всех этих свидетельств достаточно ясно, что самый ранний способ сообщения идеи какого-нибудь числа вещей состоял в поднятии стольких пальцев, сколько было вещей, т. е. в употреблении символа, который был равен, в отношении множественности, означаемой группе. Без сомнения, сильным подтверждением для этого вывода служит новейший факт, что наши солдаты самобытно усвоили себе этот прием в сношениях с турками во время Крымской войны. Надо заметить, что в этом новом сочетании понятия равенства с понятием множественности, посредством которого делаются первые шаги в счислении, мы можем видеть одно из самых ранних соприкосновений между расходящимися отраслями науки, - соприкосновений, которые впоследствии постоянно встречаются.
Но, прежде чем проследим способ, которым точная наука возникает из приблизительных суждений чувств, и прежде чем покажем нелинейность развития отделов науки, полезно будет заметить нелинейный характер тех предварительных процессов, продолжение которых составляет все последующее развитие. Всякий, кто рассмотрит эти процессы, увидит, что они суть не только расходящиеся отростки от общего корня, не только одновременны в своем развитии, но что они взаимно помогают друг другу и что ни один из них не может идти вперед без остальных. Полнота классификации, для которой прокладывает путь развитие восприятий, невозможна без соответствующего прогресса в языке, посредством которого большее разнообразие предметов становится мыслимо и выразимо. С одной стороны, невозможно вести классификацию без названий, которыми бы обозначались классы, а с другой невозможно создать язык прежде, нежели классифицируются вещи. Далее, самое умножение классов и следующее отсюда стеснение каждого класса предполагают уже большее сходство между вещами, соединенными в один класс; а приближение к понятию совершенного сходства само способствует тому, чтобы классификация была доведена до более высокой степени. Сверх того, классификация необходимо идет вперед pari passu с рациональностью, т е. классификация вещей с классификацией отношений: потому что вещи, принадлежащие к одному и тому же классу, представляют, само собою разумеется, вещи, свойства которых и условия положения - сосуществования и последовательности - суть более или менее те же самые; а познание этого тождества сосуществования и последовательности есть умозаключение. Отсюда следует, что успех классификации необходимо пропорционален успеху обобщений. Но далее, из понятия сходства как в вещах, так и в отношениях одновременно развиваются идеи равенства вещей и равенства отношений, которые суть основания точного конкретного и точного абстрактного умозаключения - математики и логики. Кроме того, эта идея равенства, в самом процессе своего образования, дает начало двум рядам отношений - отношениям величины и отношениям числа, из которых возникли геометрия и счисление. Таким образом, весь процесс есть процесс постоянного подразделения и постоянного взаимного сообщения отделов. С самого начала существовала та связь различных родов познания, которая соответствует связи умственных способностей и которая, как уже сказано, должна существовать между науками.
Перейдем теперь к наблюдению того, как из понятий равенства и числа, образовавшихся указанным способом, возникают постепенно элементы количественного предвидения.
Равенство, раз определенно понятое, тотчас же начало применяться и к другим явлениям, помимо явлений величины. Так как оно оказалось приложимым ко всем вещам, производящим одинаковые впечатления, то естественно возникли идеи о равенстве весов, звуков, цветов и т. д. Едва ли можно сомневаться, что опыты над равными весами, звуками и цветами имели свою долю участия в развитии отвлеченного понятия о равенстве, т. е. что идеи равенства в размерах, отношениях, силах, сопротивлениях и чувствительных свойствах вообще развивались в продолжение того же самого периода. Как бы то ни было, но ясно, что как скоро понятие равенства приобрело определенность, так низший род количественного предвидения, которого достигают без помощи каких бы то ни было приборов, сделался возможен. Способность оценить, как бы ни было грубо, величину предвидимого результата подразумевает понятие того, что эта величина будет равна известному воображаемому количеству; и правильность оценки, очевидно, будет зависеть от точности, до которой достигли восприятия чувствуемого равенства. Дикарь с куском камня в руке, имея перед собой другой кусок большей величины, но того же самого вида (заключение о виде он выводит из равенства обоих камней по цвету и строению), знает приблизительно, какое усилие он должен употребить, чтобы поднять этот другой кусок; и точность его суждения пропорциональна точности, с которой он усмотрел, что один кусок вдвое, втрое или вчетверо больше другого, т. е. пропорциональна точности его идей о равенстве и числе. И заметим здесь, что даже в этих наиболее неопределенных из количественных предвидений заключается также понятие равенства отношений: ибо даже самое грубое приближение может быть достигнуто только в силу некоторого неопределенного усмотрения, что отношение между объемом и весом в одном камне равно отношению между объемом и весом в другом.
Но каким образом совершается переход от этих неопределенных усмотрений равенства, которые даются невооруженными чувствами, к тем определенным усмотрениям, с которыми имеет дело наука? Он совершается посредством сопоставления сравниваемых вещей. Так как равенство утверждается о тех вещах, которые производят на нас неотличимые одно от другого впечатления, и так как точное сравнение впечатлений невозможно, если они не следуют непосредственно одно за другим, то отсюда вытекает, что возможность установить точность равенства находится в прямом отношении к близости сравниваемых предметов. Вследствие этого, когда мы хотим судить о двух оттенках цвета, мы помещаем их рядом; вследствие этого мы не можем с какой-либо точностью сказать, который из двух соединенных звуков громче или выше в диапазоне, если только звуки не следовали один за другим непосредственно; вследствие этого, желая оценить отношение грузов, мы берем по одному в каждую руку, чтобы можно было сравнить их давления, быстро переходя в мысли от одного груза к другому; вследствие этого, играя музыкальную пьесу, мы можем сделать одинаковый такт вслед за предыдущим, не можем быть уверены, что размер такта будет тот же при повторении пьесы; вследствие этого, наконец, является факт, что из всех величин величины линейного протяжения суть такие, равенство которых доступно наиболее точной поверке и на которые вследствие этого сводятся все другие. Особенность линейного протяжения состоит в том, что оно одно дозволяет абсолютно совместить величины или, лучше, поставить их в совпадающее положение; оно одно может проверить равенство двух величин посредством наблюдения, совпадут ли они, как совпадают две равные математические линии, проведенные между теми же самыми точками, оно одно может проверить равенство посредством испытания того, станет ли оно тождеством. Отсюда вытекает факт, что всякая точная наука в окончательном анализе может быть сведена на результаты, измеряемые равными единицами линейного протяжения.
Остается еще заметить, каким образом возникает это определение равенства посредством сравнения линейных величин. Мы можем тут еще раз убедиться, как окружающие естественные предметы служат к тому полезным руководством. С самого начала должен был существовать постоянный опыт над сходными вещами, расположенными рядом, как, например, над людьми, стоящими и гуляющими вместе, над животными одного и того же стада, над рыбами на одной и той же отмели. Беспрестанное повторение этих опытов не могло не привести к наблюдению, что, чем ближе находятся какие-нибудь предметы друг к другу, тем виднее становится всякое неравенство между ними. Отсюда понятная привычка прикладывать друг к другу те вещи, относительные величины которых желают узнать. Отсюда же появилась идея меры. Мы тут неожиданно приходим к группе фактов, которые доставляют твердое основание для основного рассуждения; они же дают сильное доказательство и в подтверждение предыдущих умозрений. Люди, которые смотрят скептически на попытку восстановить самые ранние эпохи умственного развития, и особенно те, которые думают, что относить массу первичных понятий к органическим формам есть вещь довольно натянутая, увидят, быть может, больше вероятности в различных гипотезах, на которые мы здесь отважились, если убедятся, что все меры протяжения и силы произошли из долгот и весов органических тел; а все меры времени - из периодических явлений как в органических, так и в неорганических телах.
Таким образом, из линейных мер еврейский локоть представлял длину передней части руки от локтя до конца среднего пальца; а меньшие библейские меры выражаются в ладонях и пядях. Египетский локоть, происшедший подобным же образом, был разделен на единицы, представлявшие ширину пальца; а ширина пальца выражалась более определенно и принималась равной толщине четырех ячменных зерен. Другие древние меры были обхват, шаг и ладонь. Употребление этих натуральных единиц длины так укоренилось на Востоке, что даже и теперь некоторые из арабов меряют сукно переднею частью руки. То же самое было и с европейскими мерами. Со времен римлян фут представляет преобладающее измерение во всей Европе; длина его в различных местах разнообразится немногим более, нежели длина ступни различных людей. Высота лошадей еще и теперь выражается ладонями. Дюйм есть длина первого сустава большого пальца, как это особенно ясно видно во Франции, где pouce означает и большой палец, и дюйм. Точно таким образом дюйм разделяется у нас на три ячменных зерна (barley corns). Эти органические меры служили субстратами всякого измерения, и только посредством их мы можем составить какую-нибудь оценку некоторых из древних расстояний. Например, длина градуса земной поверхности, как она была определена арабскими астрономами вскоре после смерти Гарун аль-Рашида, равнялась пятидесяти шести милям. Об их миле мы не знаем ничего, кроме того, что она равнялась 4000 локтей; остается сомнительным, были ли это священные локти или обыкновенные, но длина локтя дана в двадцать семь дюймов, а каждый дюйм определялся толщиной шести ячменных зерен. Таким образом, одно из самых древних измерений градуса дошло до нас в ячменных зернах. Но длина органических тел составляла не только те приблизительные меры, которые удовлетворяли человеческим нуждам в более грубые века, - она доставляла также образец мер, требовавшихся во времена позднейшие. Один пример встречается, между прочим, и в нашей истории. Генрих I, чтобы исправить господствовавшие беспорядки, приказал, чтобы ulna (локоть), или древний ell, который соответствует нынешнему ярду, равнялась длине его собственной руки.
Меры веса имеют подобное же происхождение. Зерна, кажется, постоянно доставляли единицу. Оригинал карата, употребляемого для взвешивания в Индии, есть мелкий боб. Наши собственные системы, как аптекарская, так и торговая, основаны на зернах пшеницы. Наш самый мелкий вес, гран, есть зерно (grain) пшеницы. Это не умозрение, а исторически записанный факт. Генрих III постановил законом, чтобы унция была весом в 640 сухих зерен пшеницы из середины колоса. Так как все другие веса были кратными по отношению к этому, то очевидно, что зерно пшеницы составляет основание нашего веса. Пользоваться органическими телами как единицами веса, прежде чем установились искусственные единицы веса, так естественно, что в некоторых отдаленных частях Ирландии народ, говорят, имеет обыкновение, даже и теперь, ставить на весы человека, чтобы он служил мерой для тяжелых товаров.
То же самое нужно сказать и об измерении времени. Астрономическая периодичность и периодичность животной и растительной жизни одновременно употреблялись на первых ступенях прогресса для определения времени. Простейшую единицу времени, день, природа дает нам готовой. Следующий простейший период, месяц, также сам собою представляется вниманию людей посредством видимых изменений, составляющих лунный период. Для делений более обширных древнейшие и нецивилизованные народы пользовались явлениями времен года и некоторыми главными событиями, случающимися после известных промежутков времени. Такое значение у египтян имело возвышение Нила. Новозеландцы начинали свой год с появления плеяд над морем. Одна из полезных сторон, какие древние греки видели в птицах, состояла в том, что переселениями своими птицы указывают времена года. Барроу рассказывает, что готтентоты означают периоды числом месяцев до или после созревания одного из главных элементов их пищи. Далее, он утверждает, что у кафров хронология ведется по луне и записывается посредством зарубок на палках, причем смерть любимого вождя или одержание победы служат новой эрой. Последний факт напоминает вместе с тем, что в первые эпохи истории события обыкновенно записываются как случившиеся в известные царствования и в известные годы известных царствований, вследствие чего царствование государя практически делается мерой времени. Как дальнейший пример склонности делить время при посредстве естественных явлений и естественных событий можно привести тот факт, что даже наши поселяне мало употребляют определенные деления месяцев и годов и в своих разговорах обыкновенно ссылаются на события, как, например: "до стрижки овец", "после жатвы", "около того времени, когда скончался сквайр" и пр. Таким образом, очевидно, что более или менее равные периоды, усмотренные в природе, дали первые единицы меры для времени; точно так же как более или менее равные протяжения и веса в природе дали первые единицы меры для пространства и силы.
Осталось только указать (как на дальнейший пример подобного же развития количественных идей), что меры ценности произошли подобным же образом. Мена, в той или другой форме, существовала между всеми человеческими расами, кроме самых низших. Она, очевидно, основана на понятии равенства ценности. С постепенным переходом мены в торговлю, через введение некоторого рода ходячей монеты, оказывается, что меры ценности, составляющие эту монету, суть органические тела; в одних случаях куари, в других кокосовые орехи, в иных рогатый скот, в других свиньи-, у американских индейцев шкуры или кожи, а в Исландии сушеная рыба.
Когда достигнуты были понятия точного равенства и меры, явились определенные идеи относительных величин как кратных одна другой; а отсюда привычка измерять посредством прямого приложения меры. Определение линейных протяжений посредством этого процесса едва ли может быть названо наукой, хотя оно и составляет ступень к ней; но определение продолжительности времени посредством аналогичного процесса можно рассматривать как один из самых ранних примеров количественного предвидения. Когда уже определено было, что Луна совершает цикл своих изменений в период времени около тридцати дней, - а этот факт известен самым нецивилизованным из племен, которые могут считать далее числа своих пальцев, - тогда, очевидно, стало возможным предсказывать, через какое число дней возвратится данная фаза Луны; и очевидно также, что это предвидение совершалось посредством сопоставления двух времен, по тому же самому способу, как линейное протяжение измеряется посредством сопоставления двух линий. Выразить лунный период в днях значит сказать, сколько этих единиц меры содержится в измеряемом периоде, значит определить расстояние между двумя точками во времени посредством ряда дней, так точно, как мы определяем расстояние между двумя точками в пространстве посредством ряда футов или дюймов: в том и в другом случае ряд совпадает с измеряемой вещью - в одном умственно, в другом видимо. Таким образом в этом самом простом и, может быть, самом раннем случае количественного предвидения явления не только ежедневно представляются вниманию людей, но природа как бы повторяет вечно тот процесс измерения, через наблюдение которого достигается предвидение.
Факт, что уже на самых ранних ступенях общественного прогресса было известно, что Луна совершает свои изменения почти в тридцать дней и что приблизительно через двенадцать лун возвращаются времена года, т. е. тот факт, что хронологическая астрономия приобретает некоторого рода научный характер раньше, нежели геометрия, - обязан своим существованием частью тому обстоятельству, что астрономические деления - день, месяц и год - даны нам готовыми в природе, частью же тем дальнейшим обстоятельством, что земледельческие и другие занятия в первое время регулировались астрономическими данными и что, кроме того, вследствие предполагавшейся божественности небесных тел, их движения определяли периодические религиозные празднества. Одно подтверждение представляется в наблюдении египтян, что возвышение Нила соответствовало гелиакальному восхождению Сириуса, в наставлении, какое находим у Гезиода, касательно жатвы и вспахивания согласно положению плеяд и в положении его, что "пятидесятый день после поворота Солнца есть благополучное время для начала путешествия". Другого рода подтверждение представляется в названии дней по Солнцу, Луне и планетам; в ранних попытках восточных народов установить календарь так, чтобы боги не были оскорбляемы перемещением их жертвоприношений, и в определении великого годичного празднества перуанцев сообразно положению Солнца. Во всех этих фактах мы видим, что наука была первоначально простым орудием религии и промышленности.
После открытий, что лунный период занимает почти тридцать дней и что около двенадцати лунных периодов составляют год, - открытий, о которых нет исторического известия, но которые можно считать самыми ранними, опираясь на тот факт, что ныне существующие нецивилизованные расы знакомы с ними, - мы переходим к первым известным астрономическим заметкам, к заметкам затмений. Халдеи были в состоянии предсказывать их. "Они делали это, - говорит Уэвелль в своей прекрасной истории, из которой извлечена большая часть материалов, какими мы пользуемся, - вероятно, посредством их цикла 223 месяцев или приблизительно восемнадцати лет; потому что в конце этого времени затмения Луны начинают возвращаться с теми же самыми промежутками и в том же самом порядке, как и вначале." Итак, этот метод вычисления затмений посредством возвращающегося цикла - Сарос, как они называли его, представляет более сложный пример предвидения посредством совпадения мер. Посредством каких наблюдений халдеи открыли этот цикл? Очевидно, как заключает Деламбр, посредством рассмотрения своих списков; посредством сравнения последовательных промежутков; посредством усмотрения того, что некоторые из промежутков одинаковы, что эти равные промежутки имеют отдельно по восемнадцать лет; посредством открытия того, что все промежутки, которые имели отдельно по восемнадцать лет, были равны; посредством познания того, что промежутки составляют ряд, который повторяется, так что если один цикл наложить на другой, то деления совпадут. Как только это усмотрено, так становится возможным употреблять цикл как единицу времени для измерения будущих периодов. Таким образом, видя, что процесс предсказания затмений есть, в сущности, такой же, как и процесс предсказания месячных изменений Луны посредством наблюдения числа дней, после которых они повторяются; видя, что оба они различаются только обширностью и неправильностью промежутков, не трудно понять, как можно было столь рано достичь подобной суммы знания. Еще менее будем мы удивляться, если вспомним, что в этих предвидениях ничего не заключается, кроме времени и числа, и что время было некоторым образом самосчисляемо.