комбинирование которых может привести к созданию "молекулярных" усилителей, тех же ячеек памяти в компьютерах. Такое направление, где понятия "конструкция"
   и "функция" как бы сливаются воедино на молекулярном уровне, обещает революцию в области электронных мини-устройств, очень малых цо своим размерам, но обладающих большой мощностью и быстpoдействием.
   Прототип их - живые организмы, в которых электропроводность осуществляется с помощью "тщательно подобранных" рядов электропроводящих протеинов внутри клетки. Понимание механизма переноса электронов в протеинах позволит создать органические и неорганические проводники на молекулярном уровне.
   В общем, у химии богатейшие возможности, а перспективы самые заманчивые. И с некоторыми из них я непременно познакомлю читателя. А закончить эту небольшую главу, которую прошу рассматривать как приглашение к серьезному разговору, хотелось бы выражением надежды, что он окажется содержательным и интересным.
   Из всего - все
   Эти слова по праву могли бы стать девизом химии, ибо у превращений и преобразований, происходящих по ее воле, нет ни конца, ни начала. Они вершились всегда и будут твориться вечно...
   Но как ни точно, как ни объемно по своей сути это выражение, принадлежит оно, к сожалению, не химику, а писателю. Изумительному знатоку русской природы, заступнику и поэту ее - Леониду Леонову. А если уж быть совсем точным, то профессору Впхрову, главному герою романа "Русский лес", лесоводу по специальности, философу и борцу за нравственность народа - по сути своей. Я и ныне готов подписаться под каждым словом той знаменитой лекции, которую произнес Иван Вихров в тяжелую пору ленинградской блокады перед будущими лесниками. Обратимся к ней и мы с высот сегодняшнего дня, сопоставляя современные заботы экономики с заботами и нуждами тех дней.
   Итак, слово профессору Впхрову, стражу и творцу нашего леса... "Все жертвы святы в борьбе за советское дело, и не содрогнутся сердца лесоводов, когда гряда за грядой падает сейчас Белорусское Полесье, образуя зввалы на путях фашистских танков. Не впервой русскому лесу стоять с нами плечом к плечу в труде и ратной сече: в годы разрухи и интервенции он тоже в полную силу поработал для рабоче-крестьянской республики... Отрезаны фронтами уголь и нефть - он тянет по стран?
   красноармейские и хлебные эшелоны, везя в столицу героическую осьмушку, он крутит промерзшие станки предприятий, он поддерживает тепло рабочих жилищ. Его убыль такова, что Ленин на Девятом съезде Советов поднимает голос за исключение древесины из топливного баланса, за возвращение лесоводов из армии и отовсюду на их основную работу. Закон того времени ясно говорит о необходимости рубок по приросту и сметам, то есть о лесоводстве на твердых научных основаниях..."
   Как скоро беда научила нас рачительности, известно всем. А мне, как руководителю секции порохов, взрывчатых веществ, боеприпасов и сырья для них Научно-технического совета при уполномоченном Государственного Комитета Обороны (им 10 июля 1941 года был назначен С. В. Кафтанов), пожалуй, лучше других. Острая нехватка дефицитных материалов заставила нас не только в срочном порядке их создавать, но искать и находить источники сырья нередко заново, с новых позиций переоценивая имеющиеся ресурсы.
   В чем мы тогда только не нуждались! Научились беречь соду (каустическую и кальцинированную), хлор, серную кислоту, карбид и цианамид кальция, фосфор, глицерин, этиленгликоль, этиловый спирт, бутанол, черные и цветные металлы и еще великое множество других химических продуктов. А поиски заменителей привели ученых к "палочке-выручалочке" русского народа - лесу, древесине.
   Сейчас в это трудно поверить, но в то время даже корпуса авиабомб вместо традиционно металлических стали делать бетонными и бумажными. Были созданы конструкции бетонных корпусов и организовано их производство на Павшинском заводе бетонных изделий. Но, к сожалению, из-за больших потерь промышленных мощностей цемент также стал весьма дефицитным продуктом. Поэтому под руководством профессора Е. Н. Подклетного разрабатывается поточный метод производства "литых" бумажных корпусов, сырьем для которых служили древесная масса и бумажная макулатура. Метод реализовывался на заводах пищевой промышленности. Небольшие авиабомбы в бумажных оболочках, сбрасываемые на скопления танков врага с малой высоты самолетами-штурмовиками, оказались очень эффективными, а сами штурмовики Ил-2 и Ил-10 неуязвимыми для вражеского огня, так как имели надежную стальную броню. Разработали ее во Всесоюзном институте авиационных материалов С. Т. Кишкин и Н. М. Скляров.
   Широкое распространение в промышленности нашел новый метод получения этилового спирта из непищевого сырья путем гидролиза древесных опилок и других отходов лесопиления, предложенный сотрудниками Всесоюзного научно-исследовательского института гидролизной промышленности В. И. Шарковым, К. Д. Мартыненко и С. В. Чепиго.
   А уж если возвращаться к лекции профессора Вихрова, то именно лес пришел на помощь блокадному Ленинграду: научные сотрудники Центральной научно-исследовательской лаборатории бродильных процессов Р. В. Гивартовский, Е. А. Плевако, Н. И. Гутгер совместно с группой инженеров-химиков и механиков разработали метод получения белковых дрожжей из непищевого сырья и организовали их промышленное производство. Исходным материалом стали накопившиеся за многие годы отходы древесных опилок деревообрабатывающего завода в Дубровке. Опилки подвергались гидролизу слабым раствором серной кислоты, в гидролизат вводились биогенные вещества - азотные и фосфорные соли (большие запасы серной кислоты, суперфосфата и селитры имелись на Невском химическом заводе) - и выращивались дрожжи, восполнявшие дефицит пищевых белков в осажденном Ленинграде.
   Но то - в пору бедствий, испытаний, когда совершенно иным смыслом наполнялись привычные понятия, когда и в малом вдруг открывалось большое и значимое.
   А как хозяйничаем мы сегодпя в лесу, как заставляем служить древесину народному хозяйству?
   Ведь именно дерево наряду с металлами и полимерами остается для нас одним из самых необходимых материалов. И прежде всего это возобновляемое сырье, необходимое для производства многочисленных веществ и изделий. Дерево - естественный композиционный материал, в котором матрицей является лигнин, а арматурой - целлюлозные волокна.
   Мы многое умеем делать из древесины, придавая ей заранее заданные свойства. Современная химия способна превращать дерево в материал гибкий, огнеупорный, текучий, сверхтвердый, нестираемый. Но сколько мы еще теряем, выбрасываем, сжигаем... На одну только ящичную тару тратим ежегодно в пересчете на круглый лес более 30 миллионов кубометров. А почему бы не заменить деревянные ящики картонными коробками, на производство которых идет щепа и отходы? Ведь простой подсчет показывает преимущества такой "подмены", тем более что рсартонная тара может использоваться многократно.
   Дерево - уникальное создание природы. Оно дарит человеку жизнь, поставляя ему кислород, и способно в буквальном смысле слова кормить, поить, одевать.
   Возьмем, к примеру, хвою. В одном ее килограмме в полтора раза больше витаминов, чем в таком же количестве многолетних трав. Тонны высушенной хвои достаточно, чтобы сбалансировать по содержанию витаминов до шестидесяти тонн комбикормов. Из хвои готовят каротиновую пасту, из опилок и отходов - кормовые дрожжи. Те самые, которые помогли когда-то выдержать ленинградцам блокаду. У нас самая мощная гидролизная промышленность в мире, без которой немыслимо сегодня существование того же промышленного птицеводства.
   Но до полной утилизации древесных отходов нам все еще очень далеко. Наши коллеги из ГДР, отличающиеся умением находить резервы и оценивать их возможности, подсчитали, что общее количество скопившихся в стране лесных и промышленных древесных отходов приближается к трем миллионам кубометров. А выход из создавшегося положения они видят прежде всего в возрастающей комплексности использования древесины и в переходе от механической к преимущественно химической ее обработке. Во всем мире наблюдается тенденция к росту абсолютною потребления древесины, считают химики ГДР. Причем, наиболее резкого роста можно ожидать в целлюлозно-бумажной промышленности.
   В ближайшее время ожидается интеграция в рамках всей химии полимеров, что вызывает появление совершенно новых областей применения древесины. Пиломатериалы, шпон, древесностружечные и древесноволокнистые плиты, фанера, целлюлоза, бумага, фитонциды и эфирные масла, кормовой белок, этиловый спирт, скипидар - вез это лес. Он могучий, возобновляемый экономический резерв планеты. Но он и неотъемлемая часть ее, без которой наша Земля потеряла бы свою прелесть и неповторимость. Лес - детище родной планеты и верный ее страж; до половины всей биомассы синтезировано лесом.
   Он очищает атмосферу от углекислого газа, поставляя ей кислород.
   Среди растений есть поистине санитары-чемпионы, поглощающие окислы азота, губительные для здоровья человека. Американская сосна, железное дерево, американский клен, ясень усваивают, например, листьями двуокись азота без всякого ущерба для собственного здоровья. Когда-то, характеризуя один из крупнейших по тем временам сибирских городов, Федор Михайлович Достоевский писал: "Омск гадкий городишко. Деревьев почти нет. Летом зной и ветер с песком, зимой буран. Природы я не видел..."
   Мне довелось много раз бывать в Сибири, и смею утверждать: ее города сейчас - это сады, парки, леса.
   Придет время, и мы действительно научимся создавать из всего все. По разве от этого мы оскудеем душой настолько, что разглядим в красавице березе одно лишь сырье для перерабатывающей промышленности? Это было бы ужасно...
   Лес - неотъемлемая часть русской природы, русского характера. С любовью к нему мы появляемся на свет и уходим из жизни, дабы возродилась она в грядущих поколениях... И честь и хвала химии, утверждающей:
   древесину можно и должно перерабатывать так глубоко, чтобы ничто не шло в отходы, тогда и леса рубились бы по плану, и количество материалов, поставляемых лесом народному хозяйству, не убавлялось бы. И хотя волшебства самого различного масштаба и свойства - прямая специальность химии, ее всемогущество в годы войны поражало даже нас, ученых и исследователей.
   Я понимаю, конечно, что столь невиданные темпы развития химической науки определялись тогда острой необходимостью в новых веществах и материалах, ненавистью к врагу, которого предстояло победить. Вся страна жила и сражалась во имя Победы, и не было других забот, а мечты заветнее. Сотни миллионов артиллерийских снарядов и мин получила Советская Армия за годы войны...
   А ведь их надо было сделать.
   Потребность в разнообразных артиллерийских боепряпасах, в бризантных, инициирующих и метательных взрывчатых веществах с первых дней войны была огромна. В чрезвычайно больших количествах взрывчатые вещества требовались для снаряжения авиационных бомб и морских торпед, ручных гранат, противотанковых мин.
   Однако в первый год войны и до конца 1942 года обстановка была очень напряженной. Многие заводы западных районов страны эвакуировались на восток. Требовалось время, чтобы смонтировать и сдать в эксплуатацию вывезенное оборудование, и именно в этот период на всех действующих заводах силами ученых и инженеров была проведена большая работа по интенсификации производства аммиака, азотной кислоты, аммиачной селитры, метанола и, конечно, по строительству промышленных установок для производства новых химических веществ. А это все - основа производства удобрений, порохов, взрывчатых веществ, промышленных полимерных материалов.
   В этих работах творчески участвовали сотни заводских инженеров и сотрудников эвакуированных научно-исследовательских институтов и вузов. Так, выполненные па Кемеровском азотпо-туковом заводе исследования по интенсификации процесса концентрирования азотной кислоты привели к повышению производительности установок почти втрое. Метод был распространен на все заводы.
   А усовершенствование производства синтетического аммиака на Березниковском заводе позволило довести производительность агрегатов до 40 тонн при проектной мощности 25 тонн в сутки.
   Академик П. Л. Капица предложил оригинальную установку для получения жидкого кислорода, в которой низкая температура, необходимая для сжижения воздуха и его разделения на азот и кислород, достигалась путем расширения части сжатого до шести атмосфер воздуха в высокоэффективном турбодетандере. Это дало возможность использовать для сжатия воздуха турбокомпрессоры, что открывало перспективы создания установок большой производительности. Весной 1942 года первая такая установка производительностью 200 килограммов в час жидкого кислорода была пущена в эксплуатацию в Институте физических проблем Академии наук СССР.
   А как был тогда нужен кислород! Поистине как... кислород. Он использовался в дыхательных масках военных летчиков при полетах на большой высоте. Созданная затем в рекордно короткий срок промышленная установка для производства жидкого кислорода обеспечила работы по резке и сварке металла при ремонте танков и другого военного оборудования.
   В 1942 году было расширено или организовано заново производство ряда взрывчатых веществ, таких, как гексоген, тринитроксилол, ТЭН (тетранитропентаэритрит)т этиленгликольдинитрат, диэтиленглжкольдинитрат, тетрил, нитрогуанидин, и других необходимых для снаряжения артиллерийских осколочных и бронебойных снарядов, мин, авиабомб, детонаторов и других боеприпасов. Во многих случаях это потребовало предварительного проведения исследований по уточнению свойств данных веществ, условий их синтеза, технологических параметров, причем сроки проведения таких исследований измерялись обычно неделями и редко месяцами.
   Одной из блестящих работ, выполненных советскими учеными и инженерами в начале войны, стало создание кумулятивного снаряда. Дело в том, что для борьбы с вражескими танками в то время наряду с минами и зажигательными смесями применялись и бронебойные снаряды из очень твердой стали, а также подкалиберные снаряды с сердечником из вольфрама и его сплавов. Но изучался и эффект кумуляции (концентрации) энергии взрыва. Испытания первых образцов кумулятивных силрядов на одном из подмосковных полигонов превзошли все ожидания. Кумулятивные снаряды, гранаты и мины стали новым средством борьбы с, казалось бы, неуязвимыми немецкими "тиграми" и "пантерами". Снаряды пробивали лобовую броню толщиной, равной калибру снаряда и даже более мощную, а кумулятивные мипы - броню толщиной до 200 миллиметров. Впервые массовое применение кумулятивных снарядов произошло в танковых сражениях на Курской дуге.
   И опять на повестке дня остро встает вопрос о сырье, прежде всего толуоле - для производства главного бризантного взрывчатого вещества тротила. Основной источник толуола - каменноугольная смола, образующаяся при производстве металлургического кокса. Но большинство коксохимических заводов оказалось на территории, временно оккупированной врагом (Приднепровье и Донбасс), а коксохимические заводы Урала и Сибири не могли удовлетворить потребности промышленности в толуоле и других ароматических производных.
   Однако и эти серьезнейшие задачи удалось решить.
   Были построены новые батареи коксовых печей - в Кузнецке, Кемерове, Магнитогорске, Нижнем Тагиле, Губахе.
   На большинстве заводов применили предложенный учеными метод повышения выхода толуола путем впрыскивания в коксовые печи керосина, разработали и реализовали методы извлечения толуоло-бензиновой и ксплолбензиновой фракций путем четкой ректификации сырых яефтей, получения толуола, бензола и других ароматических веществ пиролизом керосиновой фракции.
   Ученые-химики И. Д. Зелинский и Н. П. Шушид провели исследования, позволившие получить из нефтяных фракций на платиновых катализаторах ароматические углеводороды для производства взрывчатых веществ, а группа научных сотрудников Центрального института авиационных топлив и масел во главе с Б. Л. Молдавским для той же цели создала метод каталитического производства циклических углеводородов. П. Г. Сергеев, Р. Ю. Удрис, А. Т. Меняйло и их сотрудники решили очень сложную и важную задачу получения фенола и.* бензола и пропилена.
   Исследования окисления изопропилбензола позволили создать изящную и технологически совершенную схему получения гидроперекиси изопропилбензола, разложение которой давало фенол, необходимый для изготовления бризантных взрывчатых веществ, и ацетон - ценнейший, а главное, дешевый растворитель.
   Исследования, проведенные в военные годы и в области нефтехимии, усовершенствования процессов переработки нефти и увеличения выработки авиационного бензина и других видов моторного топлива, а также смазочных масел увеличили ресурсы жидких горючих для авиации и автотранспорта.
   Конечно, перечень этих работ можно было бы продолжать и продолжать... По роду своей деятельности в годы войны мне приходилось встречаться с выдающимися учеными: А. Н. Бахом, О. Ю. Шмидтом, А. Н. Крыловым, А. Ф. Иоффе, И. В. Курчатовым, С. И. Вавиловым, И. П. Бардиным, А. Е. Ферсманом; военачальниками:
   маршалом Б. М. Шапошниковым, адмиралом Л. П. Галлером, Главным маршалом артиллерии Н. Н. Вороновым, руководителями промышленности народными комиссарами В. А. Малышевым, Б. Л. Ванниковым, И. Т. Тевосяном, А. П. Завенягиным, М. Г. Первухиным и другими.
   Приходилось бывать на многих химических предприятиях, в вузах и научно-исследовательских институтах, в воинских частях. Впечатления того времени и до сей поры вызывают чувство почтительного преклонения перед мужеством, беззаветной преданностью социалистической Родине, моральной стойкостью и волей к победе советских людей.
   Самый, самый, самый...
   В каких же материалах сегодня больше всего нуждается промышленность?
   В разных, обладающих столь широкой палитрой свойств и достоинств, что их невозможно перечислить.
   И все же "королями" по-прежнему остаются металлы.
   Именно они в совокупности с многообразными сплавами определяют и сегодняшнее состояние практически всех отраслей народного хозяйства и перспективу их развития.
   Сталь и чугун, как и в начале века, лидируют в обширном семействе материалов. А без так называемых цветных и редких металлов немыслим вообще никакой прогресс в материаловедении и технике. Потому что только с их помощью чаще всего обеспечиваются уникальные достоинства сплавов. А все рудные залежи, уже эксплуатируемые или еще ожидающие своего часа - это их сырьевая база.
   Взять, к примеру, всемирно известное предприятие - Норильский горно-металлургический комбинат имени А. П. Завенягина. Его история и развитие определены месторождениями руд, содержащих медь, никель, кобальт.
   Присутствие этих металлов даже в минимальных количествах гарантирует как раз те самые новые качества, которые желательны сегодня во многих материалах. Никель и кобальт, к примеру, обладают удивительнейшим свойством придавать железу и стали сверхпрочность.
   Именно на этой основе (наряду с карбидом вольфрама)
   советскими учеными был создан в свое время сверхтвердый сплав "победит", внесший поистине революционные, преобразования в отечественную металлообрабатывающую индустрию.
   Но это далеко не все достоинства удивительного металла, потому что кобальт еще и ферромагнитный металл, причем - "самый-пресамый" ферромагнетик, поскольку его точка Кюри (так называется температурный предел, при котором ферромагнетик утрачивает магнитные свойства) очень высокая 4-1130 градусов Цельсия. Необходимо сказать, что именно этим его качеством и не преминула воспользоваться в первую очередь военная промышленность. Впервые на службу "богу" войны кобальт был "мобилизован" Англией. В годы интервенции на севере Страны Советов эта капиталистическая держава использовала против нашего Северного флота магнитные мины. Изготавливались они из кобальтовых сплавов, позже к ним обратились и фашисты. Геббельс утверждал, что немецкие мины "превосходят нервную систему многих высших существ, созданных творцом". Если это так, то с кем или с чем сравнить советских ученых, очень скоро создавших систему противоминной защиты кораблей. Решающую роль в этом сыграли в первые месяцы войны И. В. Курчатов и А. П. Александров.
   Но значительно важнее мирные профессии кобальта.
   А они - самые разные. Так, жаропрочные свойства металла открыли ему дорогу в авиацию и космонавтику, в турбостроение. Он используется также и в гальванотехнике. А это трудная и почетная работа, поскольку металл (или сплав), из которого делают аноды, не должен ни растворяться в самых крепких кислотах, ни вступать во взаимодействие с содержимыми гальванической ванны.
   И все же - это традиционные профессии кобальта.
   Но существуют еще радиоактивные его изотопы. По мощности излучения они превосходят радий, особенно широко применяется в технике один из них кобальт-60. Контрольные приборы, созданные на его основе, сравнительно легко и дешево обнаруживают внутренние дефекты массивных конструкций, сварных швов и самых ответственных узлов громоздких механизмов. Кобальтовое излучение помогает, например, быстро и точно определить толщину слоя металла, что немаловажно при обследовании, например, тех же паровых котлов, находящихся постоянно под высоким давлением.
   Лучами радиоактивного кобальта обрабатываются даже алмазы, в результате они приобретают нежный голубоватый оттенок. Радиоактивный кобальт широко используется в сельском хозяйстве и медицине. Знаменитой кобальтовой пушкой "обстреливают" раковую опухоль, и она прекращает свой губительный для человека рост.
   Так что кобальт прежде всего материал "в рабочей спецовке", и сфера его применения ширится день ото дня, из года в год.
   У второго "кита" норильской металлургии - никеля - еще более солидный послужной список. Никелевая"
   сталь, например, гарантирует отличные прочностные качества. Именно из такой стали сделаны современные хирургические инструменты и "вечные", практически не знающие износа детали, используемые в химической промышленности.
   Семейство никелевых сплавов постоянно растет, каждый раз открывая индустрии новые, невиданные прежде возможности. Где только не трудятся никелевые сплавы! В судостроении и химическом машиностроении, в электроприборах и часах, турбинах и радиотехнике.
   А некоторые никелевые сплавы вообще уникальны.
   Так, они способны "помнить" свое прошлое. Например, спираль, сделанную из сплава никеля с титаном, нагревают до 150 градусов, а затем охлаждают, подвесив к ней груз, и она, естественно, вытягивается. Но стоит такую проволоку нагреть до 95 градусов, как она вновь становится... спиралью.
   Применение удивительного сплава практически не ограничено. Особенно незаменим он при сборке в открытом космосе готовых конструкций и антенн. Собственно, как это убедительно показали американские исследователи, такую антенну и собирать не надо. До определенной поры, туго свернутая, она спокойно лежит в космическом аппарате, занимая ничтожно малое место. Но в космосе, нагретая солнечными лучами, тотчас "вспоминает" заданную ей конструкторами форму и вновь ее обретает.
   А медь? Казалось бы, ее-то к новым материалам уж никак не причислить. Какая может быть новизна, если бронза, основным компонентом которой является медь, дала название целой эпохе. Чего только люди в разные времена не производили из меди. Топоры и оружие, колокола и самовары... Но медная проволока и медные детали и поныне неизменные компоненты современных приборов и станков.
   Электропроводимость меди удивительная. Говорят, что меди доступно все: она и летает, и стреляет, и ток передает. Именно медь определяет многие достоинства огнестрельного оружия. Судить об этом можно хотя бы по такому факту, теперь уже ставшему историческим. В конце второй мировой войны, когда фашистская Германия уже терпела неудачи, США неожиданно получают от швейцарских часовщиков крупный заказ (оказалось - для Германии) на бериллиевую бронзу, в состав которой входит медь. Казалось бы, чего же тут особенного?
   Но дело в том, что бериллиевая бронза применяется не только в часах. Ее замечательные качества открывают зеленую улицу и в авиацию (в современных самолетах свыше тысячи деталей изготавливаются из этих сплавов), пружины из нее применяются в самых разных устройствах. Разумеется, "швейцарская" хитрость немцев была разгадана. Но бизнес есть бизнес, и в немецких пулеметах, стрелявших в те годы в американцев, бериллиевая бронза все-таки появилась!
   Наше время предъявляет к меди свои требования. Медный прокат и медные трубы, медные заклепки и проволока, такая тонкая, что ее и глазом не различить - вот в чем остро нуждается развивающаяся промышленность.
   Так что медь - материал сегодняшнего дня и материал будущего.
   Все сказанное в одинаковой степени относится и к другим металлам. В том числе и к меди, своими старыми достоинствами создающей новые качества новейших материалов. Но уж коли эту главу книги я решил посвятить металлам - одним из самых старых и самым новейшим материалам, то позволю остановиться еще на некоторых из них. Прежде всего о титане. На долю этого металла немало выпало превратностей.