рис. 1 ). Пространственная структура каждого белка-фермента уникальна и обеспечивает необходимое для его функционирования расположение в пространстве всех звеньев Б., в особенности т. н. активных центров.В то же время она не абсолютно жестка и допускает необходимые в процессе функционирования (при взаимодействии с субстратами, ингибиторами и другими веществами) конформационные сдвиги и изменения.

  Пространственная структура нативной ДНК образована двумя комплементарными нитями и представляет собой двойную спираль Крика - Уотсона; в ней противоположные азотистые основания попарно связаны водородными связями - аденин с тимином и гуанин с цитозином. Устойчивость двойной спирали обеспечивается, наряду с водородными связями, также гидрофобным взаимодействием между плоскими кольцами азотистых оснований, расположенных стопкой (стопочное взаимодействие, или стакинг). Нити РНК спирализованы лишь частично. ДНК вирусов, бактериофагов, бактерий, а также митохондриальная в ряде случаев представляет собой замкнутое кольцо; при этом наряду со спиралью Крика - Уотсона наблюдается ещё дополнительная т. н. сверхспирализация.

  Денатурация Б. Нарушение нативной пространственной структуры Б. при различных воздействиях (повышение температуры, изменение концентрации металлов, кислотности раствора и др.) называется денатурацией и в ряде случаев обратимо (обратный процесс называется ренатурацией; рис. 2 ). Молекулы Б. - кооперативные системы: поведение их зависит от взаимодействий составляющих частей. Кооперативность молекул Б. определяется тем, что повороты отдельных звеньев из-за внутримолекулярных взаимодействии зависят от конформации соседних звеньев. В основе денатурации Б. при изменении внешних условий обычно лежат кооперативные конформационные превращения (например, переходы a-спираль - b-структура, a-спираль - клубок, b-структура - клубок для полипептидов, переход глобула - клубок для глобулярных белков, переход спираль - клубок для нуклеиновых кислот). В отличие от фазовых переходов (кипение жидкости, плавление кристалла), являющихся предельным случаем кооперативных процессов и происходящих скачком, кооперативные переходы Б. совершаются в конечном, хотя и сравнительно узком, интервале изменений внешних условий. В этом интервале одномерные, линейные молекулы (нуклеиновые кислоты, полипептиды), претерпевающие переход спираль - клубок, разбиваются на чередующиеся спиральные и клубкообразные участки ( рис. 3 ).

  Переход спираль - клубок в ДНК наблюдается при повышении температуры, добавлении в раствор кислоты или щёлочи, а также под влиянием других денатурирующих агентов. Этот переход в гомополинуклеотидах происходит при нагревании в интервале десятых долей °С, в фаговых и бактериальных ДНК - в интервале 3-5°С ( рис. 3 ), в ДНК высших организмов - в интервале 10-15 °С. Чем выше гетерогенность ДНК, тем шире интервал перехода и меньше способность молекул ДНК к ренатурации. Переход спираль - клубок в различных видах РНК носит менее кооперативный характер ( рис. 4 ) и происходит в более широком интервале температурных или других денатурирующих воздействий.

  Б. - полимерные электролиты, их пространственная конформация и кооперативные переходы зависят как от степени ионизации молекулы, так и от концентрации ионов в среде, что влияет на электростатические взаимодействия как между отдельными частями молекулы, так и между Б. и растворителем.

  Строение и биологические функции Б. Строение Б. - результат длительной эволюции на молекулярном уровне, вследствие чего эти молекулы идеально приспособлены к выполнению своих биологических задач. Между первичной структурой, конформацией Б. и конформационными переходами, с одной стороны, и их биологическими функциями - с другой, существуют тесные связи, исследование которых - одна из главных задач молекулярной биологии . Установление таких связей в ДНК позволило понять основные механизмы репликации , транскрипции и трансляции , а также мутагенеза и некоторых других важнейших биологических процессов. Линейная структура молекулы ДНК обеспечивает запись генетической информации, её удвоение при матричном синтезе ДНК и получение (также путём матричного синтеза) многих копий с одного и того же гена, т. е. молекул и-РНК. Сильные ковалентные связи между нуклеотидами обеспечивают сохранность генетической информации при всех этих процессах. В то же время относительно слабые связи между нитями ДНК и возможность вращения вокруг простых химических связей обеспечивают гибкость и лабильность пространственной структуры, необходимые для разделения нитей при репликации и транскрипции, а также подвижность молекулы и-РНК, служащей матрицей при биосинтезе белка (трансляция). Исследование пространственной структуры и конформационных изменений белков-ферментов на разных стадиях ферментативной реакции при взаимодействии с субстратами и коферментами даёт возможность установить механизмы биокатализа и понять природу огромного ускорения химических реакций, осуществляемого ферментами.

  Методы исследования Б. При исследовании строения и конформационных превращений Б. широко используются как очищенные природные Б., так и их синтетические модели, которые проще по строению и легче поддаются исследованию. Так, при изучении белков моделями служат гомогенные или гетерогенные полипептиды (с заданным или случайным чередованием аминокислотных остатков). Моделями ДНК и РНК являются соответствующие синтетические гомогенные или гетерогенные полинуклеотиды. К методам исследования Б. и их моделей относятся рентгеноструктурный анализ, электронная микроскопия, изучение спектров поглощения, оптической активности, люминесценции, методы светорассеяния и динамического двойного лучепреломления, седиментационный метод, вискозиметрия, физико-химические методы разделения и очистки и ряд др. Все методы, разработанные для изучения синтетических полимеров, применимы и к Б. При трактовке свойств Б. и их моделей, закономерностей их конформационных превращений используются также методы теоретической физики (статистической физики, термодинамики, квантовой механики и др.).

  Лит.:Бреслер С. Е., Введение в молекулярную биологию, М.-Л., 1966; Волькенштейн М. В., Молекулы и жизнь, М., 1965; Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1967; физические методы исследования белков и нуклеиновых кислот, М., 1967.

  Ю. С. Лазуркин.

Рис. 1. Образование четвертичной структуры глобулярных белков. Заштрихованы редко - полярные (гидрофильные) части белковых глобул, густо - неполярные (гидрофобные) области.

Рис. 3. Схема перехода спираль - клубок для ДНК: 1 - нативное состояние (вместо двойной спирали для простоты изображена «верёвочная лестница»); 2 - состояние ДНК в области перехода; 3 - денатурированное состояние (однонитевые клубки).

Рис. 2. Схема денатурации и ренатурации глобулярного белка (на примере фермента рибонуклеазы).

Биопсия

Биопси'я(от био... и греч. уpsis - вид, зрелище), иссечение кусочка болезненно измененной ткани живого организма с последующим микроскопическим исследованием его для определения характера патологического процесса (воспаление, опухоль и т.д.). Б. позволяет не только уточнить клинический диагноз, но и установить границы поражения.

Био-Савара закон

Био' - Сава'ра зако'н- закон, определяющий напряжённость магнитного поля, создаваемого электрическим током. Б.-С. з. был открыт французскими учёными Ж. Б. Био (J. В. Biot) и Ф. Саваром (F. Savart) в 1820 и сформулирован в общем виде П. Лапласом (P. Laplace). Согласно этому закону, малый отрезок проводника D l(см. рис. ), по которому течёт ток силой I, создаёт в данной точке пространства М, находящейся на расстоянии rот отрезка Dl (Dl « r), магнитное поле напряжённостью

 

Здесь J - угол между направлением тока в отрезке D lи радиусом-вектором r, проведённым от отрезка к точке наблюдения М, а k -коэффициент пропорциональности, зависящий от выбора системы единиц. В системе СГС (Гаусса) k= 1/с, где с = 3 · 10 10 см/сек -скорость света в вакууме, в системе СИ k= 1/4p.

  Напряжённость магнитного поля DН перпендикулярна плоскости Р, содержащей D lи r, и её направление определяется правилом буравчика: если вращать рукоятку буравчика (с правой нарезкой) от D lк r, то поступательное движение буравчика укажет направление D Н.

 Полная напряжённость магнитного поля Н, создаваемого проводником с током в точке М, равна векторной сумме величин D Н, обусловленных всеми элементами D lпроводника. В частности, напряжённость Нмагнитного поля на расстоянии dот длинного (много больше d) прямого провода, по которому течёт ток силой I, равна; H= k2I/d;в центре кругового контура (радиуса R), некоторому течёт ток силой I, H= kґ2p I/R, а на его оси в точке, отстоящей от плоскости контура на расстоянии d « R, H= kґ2p R 2I/d 3, на оси соленоида из nвитков H= kґ4p nI.

 Б.-С. з. можно рассматривать также как закон, определяющий магнитную индукцию DВ. В системе СГС для этого нужно выражение для D Нумножить на магнитную проницаемость среды m, а в системе СИ, кроме того, - на магнитную проницаемость вакуума m 0= 4pґ10 -7 гн/м.

  Г. Я. Мякишев.

Био - Савара закон.

Биосинтез

Биоси'нтез(от био... и синтез ), образование органических веществ из более простых соединений, протекающее в живых организмах или вне их под действием биокатализаторов - ферментов. Б. - часть процесса обмена веществ растений, животных и микроорганизмов. Непосредственным источником энергии для Б. служат богатые энергией соединения (см. Биоэнергетика ), а в конечном счёте (для всех организмов, кроме бактерий, осуществляющих хемосинтез ) -энергия солнечного излучения, аккумулированная зелёными растениями (см. Ассимиляция , Фотосинтез ) .Каждый одноклеточный организм, как и каждая клетка многоклеточного организма, синтезирует составляющие её вещества. Характер Б., осуществляемого в клетке, определяется наследственной информацией, «закодированной» в её генетическом аппарате (см. Белки , Биосинтез; Генетический код ) .Б., производимый вне организмов, широко применяется как способ (иногда единственно возможный) промышленного получения биологически важных веществ - витаминов, некоторых гормонов, антибиотиков, аминокислот, а также белков и других соединений. См. Микробиологическая промышленность .

  С. Е. Северин.

Биосистематика

Биосистема'тика,раздел ботаники, изучающий таксономическую и популяционную структуру вида, его морфологогеографическую, экологическую и генетическую дифференциацию, происхождение и эволюцию. Б. оперирует не только собственно таксономическими категориями, как вид и подвид, но и генэкологическими и популяционно-генетическими - экотип , биотип , популяция и дем (элементарная локальная популяция) или гамодем (у амфимиктических растений). Б. возникла как наука, сочетающая различные подходы к структуре и эволюции вида, т. е. задачи её выходят за рамки собственно систематики.

  История Б. начинается с работ шведского эколога Г. Турессона (1922, 1923) и американского эколога Д. Клаусена (1921-22), изучавших экологическую и генетическую дифференциацию вида. Новое направление, названное Турессоном (1923) генэкологией, сформировалось позднее в науку, которую М. Кэмп и Н. Гилли назвали «Б.» (1943). Генэкология осталась одним из разделов Б., изучающим внутривидовую изменчивость растений. Б. изучает, кроме того, и микроэволюцию.В СССР работы в этом направлении начали ещё в 20-х гг. М. А. Розанова, Е. Н. Синская и др. Под руководством Н. И. Вавилова во Всесоюзном институте растениеводства велось изучение экологогеографической и генетической дифференциации многих видов культурных растений. Эти исследования имели большое значение для дальнейшего развития Б., хотя они и относились скорее к «дифференциальной систематике», как её понимал Н. И. Вавилов.

  Лит.:Вавилов Н. И., Линнеевский вид как система, «Тр. по прикладной ботанике, генетике и селекции», 1931, т. 26, т. 3, с. 109-34; Розанова М. А., Экспериментальные основы систематики растений, М.-Л., 1946; Синская Е.Н., Динамика вида, М.-Л., 1948; Завадский К. М., Вид и видообразование, Л., 1968; Тахтаджян А. Л., Биосистематика: прошлое, настоящее и будущее, «Ботанический журнал», 1970, т. 55, в. 3; Heslop-Harrison J. W., New concepts in flowering-plant taxonomy, L., 1953; его же. Forty years of Genecology, в сборнике: Advances in ecological research, v. 2, L.-N. Y., 1965; Davis P. Н. and Heywood V. H., Principles of angiosperm taxonomy, Edinburg-L., 1963; Reproductive biology and taxonomy of vascular plants, ed. J. G. Hawkes, Oxf., 1966; Modern methods in plant taxonomy, ed. V. H. Heywood, L., 1968; Briggs D. and Walters S. M., Plant variation and evolution, L., 1969.

  А. Л. Тахтаджян.

Биостратиграфия

Биостратигра'фия(от био... и стратиграфия ), отрасль стратиграфии, изучающая распределение ископаемых остатков организмов в осадочных отложениях с целью установления относительного возраста и соотношения одновозрастных слоев на различных территориях. Задача Б. - разработка шкал относительно возраста слоев (разной детальности и масштаба, в частности зональных). Последовательность биостратиграфических зон отражает смену в геологическом разрезе ископаемых остатков группы вымерших организмов разного систематического ранга или их комплексов. Особенное значение для выделения зон, и в первую очередь биозон , имеют группы вымерших организмов с относительно кратким сроком существования, но достигавшие широкого распространения, значительного изобилия и разнообразия (например, нуммулиты , граптолиты , динозавры ) .Нередко зоны обосновываются стадиями эволюции некоторых быстро изменявшихся во времени групп вымерших организмов (например, кораллов - ругоз ) .Для целей Б. важно изучение остатков древних микроскопических организмов (микропалеонтология), количество которых может быть велико даже в небольших образцах (например, из глубоких скважин). Остатки планктонных организмов ( фора-минифер , водорослей и др.), разносившихся течениями на большие расстояния, допускают выделение зон большой территориальной протяжённости. Ископаемые остатки спор и пыльцы растений, далеко разносившихся ветрами, важны для корреляции одновозрастных осадков морского и континентального происхождения. Б. широко использует методы палеоэкологии для реконструкции условий существования древних организмов, с тем чтобы отличать одновозрастные комплексы организмов, живших в разных условиях, от разновозрастных, живших в сходных условиях.

  Лит.:Меннер В. В., Биостратиграфические основы сопоставления морских, лагунных и континентальных свит, «Тр. геологического института АН СССР», 1962, в. 65; Стратиграфическая классификация, терминология и номенклатура, Л., 1965; Степанов Д. Л., Принципы и методы биостратиграфических исследований, Л., 1958.

  Р. Л. Мерклин.

Биосфера

Биосфе'ра(от био... и сфера ), оболочка Земли, состав, структура и энергетика которой в существенных чертах обусловлены прошлой или современной деятельностью живых организмов. Б. охватывает часть атмосферы, гидросферу и верхнюю часть литосферы, которые взаимосвязаны сложными биогеохимическими циклами миграции веществ и энергии (по В. И. Вернадскому, - биогенная миграция атомов); начальный момент этих циклов заключён в трансформации солнечной энергии растениями и синтезе биогенных веществ на Земле (см. Фотосинтез. Хемосинтез) .Термин «Б.» ввёл в 1875 австрийский геолог Э. Зюсс. Общее учение о Б. создано в 20-30-х гг. 20 в. В. И. Вернадским , развившим идеи В. В. Докучаева о комплексном естественно-историческом анализе взаимодействующих в природе разнокачественных объектов и явлений (факторов почвообразования) и выявлении самостоятельных природных объектов гетерогенной структуры и состава (почвы, природные зоны). В основе учения Вернадского лежат представления: 1) о планетарной геохимической роли живого вещества (совокупность всех живых организмов, существовавших или существующих в определённый отрезок времени, рассматриваемых как мощный геологический, фактор; в отличие от живых существ, изучаемых в биологии на всех уровнях их организации, начиная от молекулярного, живое вещество, в понимании Вернадского, как биогеохимический фактор, количественно выражается в элементарном химическом составе, массе и энергии) и 2) об организованности Б., являющейся продуктом сложного превращения вещественно-энергетического и информационного потоков живым веществом за время геологической истории Земли.

  Б. включает не только область жизни ( биогеосферу , фитогеосферу, геомериду, витасферу), но и другие структуры Земли, генетически связанные с живым веществом. По Вернадскому, вещество Б. состоит из семи разнообразных, но геологически взаимосвязанных частей: живое вещество; биогенное вещество; косное вещество; биокосное вещество; радиоактивное вещество; рассеянные атомы; вещество космического происхождения. В пределах Б. везде встречается либо живое вещество, либо следы его биогеохимической деятельности. Газы атмосферы (кислород, азот, углекислота), природные воды, равно как и каустобиолиты (нефти, угли), известняки, глины и их метаморфические производные (сланцы, мраморы, граниты и др.) в своей основе созданы живым веществом планеты. Слои земной коры, лишённые в настоящее время живого вещества, но переработанные им в геологическом прошлом, Вернадский относил к области «былых биосфер». Б. мозаична по структуре и составу, отражая геохимическую и геофизическую неоднородность лика Земли (океаны, озёра, горы, ущелья, равнины и т.д.) и неравномерность в распределении живого вещества по планете как в прошлые эпохи, так и в наше время. Максимальное содержание живого вещества гидросферы приурочено к мелководьям, минимальное - к глубинным акваториям (абиссаль); на суше эта неравномерность проявляется в мозаике биогеоценотического покрова (леса, болота, степи, пустыни и др.) с минимумом плотности живого вещества в высокогорьях, пустынях и полярных областях (см. Биомасса ). Элементарная структура активной части современной Б. - биогеоценоз .

 Живое вещество выполняет следующие биогеохимические функции: газовые (миграция газов и их превращения); концентрационные (аккумуляция живыми организмами химических элементов из внешней среды); окислительно-восстановительные (химические превращения веществ, содержащих атомы с переменной валентностью, - соединений железа, марганца, микроэлементов и т.д.); биохимические и биогеохимические функции, связанные с деятельностью человека (техногенез, форма созидания и превращения вещества в Б., стимулирующая переход Б. в новое состояние - ноосферу ) .Совокупность этих функций определяет все химические превращения в Б. Эволюция Б. диалектически связана с эволюцией форм живого вещества (организмы и их сообщества), усложнением его биохимических функций, совершающихся на фоне геологической истории Земли.

  В учении о Б. выделяют следующие основные аспекты: энергетический, освещающий связь биосферно-планетарных явлений с космическими излучениями (в основном солнечными) и радиоактивными процессами в земных недрах; биогеохимический, отражающий роль живого вещества в распределении и поведении атомов (точнее их изотопов) в Б. и её структурах (см. Биогеохимия ); информационный, изучающий принципы организации и управления, осуществляемые в живой природе в связи с исследованием влияния живого вещества на структуру и состав Б.; пространственно-временной, освещающий формирование и эволюцию различных структур Б. в геологическом времени в связи с особенностями пространственно-временной организованности живого вещества в Б. (проблемы симметрии и др.); ноосферный, изучающий глобальные эффекты воздействия человечества на структуру и химию Б.: разработка полезных ископаемых, получение новых, отсутствовавших до того в Б. веществ (например, чистые алюминий, железо и другие металлы), преобразование биогеоценотических структур Б. (сведение лесов, осушение болот, распашка целинных земель, создание водохранилищ, загрязнение вод, почв и атмосферы продуктами хозяйственной деятельности, внесение удобрений, эрозия почв, лесонасаждение, строительство городов, плотин, промысловое хозяйство и т.д.). Выход человека в космос, за пределы Б., будет стимулировать разработку новых сторон учения о Б. Существенный момент учения о Б. - представления о взаимосвязях (прямых и обратных связях) и сопряжённой эволюции всех структур Б. Это представление положено в основу разработки многими национальными и международными организациями, научными центрами и лабораториями проблемы «биосфера и человечество». Решению этой проблемы служат мероприятия, в которых участвуют многие страны, например Международное гидрологическое десятилетие, Международная биологическая программа (см. Биологическая программа международная ) и т.д. Повышенный интерес к изучению Б. вызван тем, что локальное воздействие человека на Б., характерное для всей предшествовавшей истории, сменилось в 20 в. глобальным его влиянием на состав, структуру и ресурсы Б. На планете нет участка суши или моря, где бы не были обнаружены следы деятельности человека. Один из ярких примеров - глобальные выпадения радиоактивных осадков - продуктов ядерных взрывов. В атмосфере, океане и на суше повсеместно присутствуют (пусть в самых незначительных количествах) продукты сгорания нефти, угля, газов, отходы химической и другой индустрии, ядохимикаты и удобрения, сносимые с полей в процессе водной и ветровой эрозии. Интенсивное и нерациональное использование ресурсов Б. - водных, газовых, биологических и др., усугубляемое гонкой вооружений, испытаниями ядерного оружия и т.д., развеяло миф о бесконечности и неисчерпаемости этих ресурсов. Многочисленные примеры разрушительной деятельности человека и, к сожалению, редкие примеры его созидательной деятельности (в т. ч. в плане охраны природы ) свидетельствуют об актуальности разумного ведения земных дел разумным человечеством, что возможно только при переходе от стихийного капиталистического производства к плановому хозяйству социалистического и коммунистического общества. Естественно-научной основой рационального подхода к проблеме «биосфера и человечество» - одной из грандиознейших проблем нашего времени - служат учение о Б. и биогеоценология-дисциплины, изучающие общие принципы и механизмы функционирования и эволюции сообществ живых организмов в определённых пространственных и временных условиях. Современная структура Б. - продукт длительной эволюции многих систем разной сложности, последовательно стремящихся к состоянию динамического равновесия. Практическое значение учения о Б. огромно. Особенно заинтересованы в развитии этого учения здравоохранение, сельское и промысловое хозяйство и другие отрасли человеческой практики, чаще других сталкивающиеся с «ответными ударами» со стороны Б., вызванными неразумным или неосторожным преобразованием природы человеком.

  Лит.:Вернадский В. И., Избр. соч., т. 5, М., 1960; его же, Химическое строение биосферы Земли и её окружения, М., 1965; Ковда В. А., Современное учение о биосфере, «Журнал общей биологии», 1969, т. 30, № 1; Перельман А. И., Геохимия ландшафта, М., 1961; Тимофеев-Ресовский Н. В. и Тюрюканов А. Н., Об элементарных биохорологических подразделениях биосферы, «Бюллетень Московского общества испытателей природы», 1966, т. 71(1); Хильми Г. Ф., Основы физики биосферы, Л., 1966; Дювиньо П. и Танг М., Биосфера и место в ней человека, пер. с франц., М., 1968.

  В. А. Ковда, А. Н. Тюрюканов.

Биота (род растений)

Био'та(Thuja), род однодомных древесных растений семейства кипарисовых. Представлен 1 видом - Б. восточной (Thuja orientalis, Biota orientalis).

  Дерево высотой 8-10 м, но чаще кустарник. Хвоя на взрослых ветвях чешуевидная, накрест-супротивно расположенная. Крона яйцевидная, состоит из многих плоских побегов («пластин»), расположенных в вертикальной плоскости. Направленные вверх шишки незрелые - голубовато-зелёные, впоследствии - сухие, большей частью красновато-коричневые. Семена созревают на второй год. Родина Б. - Китай и Корея. В южных районах СССР разводится как декоративное растение. Б. засухоустойчива, хорошо выносит стрижку.

  Лит.:Деревья и кустарники СССР, т. 1, М. - Л., 1949.

  А. П. Шиманюк.

Биота восточная: а - ветвь с женскими шишками; б - веточка.

Биота (совокупность растений и животных)

Био'та(от греч. biot - жизнь), исторически сложившаяся совокупность растений и животных, объединённых общей областью распространения. В отличие от