Всё шире практикуется, особенно применительно к микроорганизмам, вызывание мутаций ионизирующей радиацией и химическими мутагенами. Уже созданы мутантные штаммы продуцентов ряда антибиотиков, аминокислот, ферментов и др. биологически активных веществ, во много раз превосходящие по продуктивности исходные штаммы (см. Генетика микроорганизмов ). Искусственный мутагенез, примененный в селекции растений в СССР ещё в конце 20-х гг. (Л. Н. Делоне, А. А. Сапегин и др.), ныне широко используется в селекционной работе в разных странах. На основе искусственно полученных мутантных форм созданы высокоурожайные сорта ячменя, пшеницы, риса, овса, гороха, сои, фасоли, лупина и др., уже внедрённые в производство. Значительно повышая наследственная изменчивость растений, методы экспериментальной полиплоидии и искусственного мутагенеза ускоряют селекционную работу и делают её более эффективной. Это, однако, не умаляет роли отбора и гибридизации. Значение старых методов выведения сортов и пород в сочетании с новыми приёмами, основанными на успехах Г., всё больше возрастает, особенно в селекции животных, где экспериментальная полиплоидия и мутагенез пока ещё не применимы. Разработка теории и методов оценки, отбора и подбора животных и растений, так же как и системы их наилучшего выращивания, остаётся важной задачей.

  На достижениях Г. основаны методы генетически регулируемого гетерозиса , обеспечившие получение гибридной кукурузы, урожайность которой на 30-40% выше исходных сортов, сорго и др. культур, а из с.-х. животных - свиней и особенно кур (лучшие гибридные куры превосходят чистопородных кур или межпородных гибридов по яйценоскости, крупности яиц, оплате корма) (см. Генетика животных и Генетика растений ).

  Всё большую роль играет Г. в изучении наследственности человека, в предупреждении и лечении наследственных болезней (см. Генетика человека , Генетика медицинская ).

  Г. внесла большой вклад в познание диалектико-материалистической картины мира, показав, что коренное свойство жизни - наследственность - основывается на сложной физико-химической структуре хромосомного аппарата, сформировавшегося в ходе эволюции для хранения и передачи генетической информации. Тем самым Г. дала ещё одно доказательство взаимосвязи физико-химической и биологической форм организации материи и единства материального мира. Г. показала, что все генетические явления и процессы, в том числе явления наследственной изменчивости, детерминированы. Диалектически противоречивое единство явлений наследственности и наследственной изменчивости получило объяснение в поведении и особенностях изменения структуры хромосом и заключённых в них генов при скрещиваниях, а также в реакции генетического материала на внешние воздействия или на условия внутриклеточной среды. Г. показала также, что главным образом внутреннее противоречие между наследственностью и наследственной изменчивостью, разрешаемое в процессе мутирования, рекомбинации при гибридизации и отбора, служит движущей силой эволюции. Г. подтвердила эволюционную теорию Дарвина и способствовала её развитию. Вскрыв материальность явлений наследственности, Г., в силу самой логики развития естествознания, показала, что все генетические явления и процессы подчинены законам диалектического движения. Развивая теорию наследственности и изменчивости, советские генетики твёрдо стоят на позициях диалектического материализма, марксистско-ленинской философии.

  Основные центры генетических исследований и органы печати

 В СССР главными центрами исследований по Г. являются институт общей генетики АН СССР, институт биологии развития АН СССР, институт молекулярной биологии АН СССР, Отдел химической генетики института химической физики АН СССР, Радиобиологической отдел института атомной энергии АН СССР, институт медицинской генетики АМН СССР (все в Москве), институт цитологии и генетики Сибирского отделения АН СССР (Новосибирск), институт генетики и цитологии АН БССР (Минск), институт цитологии АН СССР (Ленинград), институт генетики и селекции промышленных микроорганизмов Главмикробиопрома (Москва), Сектор молекулярной биологии и генетики АН УССР (Киев), а также кафедры генетики МГУ, ЛГУ и др. университетов. Организовано (1965) Генетиков и селекционеров общество Всесоюзное им. Н. И. Вавилова с отделениями на местах. Г. преподают во всех университетах, медицинских и с.-х. вузах СССР. Генетические исследования интенсивно ведутся и в др. социалистических странах, а также в Великобритании, Индии, Италии, США, Франции, ФРГ, Швеции, Японии и др. Каждые 5 лет собираются международные генетические конгрессы (см. Биологические конгрессы международные ).

  Основной печатный орган, систематически публикующий статьи по Г., - журнал «Генетика» АН СССР (с 1965). АН УССР издаёт журнал «Цитология и генетика» (с 1967). Статьи по Г. печатают также многие биологические журналы , например «Цитология» (с 1959), «Радиобиология» (с 1961), «Молекулярная биология» (с 1967).

  За рубежом статьи по Г. печатают десятки журналов и ежегодников, например «Annual Review of Genetics» (Palo Alto, с 1967), «Theoretical and Applied Genetics» (В., с 1929), «Biochemical Genetics» (N. Y., с 1967), «Molecular and General Genetics» (В., с 1908), «Heredity» (Edinburgh, с 1947), «Genetical Research» (Camb., с 1960), «Hereditas» (Lund, с 1920), «Mutation Research» (Arnst., с 1964), «Genetics» (Brooklyn - N. Y., с 1916), «Journal of Heredity» (Wash., с 1910), «Canadian Journal of Genetics and Cytology» (Ottawa, с 1959), «Japanese Journal of Genetics»(Tokyo, с 1921), «Genetica Polonica» (Poznan, с 1960), «Indian Journal of Genetics and Plant Breeding» (New-Delhi, с 1941).

  Д. К. Беляев.

  Лит.: История генетики- Мендель Г., Опыты над растительными гибридами, М., 1965; Морган Т., Избранные работы по генетике, пер. с англ., М. - Л., 1937; Вавилов Н. И., Избр. соч. Генетика и селекция, М., 1966; Гайсинович А. Е., Зарождение генетики, М., 1967; Рейвин А., Эволюция генетики, пер. с англ., М., 1967; Классики советской генетики. 1920-1940, Л., 1968.

  Учебники и руководства- Руководство по разведению животных, пер. с нем., т. 2, М., 1963; Бреславец Л. П., Полиплоидия в природе и опыте, М., 1963; Молекулярная генетика, пер. с англ., ч. 1, М., 1964; Сэджер Р. и Райн Ф., Цитологические и химические основы наследственности, пер. с англ., М., 1964; Волькенштейн М. В., Молекулы и жизнь. Введение в молекулярную биофизику, М., 1965; Актуальные вопросы современной генетики. Сб. ст., М., 1966; Бреслер С. Е., Введение в молекулярную биологию, 2 изд., М. - Л., 1966; Дубинин Н. П., Глембоцкий Я. Л., Генетика популяций и селекция, М., 1967; Алиханян С. И., Современная генетика, М., 1967; Мюнтцинг А., Генетика. Общая и прикладная, пер. с англ., 2 изд., М., 1967; Лобашев М. Е., Генетика, 2 изд., Л., 1967; Уотсон Дж. . Молекулярная биология гена, пер. с англ., М., 1967: Боннер Д ж., Молекулярная биология развития, пер. с англ., М., 1967; Робертис Э. де, Новинский В., Саэс Ф., Биология клетки, пер. с англ., М., 1967; Медведев Н. Н. ., Практическая генетика, 2 изд., М., 1968: Гершкович И., Генетика, пер. с англ., М., 1968; Хатт Ф., Генетика животных, пер. с англ., М., 1969; Дубинин Н. П. Общая генетика, М., 1970

  Словари- Ригер Р., Михаэлис А., Генетический и цитогенетический словарь, пер. с нем., М., 1967.

«Генетика»

«Гене'тика», научный журнал АН СССР. Издается в Москве с 1965. В журнале помещаются статьи, обзоры, сообщения по вопросам молекулярной, химической и радиационной генетики, мутационнои теории, генетики популяции, цитогенетики, взаимоотношении генотипа среды, теории селекции, частной генетики и селекции животных, растений микроорганизмов, экспериментальной полиплоидии, гетерозиса, отбора и гибридизации, генетики человека. К статьям дается резюме на английском языке. Тираж (1971) около 3,2 тыс. экз. Журнал переводится и издается на английском языке в США.

Генетика животных

Гене'тика живо'тных, раздел генетики , изучающий наследственность и изменчивость преимущественно с.-х., а также домашних и диких животных. Основывается на общегенетических принципах и положениях и использует в основном такие методы общей генетики, как гибридологический, цитологический, популяционный, онтогенетический, математико-статистический, близнецовый и др. Чаще всего у животных наблюдается независимое наследование признаков, обусловленное большим числом хромосом. Например, диплоидное число хромосом уток 80, у собак и кур по 78, лошадей 66, крупного рогатого скота и коз по 60, овец 54, кроликов 44, свиней 40, лисиц 38, норок 30. Основным методом изучения наследования признаков служит гибридологический анализ . Этот метод позволил выяснить характер наследования многих морфологических, физиологических и биохимических особенностей, часто зависящих только от одной или нескольких пар генов.

  Большое внимание уделяется генетике биохимических свойств молока, крови животных, в частности иммуногенетике , результаты которой используются для контроля за родословными племенных животных, уточнения их происхождения в спорных случаях и т. д. Установлена возможность с помощью изучения генов, обусловливающих биохимические свойства, вести анализ структуры пород, их линий и отродий, судить о степени однотипности пород и т. п. Продолжаются исследования коррелятивных связей этих генов с продуктивностью, плодовитостью и жизнеспособностью животных.

  Генетическое объяснение получили встречающиеся у животных морфологические недостатки и недоразвитие отдельных органов. Известно, что многие из пороков развития (бульдоговидность, карликовость водянка головы у телят, безногость у поросят, безволосость у телят и крольчат и др.) определяются т. н. летальными и полулетальными генами. Особи - носители таких генов, или гибнут, или обладают низкой жизнеспособностью. Появление животных с такими недостатками объясняется тем, что в стадах встречаются особи, внешне нормальные вполне жизнеспособные, но гетерозиготные по генам, определяющим эти недостатки. При скрещивании таких гетерозиготных особей друг с другом в потомстве появляются нежизнеспособные формы, гомозиготные по летальным или полулетальным генам.

  Летальное или полулетальное действие могут оказывать и гены, обусловливающие полезные в хозяйственном отношении признаки. Классический пример этого - доминантный ген, определяющий у каракульских ягнят серую окраску - ширази, который одновременно оказывается рецессивным в отношении жизнеспособности особей.

  Новым и перспективным направлением Г. ж. является генетика устойчивости к некоторым инфекционным, инвазионным и грибковым заболеваниям. Известны генетически обусловленные различия устойчивости животных к маститу, туберкулёзу, ящуру, пироплазмозу и др. Мало изучены у животных наследственные болезни обмена веществ, хотя по аналогии с генетикой человека можно предполагать, что они также многочисленны.

  Развитие у животных количественных признаков - скороспелости, величины удоя, содержания жира в молоке, настрига шерсти, яйценоскости и др. - зависит от деятельности многих систем организма. Этим объясняется сложная генетическая природа этих признаков. Установлено, что количественные признаки определяются совокупным действием многих генов с однозначным действием. Последние могут различаться по степени доминирования, вплоть до сверхдоминантных генов, вызывающих гетерозис в первом поколении помесей. Для изучения количественных признаков пользуются математико-статистическими методами.

  Породы и внутрипородные группы с.-х. животных (линии, семейства и т. д.) - всегда популяции, в которых происходит расщепление по многим генам. Популяционный метод позволяет изучить распространение отдельных генов в популяциях животных. В простейших случаях, при расщеплении популяции по одному или немногим генам, параметрами, характеризующими популяции, служат частоты отдельных генов. При анализе признаков, зависящих от многих генов, частоты отдельных генов не могут быть установлены, и тогда пользуются коэффициентом наследуемости - отношением генотипической изменчивости количественного признака к его общей фенотипической изменчивости. Значения коэффициента наследуемости (от 0 до 1) зависят от специфики признаков, для которых они устанавливаются, а также от степени выравненности условий содержания и кормления и от методов разведения животных. Значение коэффициента наследуемости позволяет найти наиболее подходящие методы селекции и прогнозировать их результаты.

  Лит.:Брюбейкер Дж. Л., Сельскохозяйственная генетика, пер. с англ., М., 1966; Дубинин Н. П., Глембоцкий Я, Л., Генетика популяций и селекция, М., 1967; Генетические основы селекции животных. Сб. ст., М., 1969; Серебовский А. С., Генетический анализ, М., 1970; Хатт Ф. Б., Генетика животных, пер. с англ., М., 1969. См. также лит. при ст. Генетика .

  П. Ф. Рокицкий.

Генетика медицинская

Гене'тика медици'нская, раздел генетики человека , изучающий наследственные заболевания и методы их предупреждения, диагностики и лечения. Существование заболеваний, передающихся по наследству ( гемофилия и др.), а также тот факт, что браки между родственниками увеличивают частоту появления в потомстве наследственных заболеваний, были известны давно. В начале 20 в. исследовалась главным образом соотносительная роль наследственности и среды в происхождении не только нормальных, но и патологических признаков человека. В России Г. м. зародилась лишь при Советской власти и значительного развития достигла в 30-е гг. В Медико-генетическом институте, возглавлявшемся С. Г. Левитом, успешно изучалось наследование сахарного диабета, язвенной и гипертонических болезней и др. С. Н. Давиденков и его школа всесторонне исследовали наследственные болезни нервной системы.

  При изучении наследственных болезней Г. м. пользуется всеми методами генетики человека: генеалогическим (заключается в составлении родословной, что позволяет выявить соотношение между здоровыми и больными членами семьи пробанда, т. е. больного, для которого составляется родословная), близнецовым (см. Близнецы ), цитологическим, биохимическим, иммунологическим. В 60-х гг. 20 в. большое значение приобрели цитогенетические методы исследования (хромосом полового хроматина) и биохимические тесты. Выяснилось, что наследственные болезни зависят от изменений в хромосомах половых клеток, - это могут быть изменения структуры генов, хромосомные перестройки ( делеции , транслокации , дупликации и др.) или количественные изменения в хромосомном наборе (добавление или потеря одной или нескольких хромосом). Так, нарушением числа или структуры хромосом - половых или аутосом - обусловлены синдром Тернера - Шерешевского, Дауна болезнь , синдромы Клайнфельтера и «кошачьего крика», трисомии 18 (Эдвардса) и D (Патау) и др. При др. наследственных заболеваниях обнаружить видимые дефекты в хромосомном наборе не удаётся. В таких случаях, по-видимому, происходят генные мутации или неблагоприятное сочетание различных генов. Проявление некоторых наследственных болезней зависит от средовых факторов, которые могут способствовать развитию наследств. предрасположения или полностью его подавить. В задачу Г. м. входит выявление соответствующих условий среды (в т. ч. лечебных средств, диеты и др.). Успехи в развитии Г. м. сделали возможными предупреждение и лечение ряда наследственных болезней. Один из эффективных методов такого предупреждения - медико-генетическое консультирование с предсказанием риска появления больного в потомстве лиц, страдающих данным заболеванием или имеющих больного родственника. Достижения биохимической генетики раскрыли первичные (молекулярные) дефекты при многих наследственно обусловленных аномалиях обмена веществ, что способствовало развитию методов экспресс-диагностики, позволяющих быстро и рано выявлять больных и лечить многих прежде неизлечимые наследственные болезни. Так, например, подбором специальной диеты возможно предупредить развитие фенилкетонурии (фенилпировиноградной олигофрении ) и некоторых др. наследственных болезней. В иных случаях лечение состоит во введении в организм извне веществ, не образующихся в нём в результате генетического дефекта. Многие генетические дефекты исправляются своевременным хирургическим вмешательством или педагогической коррекцией. Во многих странах организованы клиники и научные институты, занимающиеся изучением наследственной патологии человека; в СССР - институт медицинской генетики АМН СССР. Ежегодно публикуется около 3 тыс. работ о Г. м. Вопросы Г. м. освещают журналы «Acta geneticae medicae et gemellologiae» (Roma, с 1952); «American Journal of Human Genetics» (Baltimore, 1949); «Annals of Human Genetics» (L., 1954); «Journal de genetique humaine» (Geneve, с 1952); «Journal of Medical Genetics» (L., с 1964); «Excerpta medica, Section. 22, Human genetics» (Amst., с 962). В СССР статьи по Г. м. публикуются во многих медицинских и биологических журналах (например, журнал «Генетика», «Цитология», «Цитология и генетика»).

  Е. Ф. Давиденкова.

Генетика микроорганизмов

Гене'тика микрооргани'змов, раздел общей генетики , в котором объектом исследования служат бактерии, микроскопические грибы, актинофаги, вирусы животных и растений, бактериофаги и др. микроорганизмы. До 40-х гг. 20 в. считалось, что, поскольку у микроорганизмов нет ядерного аппарата и мейоза, на них не распространяются Менделя законы и хромосомная теория наследственности . С начала 40-х гг. микроорганизмы становятся объектом интенсивных генетических исследований. Именно на них были решены многие кардинальные вопросы современные генетики. Так, первое указание на то, что материальным носителем наследственности служит дезоксирибонуклеиновая кислота (ДНК), было получено в опытах на пневмококках (американские генетики О. Т. Эйвери, К. Мак-Леод и М. Маккарти). Примерно в то же время были начаты интенсивные генетические исследования на хлебной плесени - нейроспоре. Изучение многочисленных биохимических мутантов нейроспоры (Дж. У. Бидл и Э. Л. Тейтем, США) привело к установлению очень важного положения: «один ген - один фермент» (ныне это положение более точно формулируется так: «один ген - одна полипептидная цепь»). Генетические исследования микроорганизмов особенно интенсивно стали развиваться после того, как американские генетики С. Лурия М. Дельбрюк показали на кишечной палочке (Escherichia coli), что и бактерии подчиняются мутационным закономерностям (см. Изменчивость , Мутации ). Ранее существовавшее представление об адекватной, адаптивной изменчивости у бактерий возникло вследствие методической ошибки, заключавшейся в изучении культуры как единицы изменчивости. Был предложен новый принцип изучения изменчивости у бактерий - клональный анализ, т. е. изучение потомства одной клетки - родоначальницы клона . Важной вехой в развитии Г. м. явился разработанный американскими генетиками Дж. и Э. Ледербергами метод реплик, или отпечатков, позволивший доказать, что мутации возникают у бактерий независимо от условий культивирования, и, кроме того, значительно упростивший приёмы отбора вариантов микроорганизмов с желаемыми свойствами. Оказалось, что в больших популяциях бактериальных клеток мутации возникают спонтанно. В 1946 был открыт половой процесс у бактерий ( конъюгация ), что позволило применить для их исследования генетический анализ . В результате установлены наличие у бактерий рекомбинации , существование у них генетических групп сцепления и построены генетические карты их хромосом. Почти одновременно был открыт парасексуальный процесс грибов (Г. Понтекорво, Великобритания), что расширило возможности генетического анализа грибов, не имеющих полового цикла размножения. Вскоре в генетические исследования были вовлечены бактериофаги и др. вирусы (в частности, вирус табачной мозаики - ВТМ). Был открыт эффект переноса генетической информации от одной бактериальной клетки к другой при посредстве бактериофага - генетической трансдукция , что положило начало изучению генетических взаимоотношений в системе «фаг - бактерия» (Дж. Ледерберг, Н. Зиндер, США). Вслед за тем была обнаружена рекомбинация у фагов (А. Херши и М. Дельбрюк, США). Если использование бактерий в качестве объекта генетических исследований резко повысило разрешающую способность генетическиого анализа, то благодаря фагам удалось перейти к изучению явлений наследственности на молекулярном уровне. Большое значение имели исследования ВТМ (немецкие генетики Г. Шустер и А. Гирер), позволившие вызвать генетический эффект в опытах с чистой рибонуклеиновой кислотой (РНК), которая сохраняла инфекционность и при нанесении на листья табака вызывала в клетках образование полноценных частиц ВТМ.

  Исходя из общих принципов исследования генетических процессов у микроорганизмов, для каждой группы разработаны специальные методы изучения с учётом их особенностей.

  Генетические механизмы у грибов и водорослей, сохранивших половой процесс, имеют ряд особенностей. Главная из них состоит в том, что продукты мейоза (споры) остаются соединёнными в определенном порядке, и после раздельного высева этих спор можно непосредственно изучать генотип каждого продукта мейоза. Этот метод, называемый тетрадным анализом , дополняет статистические методы изучения процесса расщепления. Применение генетич        еского анализа к организмам, у которых отсутствует половой процесс, стало возможным после открытия у них парасексуальных процессов, отличающихся большим разнообразием. Так, у несовершенных грибов при срастании гиф, принадлежащих двум генетически различным штаммам, происходит объединение и затем слияние двух гаплоидных ядер в одно диплоидное; в этой системе изредка возможен обмен генетическим материалом.

  Особенность полового процесса у бактерий состоит в том, что в клетку-реципиент передаётся, как правило, только часть генетического материала из клетки-донора, в результате чего образуется частично диплоидная зигота (т. н. мерозигота). У бактерий известно несколько механизмов передачи генетического материала. Наиболее совершенная форма полового процесса у бактерий - конъюгация, детально изученная у кишечной палочки. Конъюгация происходит при непосредственном контакте между двумя клетками, если в одной из них присутствует специфический половой фактор, или фактор скрещиваемости (фертильности, плодовитости), половой фактор (см. Эписомы ) содержит ДНК и может существовать в клетке либо автономном, либо в интегрированном состоянии (включенным в первом случае при конъюгации в клетку-реципиент переходит только половой фактор. Во втором случае половой фактор способствует направленному переносу генетического материала из клетки-донора в клетку-реципиент. Как правило, при этом происходит передача только части генома донора и лишь крайне редко передаётся вся хромосома донора вместе включенным в неё половым фактором. Между фрагментом донорной ДНК и ДНК реципиента может произойти обмен гомологичными генетическими участками - кроссинговер , приводящий к возникновению рекомбинантов, т. е. клеток с изменённым сочетанием признаков. Генетический анализ рекомбинантов кишечной палочки позволил установить у неё существование одной группы сцепления, определить линейное расположение большого числа генов в её хромосоме и построить кольцевую генетическую карту (см. Генетические карты хромосом ). Перенос генетического материала при конъюгации - строго ориентированный процесс, при котором последовательность передачи генов (а значит, и вероятность их участия в кроссинговере) целиком зависит от расположения генов в хромосоме и точки интеграции (включения) полового фактора. При переходе полового фактора в автономное состояние гены, расположенные на хромосоме рядом с точкой интеграции, могут объединиться с половым фактором и в дальнейшем передаваться с ним как единое целое, превращая клетки-реципиенты в диплоиды по данному генетическому участку. Этот процесс переноса генов совместно с половым фактором, называется сексдукцией , также может привести к возникновению рекомбинантов. Др. механизм возникновения рекомбинантов у бактерий - трансдукция - осуществляется при посредстве т. н. умеренных бактериофагов, которые способны к особому виду симбиоза с бактериями -