гонионемы ).">гидроидных .
   Гидромедуза Н. tectifera.

гидро... и металлургия ), извлечение металлов из руд, концентратов и отходов различных производств водными растворами химических реагентов с последующим выделением металлов из растворов.
     На возможность применения гидрометаллургических процессов для извлечения металлов из руд указывал М. В. Ломоносов (1763). Значительный вклад в развитие Г. внёс русский учёный П. Р. Багратион , создавший теорию цианирования золота (1843). В начале 20 в. промышленное значение приобрела Г. меди. Позднее были разработаны гидрометаллургические способы получения многих др. металлов.
     Г. включает ряд основных технологических операций, выполняемых в определённой последовательности. Механическая обработка руды — дробление и измельчение с целью полного или частичного раскрытия зёрен минералов, содержащих извлекаемый металл. Изменение химического состава руды или концентрата для подготовки их к выщелачиванию — хлорирующий, окислительных, сульфатизирующий или восстановительный обжиг, спекание. Цель — разложение химических соединений извлекаемого металла и перевод их в растворимую форму. Выщелачивание — перевод извлекаемого металла в водный раствор. Эта операция иногда осуществляется попутно в процессе мокрого измельчения (в мельницах , классификаторах ) или в специальной аппаратуре (чаны для выщелачивания, автоклавы ). Отделение металлосодержащего раствора от измельченного материала обезвоживанием и промывкой в сгустителях, на фильтрах. Подготовка растворов к выделению из них соединений или металлов отделением взвешенных частиц (осветление) или химическим осаждением сопутствующих металлов и примесей. Осаждение металлов или их соединений из растворов электролизом (медь, цинк и др.), восстановлением более электроотрицательным металлом — цементацией (медь, серебро, золото и др.), сорбцией ионообменными смолами или углем, жидкостной экстракцией соединений металла органическими растворителями с последующей реэкстракцией в водный раствор и осаждением из него чистого металла или химического соединения. Переработка осадка с целью дальнейшей очистки выделенного соединения или чернового металла или непосредственное получение готового товарного металла может осуществляться: перекристаллизацией, возгонкой, прокаливанием, переплавкой, электролизом из водных или расплавленных сред.
     При химических взаимодействии металла с растворителем нейтральный атом металла переходит в ионное состояние, образуя растворимое соединение. Растворение происходит легко в случае выщелачивания руд или концентратов, в которых металл присутствует в окисленной (ионной) форме. Примером могут служить окисленные медные и урановые руды, обожжённые цинковые концентраты, продукты хлорирующего обжига. В некоторых случаях для извлечения металла растворителем необходимо предварительное окисление кислородом или др. окислителем (например, при содовом выщелачивании руд, содержащих 4-валентный уран, для перевода последнего в 6-валентный). При растворении металлов (самородных или восстановленных) неизбежно окисление их для перехода в ионное состояние. Окисление металла с одновременной ионизацией окислителя (например, растворённого в воде молекулярного кислорода) в случае более благородных металлов термодинамически возможно лишь при затрате энергии, которая, например, может быть получена при образовании комплексного иона (цианирование золота и серебра, аммиачное выщелачивание металлической меди, никеля).
     Растворение минералов с различными видами химической связи в кристаллической решётке (ковалентная, металлическая, ионная) характерно для выщелачивания сульфидов, арсенидов, селенидов, теллуридов. Растворение этих минералов, если предварительно не проведён окислительный обжиг, в большинстве случаев также требует окисления в пульпе , например при аммиачном выщелачивании медно-никелевых сульфидных руд в автоклаве под давлением кислорода или воздуха. Перенос растворителя и удаление продуктов реакции происходит в объёме раствора конвекцией (турбулентной диффузией), а в слое на границе с минералом — молекулярной (тепловой) диффузией. Обычно реакция, происходящая при гидрометаллургическом извлечении, находится в диффузионной области; определяющим фактором является скорость диффузии вещества, лимитирующая течение реакции. Возрастание скорости растворения минерала происходит при увеличении его относительной поверхности (т. е. степени измельчения), при ускорении перемешивания и при повышении температуры.
     Форма поверхности и размер частиц растворяемого минерала определяют функциональную зависимость количества растворившегося металла от времени контакта с раствором; поэтому они влияют на степень извлечения и на объём аппаратов для выщелачивания.
     Растворителями для выщелачивания соединений является преимущественно серная кислота (ванадий, медь, цинк), сода (ванадий в карбонатных рудах, молибден, вольфрам), едкий натр (глинозём, вольфрам), аммиак (медь, никель), цианистые соли (золото, серебро), сернистый натрий (сурьма, ртуть), растворы хлора и хлоридов (благородные металлы, свинец, редкие металлы), тиосульфаты (золото, серебро).
     Для жидкостной экстракции применяют различные соединения (например, раствор трибутилфосфата и ди-2-этилгексилфосфата в керосине и др.). После экстракции очищенное соединение металла извлекается из органического растворителя водным раствором, часто с добавкой кислоты или др. реагента. Из раствора металлы осаждаются методом цементации или углем, или водородом под давлением. Применяются также аниониты или катиониты. После сорбции соединение металла снимается растворителем с ионита и последний подвергается регенерации.
     При больших масштабах гидрометаллургического производства (например, при выщелачивании меди из окисленных крупнокусковых руд) обработка иногда осуществляется орошением штабелей руды слабыми растворами серной кислоты. Медьсодержащие растворы дренируются в сборные резервуары, а затем в цементаторы. Для дроблёных и рассортированных песковых фракций руд (например, золотых) применяется просачивание раствора в чанах через слой хорошо фильтрующей загрузки. Для интенсификации этого процесса раствор иногда предварительно насыщают воздухом, создают вакуум под фильтрующим днищем. Для выщелачивания тонкоизмельчённого материала применяют чаны для перемешивания (механической, пневматической и пневмомеханической) пульпы. Для непрерывного выщелачивания обычно их соединяют последовательно.
     Иногда возможны комбинированные схемы выщелачивания: зернистого классифицированного материала — просачиванием, отделённого мелкого материала ( шлама ) — перемешиванием. В отдельных случаях возможно и другое аппаратурное оформление выщелачивания, например в автоклавах непрерывного и периодического действия. Выщелачивание кислыми растворами производится в стальной гуммированной, керамической или др. кислотоупорной аппаратуре; для щелочных растворов пригодна стальная, иногда деревянная аппаратура. Методы жидкостной экстракции или дополняют выщелачивание, или применяются для непосредственоого извлечения соединений металлов из руд. Экстракция производится по принципу противотока в экстракционных колонках (экстракт и отходящий раствор непрерывно удаляют в разных направлениях). Обезвоживание и промывка производятся в сгустителях (гребковые с центральным и периферическим приводом, многоярусные) и фильтрах (вакуум-фильтры и фильтр-прессы непрерывного и периодического действия). Осаждение из растворов производится в аппаратах, конструкция которых зависит от осадителя. Для химических (растворимых) осадителей применяют реакторы и фильтры. Порошкообразные осадители (цинковая, алюминиевая пыль) вводятся в смесители с раствором, осаждение затем может продолжаться внутри перекачивающего насоса, в трубопроводе и через слой осадителя на фильтре. Можно осаждать металл или его соединения в самой пульпе (например, погружением в пульпу сетчатых корзин с ионитом). Порошковые осадители после контакта с раствором можно выделять флотацией . Осаждение кусковыми осадителями (железо для меди, цинковая стружка или уголь для золота) производят в желобах или ящиках с перегородками для зигзагообразного движения раствора вверх и вниз через слой осадителя. Возможно выделение примесей (например, железа) гидролизом из очищенного раствора с последующим получением основного металла (например, цинка) осаждением на катоде электролизом с нерастворимыми анодами. См. также Благородные металлы .
     Лит.:Основы металлургии, т. 1—5, М., 1961—68; Автоклавные процессы в цветной металлургии, М., 1969; Burkin A. R., The chemistry of hydrometallurgical processes, L., 1966; Habashi F., Principles of extractive metallurgy, v. 1—2, N. Y. — L. — P., 1969—70.

Гидрометеорологической службы СССР . Осуществляет изучение гидрометеорологического режима, методическое и техническое руководство сетью гидрометеорологических станций и постов, обобщает гидрометеорологические материалы и издаёт ежемесячники, ежегодники, справочники, атласы, обеспечивает ими народно-хозяйственные организации, научные и проектные учреждения. В ГМО имеются отделы метеорологии и климата, гидрологии суши и моря, агрометеорологии, лаборатория по изучению химического состава воздуха, вод суши, морей и др. Эти, т. н. режимные ГМО были созданы в 1956. Наряду с режимными ГМО, обслуживающими территории республик, краев, областей, организованы специализированные ГМО для изучения гидрометеорологического режима отдельных объектов: морей, водохранилищ и крупных озёр. Современные ГМО оснащаются радиолокационными системами, позволяющими вести наблюдения за погодой в радиусе 300 км.
      И. В. Кравченко.

гидрометеорологические обсерватории , гидрометбюро, авиационные метеостанции, сеть наблюдательных станций и постов. ГМС проводит работу по автоматизации основных производств. процессов путём установки полуавтоматических и автоматических гидрометстанций, метеорологических радиолокаторов, обработку и анализ данных наблюдений и расчёты прогнозов на ЭВМ.
     Результаты научных исследований и наблюдений ГМС публикуются в журнале «Метеорология и гидрология» , в «Гидрологическом ежегоднике» , «Метеорологическом ежегоднике» , «Метеорологическом ежемесячнике» , а также в многотомных изданиях-справочниках о климате и водных ресурсах СССР.
     Лит.:Метеорология и гидрология за 50 лет Советской власти. Сборник, Л., 1967.
      И. В. Кравченко.

Гидрологическая станция , Метеорологическая станция .

Всемирной службы погоды . Образован в 1965 в результате объединения Центрального института прогнозов и Мирового метеорологического центра.
     В институте осуществляется обработка (на ЭВМ) н анализ информации, поступающей ежесуточно от метеорологических, аэрологических, гидрологических станций СССР и др. стран, а также с рейсовых судов, самолётов и особенно с метеорологических спутников ; производятся расчёты на ЭВМ метеорологических карт будущего развития атмосферных процессов на разных высотах (от поверхности Земли до 15—20 км) над СССР, Северным полушарием или над всем земным шаром. Готовые прогностические карты и др. материалы передаются в местные органы службы погоды для составления местных прогнозов. Одновременно с этим даются прогнозы и предупреждения для самого широкого пользования. Г. научно-исследовательский центр ведёт исследовательскую работу по созданию новых, более совершенных методов прогнозов, а также по проблемам автоматизации обработки информации. Имеет филиал (в г. Обнинск) для накопления режимных данных и изучения мирового климата. Награжден орденом Ленина (1967).
     Лит.:Белоусов С. Л., Бугаев В. А., Развитие методов метеорологического прогнозирования и Гидрометцентр СССР, «Метеорология и гидрология», 1968, №3.
      В. А. Бугаев.

Ленинградский гидрометеорологический институт ), Владивостокский, Московский и Ростовский гидрометеорологические техникумы, в 1932 — Харьковский гидрометеорологический институт (в 1944 переведён в Одессу) — первые в мире специализированные учебные заведения такого профиля. С организацией этих учебных заведений началось становление Г. о. как самостоятельные отрасли специального образования.
     Значительный вклад в развитие отечественного Г. о. внесли профессора Б. П. Алисов, Б. А. Аполлов, В. А. Белинский, Е. В. Близняк, М. А. Великанов, Л. К. Давыдов, Н. Н. Зубов, Б. П. Орлов, С. А. Советов, П. Н. Тверской, С. П. Хромов, В. В. Шулейкин и др.