Практическое значение Г. возросло в связи с потребностями современной техники в решении вопросов транспортирования жидкостей и газов различного назначения и использования их для разнообразных целей. Если ранее в Г. изучалась лишь одна жидкость — вода, то в современных условиях всё большее внимание уделяется изучению закономерностей движения вязких жидкостей (нефти и её продуктов), газов, неоднородных и т. н. неньютоновских жидкостей. Меняются и методы исследования и решения гидравлических задач. Сравнительно недавно в Г. основное место отводилось чисто эмпирическим зависимостям, справедливым только для воды и часто лишь в узких пределах изменения скоростей, температур, геометрических параметров потока; теперь всё большее значение приобретают закономерности общего порядка, действительные для всех жидкостей, отвечающие требованиям теории подобия и пр. При этом отдельные случаи могут рассматриваться как следствие обобщенных закономерностей. Г. постепенно превращается в один из прикладных разделов общей науки о движении жидкостей — механики жидкости.
     Исследования в области Г. координируются Международной ассоциацией гидравлических исследований (МАГИ). Её орган — «Journal of the International Association for Hydraulic Research» (Delft, с 1937). Периодические издания в области Г.: журналы»Гидротехническое строительство» (с 1930) и «Гидротехника и мелиорация» (с 1949), «Известия Всесоюзного научно-исследовательского института гидротехники им. Б. Е. Веденеева» (с 1931), «Труды координационных совещаний по гидротехнике» (с 1961), сборники «Гидравлика и гидротехника» (с 1961), «Houille Blanche» (Grenoble, с 1946), «Journal of the Hydraulics Division. American Society of Civil Engineers» (N. Y., с 1956), «L'energia elettrica» (Mil., с 1924).
     Лит.:Идельчик И. Е., Справочник по гидравлическим сопротивлениям, М. — Л., 1960; Киселев П, Г., Справочник по гидравлическим расчетам, 3 изд., М. — Л., 1961; Богомолов А. И., Михайлов К. А. Гидравлика М., 1965; Альтшуль А. Д., Киселев П. Г., Гидравлика и аэродинамика, М., 1965; Чугаев Р. Р., Гидравлика, М. — Л., 1970; Rouse Н., Howe J., Basic mechanics of fluids, N. Y. — L., 1953; King H. W., Brater E. F., Handbook of hydraulics, 5 ed., N. Y., 1963; Levin L., L'hydrodynamique et ses applications, P., 1963; Еск В, Technische Strцmungslehre. 7 Aufl., B., 1966.
      А. Д. Альтшуль.

Инженерная гидравлика .

гидромониторах , либо механогидравлическими машинами (механическое разрушение угля с последующим смывом водой). Вода в забой подаётся по трубопроводам центробежными насосами. Уголь, отбитый в забое, смывается водой и транспортируется по металлическим желобам, уложенным в горных выработках, пройденных с уклоном 3—3,5° до центральной камеры гидроподъёма, откуда гидросмесь транспортируется на поверхность, а затем на обогатительную фабрику, где происходит обогащение, обезвоживание и сушка угля. При Г. д. применяются в основном подэтажная гидроотбойка, гидроотбойка из печей и механогидравлическая выемка из печей или длинных лав. Выемка угля, как правило, ведётся из коротких забоев без крепления выработанного пространства. На пластах крутого и наклонного (более 25°) падения применяется подэтажная гидроотбойка, при которой часть шахтного поля делится печами (см. Горные выработки ) на блоки длиной по простиранию 150—200 ми по падению 80—120 м. В блоке на расстоянии 6—12 модин от другого проводятся подэтажные штреки; образованные штреками целики угля разрушаются снизу вверх струей гидромонитора. Для пластов пологого падения (до 15—18°) наиболее распространена гидравлическая отбойка из печей. При этом способе выемки шахтное поле делится на блоки длиной по простиранию до 1500 ми по падению 800—1200 м. В свою очередь блоки делятся по падению на ярусы аккумулирующими штреками, проводимыми через каждые 200—250 м. От них проводятся по восстанию пласта разрезные печи через каждые 12—15 м. Целики угля между ними вынимаются гидромониторной струей или механогидравлическим комбайном. С появлением высокопроизводительных комплексов для шахт с обычной, «сухой» технологией на пластах пологого падения применяется в отдельных случаях механогидравлическая выемка из длинных лав. Схема подготовки шахтного поля и порядок выемки аналогичны обычной технологии (см. Подземная разработка ), с той лишь разницей, что транспортирование угля от комбайна осуществляется потоком воды.
     На гидрошахтах технико-экономические показатели выше, чем на «сухих» механизированных шахтах в аналогичных горных условиях (например, производительность труда выше в 1,5—2 раза). Г. д. совершенствуется в направлении создания новых технологических схем выемки, транспортирования и обезвоживания угля, увеличения производительности гидроотбойки до 80—100 т/ч, применения программного управления, а также механогидравлических машин.
     Г. д. применяется не только в СССР, где этим способом получено свыше 8 млн. тугля (1970), но и по опыту Советского Союза в КНР, Японии, США, Польше, Чехословакии, ФРГ и др. странах.
     О Г. д. на открытых разработках см. Гидромеханизация .
     Лит.:Добыча угля гидроспособом. М., 1959; Экбер Б. Я., Маркус М. Н., Бутыльков М. Н., Анализ технико-экономической эффективности гидравлической добычи угля, М., 1967; Вопросы гидравлической добычи угля, Новокузнецк, 1967 (Тр. Всесоюзного научно-исследовательского института гидроуголь, № 12).
     М. Н. Маркус.

Гидропривод машин ).

Гидротурбина .

Гидравлическая передача , Гидравлический двигатель , Гидродинамическая передача и Гидропередача объёмная ). Г. ж. должны обладать высокой стабильностью против окисления, малой вспениваемостью, инертностью к материалам деталей гидросистемы, пологой кривой вязкости, низкой температурой застывания и высокой температурой вспышки. Нефтехимическая промышленность выпускает более 20 сортов минеральных масел, используемых в гидравлических системах (см. табл.).
     В ряде случаев в качестве Г. ж. применяют некоторые индустриальные и моторные масла. Большинство Г. ж. содержит антиокислительные, антипенные и др. присадки.
     Свойства некоторых гидравлических жидкостей 

Жидкости Вязкость при 50°С, м 2/сек t заст, °С t всп, °С
Масло гидравлич. для автоматич. линий металлорежущих станков (25 — 35)•10 -6* —10 190
Масло для прессов 1•10 -7* -15 200
Масло для гидравлич. передач тепловозов ГТ—50 (11-14) •10 -6 -28 165
Масло для гидросистем автомобилей:
гидромеханич. трансмиссий (3,5-4) •10 -6* -45 160
гидротрансформаторов и автоматич. коробок (23-30) •10 -6 -40 175
гидроусилителя руля (12-14) •10 -6 -45 163
Масло для высоконагруженных механизмов (ЭШ) 20•10 -6 -50 150
Жидкость амортизаторная (АЖ-12Т) 12•10 -6 -55 165
Жидкость гидротормозная (масло ГТН) 1•10 -7 -63 92
Спирто-глицериновые жидкости:
СГ 6,2•10 -6 -50 28
СВГ 2,5•10 -6 -60 28
СВГ-2 7,5•10 -6 -50 30
Спирто-касторовые жидкости:
ЭСК (8,2-8,6) •10 -6 -25 12
БСК (9,6-13,8) •10 -6 -25 14

   * При 100°C.
     Лит.:Нефтепродукты. Справочник, под ред. Б. В. Лосикова, М., 1966; Моторные и реактивные масла и жидкости, под ред. К. К. Папок и Е. Г. Семенидо, 4 изд., [М., 1964].
      Н. Г. Пучков.

гидротурбина , водяное колесо ), и объёмные Г. д., действующие от гидростатического напора в результате наполнения жидкостью рабочих камер и перемещения вытеснителей (под вытеснителем понимается рабочий орган, непосредственно совершающий работу в результате действия на него давления жидкости, выполненный в виде поршня, пластины, зуба шестерни и т.п.). В Г. д. первого типа ведомое звено совершает только вращательное движение. В объёмных Г. д. ведомое звено может совершать как ограниченное возвратно-поступательное или возвратно-поворотное движение (гидроцилиндры), так и неограниченное вращательное движение (гидромоторы). Гидроцилиндры подразделяются на силовые и моментные; в силовом гидроцилиндре ( рис. 1 ) шток, связанный с поршнем, совершает прямолинейное возвратно-поступательное движение относительно цилиндра: в моментном гидроцилиндре, называемом также квадрантом ( рис. 2 ), вал совершает возвратно-поворотное движение относительно корпуса на угол, меньший 360°.
     Гидромоторы разделяются на поршневые, в которых рабочие камеры неподвижны, а вытеснители совершают только возвратно-поступательное движение, и роторные. В роторных гидромоторах рабочие камеры перемещаются, а вытеснители совершают вращательное движение, которое может сочетаться с возвратно-поступательное (кулисные гидромоторы). В зависимости от формы вытеснителей кулисные гидромоторы подразделяют на пластинчатые и роторно-поршневые (радиальные и аксиальные). Наиболее распространены аксиальные роторно-поршневые ( рис. 3 ), в которых давление рабочей жидкости на поршень создаёт на наклонной шайбе реактивное усилие, приводящее во вращение вал. Объёмные Г. д. применяют в гидроприводе машин. Давление рабочей жидкости достигает 35 Мн/м 2(350 кгс/см 2). Гидромоторы изготовляют мощностью до 3000 квт.
     Лит.:Объёмные гидравлические приводы, М., 1969.
      И. З. Зайченко.
   Рис. 3. Аксиальный роторно-поршневой гидромотор: 1 — корпус; 2 — вал; 3 — ротор; 4 — поршень; 5 — распределительный диск; 6 — наклонная шайба; 7 — толкатель.
   Рис. 1. Силовой гидроцилиндр: 1 — цилиндр; 2 — поршень; 3 — шток.
   Рис. 2. Моментный гидроцилиндр: 1 — корпус; 2 — вал; 3 — лопасть.

водяной затвор .

гидравлическая жидкость . Площадь поперечного сечения Г. к. определяется наибольшим расходом и допустимой средней скоростью рабочей жидкости. Эта скорость зависит от назначения Г. к. и вязкости жидкости.

гидравлической жидкости . Г. к. могут выполнять следующие функции: предохранение гидросистемы и механизмов машины от перегрузки; создание определённого постоянного давления в отдельных звеньях гидросистемы; контроль направления потока жидкости; редуцирование давления жидкости в отдельных звеньях гидросистемы; создание определённого постоянного перепада давления на отдельных участках гидросистемы; осуществление заданной последовательности действия рабочих органов машины с целью блокировки.