Но о каком же пути развития наблюдаемой Вселенной свидетельствовало открытие Хаббла, если его поставить в логическую связь с уже признанными научным сообществом, хотя и не без сопротивления, положениями релятивистской космологии? Если в настоящее время галактики «разбегаются», пространство-время нашей Вселенной постоянно растягивается, то этот односторонне направленный эволюционный процесс имел, очевидно, некоторый исходный пункт, из которого началось указанное расширение. Если нечто расширяется, то оно расширяется из некоторого сжатого состояния, что вполне соответствует представлениям, вытекающим из нашего макроскопического естественного способа восприятия явлений. Однако в данном случае и расширение, и предшествующее ему сжатие имеют немакроскопический, негеоцентрический характер.
   Уже в следующем после открытия Хаббла 1927 году бельгийский математик и религиозный философ пастер Ж. Леметр, проанализировав темпы и характер расширения релятивистской Вселенной, выдвинул новую «сумасшедшую» гипотезу. Он предположил, что такая Вселенная могла образоваться путём Большого взрыва из почти точечного «атома-отца», в котором сосредоточивалась суммарная масса всех галактик (примерно 2,141055г.). Об источнике этого взрыва идеалист Леметр долго не задумывался, усматривая в нём не что иное как конкретно-научное доказательство проявления безграничной энергии всемогущего Творца Вселенной. Он пытался и мировоззренчески обосновать креационизм, считая отныне научно подтверждённым сотворением мира из некоей божественно одухотворённой первоматерии. Этот креационизм наряду с претензией на научность содержал элементы наивных мифологически окрашенных верований: рождение материи из ничего, представление о божественной воле как перводвигателе материальных преобразований, представление об абсолютном начале мира, сотворённого Богом в кратчайший промежуток времени, представление о конечности и ограниченности во времени Вселенной как универсального целого и т. д.
   Но подобное креационистское доказательство бытия Бога с применением наукообразной аргументации оказывается и совершенно несостоятельным с научной точки зрения, и неприемлемым для традиционного религиозного миросозерцания. Библейский Бог, этот великий труженик и Творец Вселенной оказывается здесь в неприглядной и кощунственно преображённой роли подготовителя Большого Взрыва. Пока теория Леметра оставалась на почве науки, из неё следовало, что материя известной нам Вселенной образовалась не из пустой воли или какого бы то ни было идеального процесса, а из инобытия материи, и творческая сила здесь по меньшей мере ни при чём. Лишь геоцентрическое и антропоморфное искажение конкретно-научных данных навязывало нетривиальному «куску материи» нашей Вселенной божественное происхождение.
   Леметровской модели расширения Вселенной предшествовала модель голландского физика де Ситтера, в которой это расширение объяснялось лишь определённым применением уравнений Эйнштейна. «Модель же Леметра, – пишет знаменитый писатель-фантаст Айзек Азимов, – расширялась вследствие физического явления – взрыва, который отличается от взрыва на Земле своими размерами, но не природой. Леметровская модель легка для понимания, она конкретна, эффектна и опирается на привычные представления» (Азимов А. Вселенная – М.: Мир, 1969 – 368 с., с. 252). Как видим, Азимов подчёркивает относительную геоцентричность леметровской модели. Но при всей своей геоцентричности и макроскопической эффектности леметровский Большой взрыв содержал в себе сильнейший негеоцентрический заряд, или, точнее, был его результатом. Геоцентрическими, механическими причинами объяснить его не удалось.
   Но именно вследствие кажущегося геоцентризма модель Леметра получила мгновенное признание. Первым её распространителем и популяризатором стал знаменитый физик Эддингтон. А её дальнейшее развитие и совершенствование было осуществлено американским астрофизиком, русским по происхождению Джоржем Гамовым, ставшим с самого начала её восторженным сторонником. В 1946–1948 гг. Гамов разработал теорию начального этапа развития Вселенной сразу же после леметровского Большого взрыва. Согласно этой теории, на ранних стадиях своего существовали Вселенная была достаточно горячей, чтобы в ней могли идти термоядерные реакции. Таким образом, расширение должно было начаться из сверхплотного горячего состояния, при котором происходил синтез ядер гелия. В начале своего развития Вселенная представляла собой чудовищную термоядерную бомбу. Всё из бомбы произошло, бомбой и закончится? Но такой пессимистический вывод был бы явно неконструктивным и преждевременным.
   Прежде всего, наша Вселенная «вылупилась» не из тривиального макроскопического «яйца», содержащего в себе термоядерный заряд, а из совершенно негеоцентрического состояния вещества, получившего название сингулярности. В переводе с латинского языка слово «сингулярный» означает «особенный», «странный», «ни на что непохожий». Приходя к явлению сингулярности, теоретики лишь логически продолжали рассуждения Леметра на базе общей теории относительности и других явлений современной физики. Они рассуждали следующим образом. Если в настоящее время галактики разбегаются, то был момент, когда наличествовало состояние с максимальной плотностью, соответствующей предельному сжатию. Это – уже известный нам «атом-отец» Леметра. Но попробуем описать этого «отца» Вселенной в эйнштейновских уравнениях гравитационного поля. Получается, казалось бы, чистейшая нелепость, в чём-то воспроизводящая уже описанный нами выше гравитационный парадокс. Откуда ни возьмись, появляются числа с бесконечными значениями. Вещество оказывается спрессованным и слитым в единый совершенно нерасчленённый ком с бесконечной плотностью. Кривизна пространства-времени макроскопического типа не существует. Это дало основание известному современному астрофизику Уилеру говорить о догеометрическом состоянии материи. А раз бесконечна кривизна пространства-времени, и сила гравитационного взаимодействия по теории Эйнштейна определяется этой кривизной, то бесконечна и сила гравитации, воздействующая на всё вещество и стягивающая его в не имеющую никакого протяжения точку. И если к этому добавить бесконечную температуру всего вещества, спрессованного в этой точке, картина адского негеоцентрического котла, из которого при своём зарождении вырвалась известная нам макроскопическая вещественность, станет ещё более удивительной.
   Первоначально, получив в уравнениях сингулярность, учёные посчитали её абсолютно невероятным, нереалистичным следствием уравнений и попытались избавиться от неё. Вначале попробовали применить разного рода математические приёмы и даже фокусы, но ничего интересного и полезного для познания из этого не получилось. Тогда стали говорить о том, что однородная и изотропная расширяющая Метагалактика – всего лишь идеализация, что учёт неоднородности, неизотропности позволит каким-то образом вывернуться из столь неудобного состояния науки, при котором она вынуждена изучать негеоцентрическую бесконечность, не поддающуюся описанию при помощи каких бы то ни было макроскопических средств. Но и эта попытка не увенчалась успехом. В 1965–1970 гг. Р. Пенроузу и С. Хокингу удалось доказать ряд теорем, из которых следовала неизбежность сингулярности. А в 1972 г. российские учёные В. Белинский, Е. Лившиц и И.Халатников, получив общее устойчивое решение с сингулярностью, тем самым доказали, что от сингулярности не удастся уберечься и «копаниями» в неоднородностях космической материи.
   В сингулярности драматическому здравомыслию было от чего взбеситься. В этой чудовищной гравитационной могиле, бездонной пропасти, температурном аду пропадает вообще какая бы то ни было макроскопическая определённость. Единственно определённым оказывается полное отсутствие сколько-нибудь земноподобной определённости, и, как отмечает известный российский философ А.М. Мостепаненко, в сингулярности «все геодезические линии «обрываются», любые объекты как бы прекращают существовать» (Мостепаненко A.M. Пространство-время и физическое познание, – М.: Атомиздат, 1975, с. 189–190). «Сингулярность, – констатирует также виднейший английский астрофизик С. Хокинг – это место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формируются на основе классического пространства-времени». (Чёрные дыры. – М: Наука. 1978, с. 169). Вот, оказывается, как возник наш любимый макроскопический мир! Он «вырвался» из немакроскопического «сгустка» материи и до сих пор продолжает «твориться», сохраняя полученный в то время импульс к расширению.
   Но не только неопровержимость сингулярности, но и её особая роль в современной научной картине мира, любопытные возможности, которые она открывает своим исследователям для дальнейшего развития представлений о Вселенной, привлекают к ней сегодня внимание учёных. Недаром знаменитый английский астрофизик Р. Пенроуз настаивает, что сингулярности являются реальным свойством нашей вселенной при условии, что выполняются уравнения Эйнштейна (Пенроуз Р. Структура пространства времени. – М.: Мир, 1972. с. 174), а крупнейший российский астрофизик Я.Б.Зельдович отмечает, что хотя в течение многих десятилетий теоретики относились к сингулярности как к нежелательному ребёнку, рождённому от брака общей теории относительности и наблюдений, сейчас многие из них счастливы, когда исследуют смысл этих бесконечностей. (Зельдович Я.Б. Речь на торжественном открытии конференции – В кн.: Космология. Теория и наблюдения. – М.: Мир, 1978. с. 11).
   Изучение начальной сингулярности позволяет сделать выводы о физических процессах и закономерностях, происходящих «вблизи сингулярности», сразу же после Большого взрыва.
   Учёные сейчас исследуют Метагалактику в первые три минуты её существования, в первые часы и недели, месяцы и годы. Как сейчас считается, вблизи сингулярности эволюцией Метагалактики управляли иные, нежели сейчас, квантово-гравитационные закономерности. Уточнив константу Хаббла, т. е. постоянную скорость расширения нашей вселенной, учёные получили уникальную возможность рассчитывать сроки её существования с момента Большого взрыва, когда она была сжата в точку с нулевым макроскопическим радиусом, и вплоть до сегодняшнего дня. Расчеты показывают, что если судить по расширению, возраст нашей Вселенной от её рождения должен составлять 13–18 млрд. лет и, уж во всяком случае, не больше 20 млрд. лет. Много это или мало? По-видимому, очень мало, слишком мало, чтобы можно было обрести какую-то уверенность. Такой вывод можно сделать, сравнив данные о возрасте макроскопической вселенной с данными других наук о возрасте её объектов. Так, по данным геологии возраст Земли составляет 5–6 млрд. лет. Было бы, конечно, весьма проблематично, если бы возраст Земли оказался больше возраста Метагалактики. Надо, однако, отметить, что возраст песчинки-Земли, составляющей около четвёртой части срока существования колосса-Метагалактики, не менее обескураживает, чем, если бы казалось, что Земля старше. Но в Метагалактике известны и объекты, существующие по современным данным и более длительные сроки, чем те, которые отпускаются теорией на существование самой Метагалактики. Так, возраст ряда галактик астрономы исчисляют в сроки не менее 20 млрд. лет. Самым старым звездам нашей Галактики около 10 млрд. лет. Нужно признать, что сроки возникновения фундамента макроскопической Вселенной и укладки в её здание «кирпичей» на самые верхние этажи очень плохо стыкуются между собой. Это обстоятельство требует дальнейшего совершенствования теории, пересмотра некоторых её существенных моментов. Но уже сейчас ясно, что макроскопические процессы и объекты вряд ли могут послужить причиной этой нестыковки, что следует искать объяснений в немакроскопических объектах на основе негеоцентрического углубления наших знаний. В частности, уже сейчас для объяснения природы квазаров пришлось «задержать» расширение Вселенной. Российские астрофизики И.С.Шкловский и Н.С. Кардашев в начале 80-х годов привели убедительные аргументы в пользу картины расширения с задержкой. У квазаров, этих самых странных объектов современной астрономии, характеризующихся поистине чудовищными, пока теоретически необъяснимыми выбросами энергии, была обнаружена ещё и странная ocобенность спектров их излучения и поглощения света. Линии излучения в их спектрах показывают красное смещение больше 1,95, а по линии поглощения оно равно 1,95. Шкловский и Кардашев объяснили это явление задержкой в расширении Метагалактики, произошедшей в эпоху, от которой мы получаем свет с красным смещением, равным 1,95. (См.: Новиков И.Д. Эволюция Вселенной. – М.: Наука. 1983, с. 64). Теперь нужно выявить процессы, которые могли бы послужить причиной этой задержки.
   Но если со сроками и с самим процессом расширения современная космологическая модель вызывает ряд сомнений и недоумений, то в области представлений о физических процессах и их взаимосвязях её использование привело к ряду захватывающих воображение успехов. Убедительное подтверждение теория горячей расширяющейся вселенной получила только в 60-е годы, когда было открыто так называемое реликтовое микроволновое излучение. До этого в космологической науке происходила непримиримая междоусобная борьба между основными теоретическими схемами, каждая из которых объясняла для всех уже практически неоспоримый факт расширения.
   В 1950 г. теоретиками было отмечено, что если эволюция Метагалактики происходила в соответствии с моделью Фридмана-Леметра, то есть с расширением по законам теории относительности из некоторого начального состояния, и если верна теория исходного горячего состояния, предложенная Гамовым, то от эпохи горячего состояния, от тех изначальных времён в нынешней Вселенной должно сохраниться реликтовое, т. е. остаточное излучение, имеющее спектр абсолютно чёрного тела, т. е. тепловой, с температурой около 300 К, приходящего на Землю из космоса по всем направлениям, чрезвычайно равномерно (изотропно) и составляющего поэтому единый микроволновой фон.
   И вот через 15 лет после предсказания, в 1965 г., такой 2,7-градусный микроволновой фон был действительно открыт, и его свойства почти идеально совпадали с предсказанными. Совершили это открытие американские астрономы Пензиас и Уилсон, удостоенные за него Нобелевской премии. Единственно разумным объяснением такого излучения является его происхождение от начальных моментов расширения Метагалактики, когда излучение смогло «отделиться» от вещества, т. е. Вселенная стала «прозрачной» для электромагнитных волн. В этот момент Вселенная представляла собой «огненный шар» с температурой около 3000° К (по другим данным – около 50000 К), её размеры были в тысячу раз меньше современных, возраст после первичного взрыва составлял несколько сотен тысяч лет, а вещество представляло собой водородно-гелиевую плазму. При столь высокой температуре существовало равновесие между веществом и излучением. Расширение от этого до теперешнего состояния привело к остыванию излучения, и оно стало вестником первых мгновений расширения Вселенной – Большого Взрыва.
   Поистине захватывающая картина! Нас окружают сейчас фотоны, около 20 миллиардов лет назад находившиеся в первичном негеоцентрическом «бульоне», из которого образовалась вся наблюдаемая (и ненаблюдаемая) Метагалактика. Впоследствии были получены и другие, ещё более тонкие свидетельства в пользу модели Большого Взрыва, например, высокое содержание в окружающей нас Вселенной гелия и дейтерия, наблюдаемое астрономами. Другими причинами образование такого количества этих элементов объяснить никак не удаётся, а при Большом Взрыве сверхвысокие температуры и давления должны были способствовать термоядерному синтезу и, как показывают расчёты, именно этих ядер, а не тяжелее. Всё это не означает, разумеется, что указанная модель может претендовать на абсолютную истину. Наоборот. Дальнейшее развитие науки внесёт, несомненно, в наши представления свои коррективы. И не исключено, что это случится уже при жизни нашего поколения: очень велики темпы развития, а стало быть, и изменения наших знаний. Но ясно, что эти изменения произойдут по линии дальнейшего возвышения негеоцентричности системы знаний, отыскания всё более негеоцентричных источников саморазвития космоса, а не на путях возврата к старым, макроскопически-механическим представлениям. И вполне естественно, что именно модель, берущая начало из теоретических положений Фридмана-Леметра, обогащённая «горячей» концепцией Гамова, развитая на базе современных физических представлений и получающая всё более весомые опытные подтверждения, занимает в современной космологии центральное положение. Хотя эта модель, в отличие от прежней, механистической космологической модели, не является единственной, абсолютно общепризнанной, полностью охватывающей весь фундамент современной космологии, а в настоящее время, напротив, существует неисчислимое множество альтернативных ей моделей, ни одна из последних не может противопоставить ей сколько-нибудь убедительных аргументов. Поэтому она получила название эталонной, стандартной модели и играет в современной космологии роль той «печки», от которой «танцуют» в своих теоретических представлениях и астрофизики, и астрономы, и даже микрофизики, корректирующие свои теории с тем, чтобы они подходили под имеющийся космологический эталон.
   Дальнейшее развитие эталонная модель получает в направлении экстраполяции тех физических превращений, которые претерпела материя Метагалактики в процессе своей эволюции после Большого взрыва к её нынешнему состоянию, в близкое и более отдаленное будущее. Итак, сегодня космологи получили возможность изучать историю и даже прогнозировать дальнейшее развитие окружающей нас Вселенной. Историческое видение распространяется тем самым на весь окружающий человека космический мир. Происходит это благодаря тому, что эталонная модель выступает как модель эволюционирующей горячей Вселенной, идея которой в первоначальном виде была выдвинута Г.А. Гамовым, а в 70-е годы всесторонне разработана российскими учёными А.П. Дорошкевичем, Я.В. Зельдовичем и И.Д. Новиковым. Последние, отталкиваясь от факта измеренной Пензиасом и Уилсоном температуры реликтового фона, проследили тепловую историю Метагалактики назад во времени и в связи с современными микрофизическими данными о ядерных превращениях и превращениях элементарных частиц. Это дало возможность проследить и ядерные превращения во Вселенной возрастом всего в несколько минут. Поистине захватывающие перспективы открылись перед исследователями – узнать, что делалось в макроскопической Вселенной через три минуты после её возникновения! Они рассчитали процессы образования сложных ядер по мере их вычленения из первичного негеоцентрического «комка». Получилось, что около 27 % первичных нуклонов (частиц в ядрах атомов) должны были слиться в ядра гелия. Дальше, пользуясь теми же методами, можно восстановить историю образования всех элементов таблицы Менделеева и всех известных астрономических объектов.
   Однако возникает вполне закономерный вопрос: насколько вообще правомерна подобная вселенская космогония, не заходит ли наука слишком далеко за пределы своих сегодняшних конкретных возможностей в своем неуёмном стремлении постигнуть истину? В этом вопросе нет единства в лагере науки. Известный шведский астрофизик X. Альвен характеризует всю эволюционную космологию как «миф, украшенный софистическими математическими формулами, что делает его более престижным, но не обязательно заслуживающим большого внимания» (Альвен Х. Как следует подойти к космологии. – В кн.: Вопросы физики и эволюции космоса. Ереван, 1978, с, 48).
   Но нигилистическое отрицание наших современных дерзких прорывов в историю Космоса ничего не даёт науке и оказывается теоретически неплодотворным. Более перспективным и реалистическим представляется подход крупнейшего американского астрофизика Стивена Вейнберга. «Конечно, – пишет Вейнберг, – вполне возможно, что эталонная модель частично или полностью неверна. Однако её ценность заключается не в её непоколебимой справедливости, а в том, что она служит основой для обсуждения огромного разнообразия наблюдаемых данных. Обсуждение этих данных в контексте эталонной космологической модели может привести к уяснению их значения для космологии независимо от того, какая модель окажется правильной в конечном счете» (Вейнберг С. Гравитация и космология. – М.: Мир, 1975, с. 503).
   Эталонная модель позволяет выделить стадии, основные этапы в истории вещества Метагалактики: вначале образование из водородно-гелиевой плазмы элементарных частиц и атомов, затем – звёздная и галактическая стадия эволюции частиц и атомов, и наконец – стадия эволюции так называемой космической морфологии, включающей звёзды, собранные в галактики, галактики, образующие скопления галактик, скопления, образующие почти однородную массу, своеобразный космический газ.
   А отсюда встаёт чрезвычайно интересный вопрос о будущем Метагалактики, её дальнейшей судьбе, а стало быть, и о дальнейшей судьбе крохотной частицы Метагалактики – Земли, и покоящейся на ней человеческой цивилизации, делающей в космос лишь свои первые шаги. Уравнения Фридмана приводят к двум вариантам дальнейшей эволюции Метагалактики – открытому и закрытому. В обоих случаях пространство-время не имеет абсолютных границ, но в открытом случае Метагалактика будет расширяться вечно, а в закрытом – расширение сменится сжатием, т. е. Метагалактика окажется пульсирующей. Всё зависит от плотности материи в Метагалактике. Подсчитано, что если плотность материи достигнет так называемой критической величины, т. е. около 1029 г/см3, гравитационное взаимодействие вещества постепенно пересилит импульс к расширению, данный Большим Взрывом, и «разбегание» вещества будет постоянно тормозиться, затем остановится, и, наконец, сменится сжатием.
   По данным современных наблюдений, средняя плотность несколько ниже, она составляет около 10-31 г/см3, поэтому большинство ученых склоняются к открытой модели, к возможности безграничного расширения. Но не исключено, и для этого есть определённые основания, что действительная плотность материи может оказаться выше, и притом значительно выше, чем мы можем судить по данным своих макроскопических наблюдений. Тогда Метагалактика уже сейчас становится закрытой системой. Как отмечает Д.П. Грибанов, «ответ о величине средней плотности материи зависит от того, насколько полно будут учтены все реальные состояния и формы материи во Вселенной» (Грибанов Д.П. Философские проблемы теории относительности – М.: Наука, 1983. с. 35). Дело в том, что учёные имеют основание предполагать в наблюдаемой Вселенной наличие так называемой скрытой массы, образуемой объектами, не поддающимися наблюдению вследствие своей немакроскопической природы, но вступающих в гравитационное взаимодействие с окружающим веществом. Не исключено даже, что скрытая масса значительно превышает наблюдаемую, и что, стало быть, негеоцентрическое состояние вещества превалирует даже в макроскопической структуре Вселенной.
   В сущности, знакомый нам по наблюдениям с земли космический мир открывается нам именно потому, что межзвёздное пространство заполнено чрезвычайно разреженной макроскопической средой. Эта безвоздушная среда содержит лишь газ с некоторой примесью пылевых частиц. Так, довольно плотные газопылевые туманности, поглощающие свет, обусловливают известное «раздвоение» в северной части неба. Нужно специально замечать признаки межзвёздной среды, так слабо они проявляют себя в беспредельных пространствах видимого нами космоса.
   Таким образом, и дальнейшее изучение нашей Вселенной в её нынешнем состоянии, и конкретизация научно обоснованных прогнозов на будущее зависят от углубления наших знаний о негеоцентрическом строении Космоса и открытия непосредственно ненаблюдаемых, скрытых от антропоморфных наблюдателей, чрезвычайно экзотичных объектов. А может быть, не только объектов, но и целых космических миров. Конечно, открытие таких объектов, таких миров гораздо сложнее, чем открытие обычных астрономических объектов. Будучи скрытыми от наших по-земному устроенных глаз, вооруженных сколь угодно мощными усилителями зрения – астрономическими приборами, эти объекты и негеоцентрические миры могут быть обнаружены нами только по косвенным данным при помощи самого разнообразного теоретического анализа и очень большого числа макроскопических наблюдений.
   Несколько позже мы ещё вернёмся к проблеме «скрытой массы» Вселенной, она сегодня ставится и разрешается в связи с новой, недавно возникшей и ультрасовременной областью исследований – теорией так называемых «отонов», или «отонных миров». Отонная теория выводит нас за пределы нашей Метагалактики, это теория суперметагалактическая по своей природе. Занимаясь отонами, учёные делают попытку представить себе, казалось бы, непредставимое для человека как земного существа: воспроизвести процессы, по самой своей природе выпадающие не только из поля зрения человека, но и из его Вселенной. Крохотная частица этой Вселенной, человек сегодня дерзает уже вырваться познанием за её пределы.