Большинство частиц возникает («рождается») при столкновении с другими частицами на очень высоких скоростях. Одни частицы в этих условиях превращаются в другие. Так, протон превращается в нейтрон (теряет заряд) с испусканием пи-мезона. Другие частицы «распадаются»: нейтрон – на электрон, протон и антинейтрино, нейтральный пи-мезон – на два фотона.
   Частицы постоянно взаимодействуют с вакуумом, поглощают или испускают виртуальные частицы, образуют вокруг себя «облако» виртуальных частиц. Поскольку элементарные частицы образуют постоянно изменяющуюся «размазку» массы, электрического заряда и магнитного момента, которая становится более плотной к центру частицы, можно говорить о наличии в них относительно плотного центрального ядра, именуемого керном, и рыхлой периферии. Однако в отличие от атомов в частицах не существует структурно выделенных компонентов, занимающих определённое положение в пространстве: «размазка» постоянно меняется в микроскопические доли секунды, не образуя даже относительно стабильных пространственных форм. Перекачка «размазки» идёт постоянно вследствие постоянного воздействия вакуумных полей, виртуальных частиц и других микрообъектов. Керны элементарных частиц неспособны стать мобилизационными структурами, упорядочивающими движение, организующими относительное постоянство структур и их взаимодействий. У них для этого не хватает массы, заряда и особенно способности к сильным взаимодействиям. Поэтому свободное от воздействия ядер атомов состояние оборачивается для них потерей порядка и разъятостью макроскопических свойств.
   Особое хаотичное состояние частиц возникает в пустоте, которая характеризуется отсутствием вещества и образованием так называемых виртуальных частиц. Физический вакуум характеризуется не абсолютным отсутствием материи, а её особым состоянием, наинизшим состоянием поля, в котором отсутствуют реальные частицы. Движущиеся в пустом космическом пространстве тела, например, космические ракеты или планеты, вращающиеся по тысячелетиями неизменным орбитам, практически не испытывают трения или оно пренебрежимо мало, что означает отсутствие в вакууме обычных видов материи. Космический вакуум настолько пуст, что свет, идущий от отдалённых галактик на протяжении миллионов или миллиардов лет, не заслоняется и не искажается разделяющей нас материей. При этом такое полное отсутствие вещества не сопровождается отсутствием пространства, которое необходимо для прохождения света и перемещения космических тел. Ведь пространство также может рассматриваться как некая материальная ткань, настолько однородная, что по ней может двигаться всё, что угодно, не встречая при отсутствии заполненности веществом никакого сопротивления. Если пространство-время как некий синтез взаиморасположения и последовательности действительно способно искривляться гравитирующими массами, значит, оно есть некий «лист», имеющий материальный носитель, выражением которого и является поле тяготения. Но тогда за пределами этого четырёхмерного пространственно-временного «листа» должен существовать более многомерный мир и т. д. В таком случае пространственная форма упорядочения материи имеет свой материальный носитель, изменяющийся со временем, а виртуальные процессы в физическом вакууме являются не чем иным, как случайными колебаниями, флуктуациями этого носителя.
   Вакуумные флуктуации образуют кванты релятивистских волновых полей, которые и называются виртуальными частицами. Виртуальные процессы наблюдаются, например, в смещении спектральных линий в атомах из-за непрерывных колебаний движущихся по их орбитам электронов под действием «нулевых» колебаний вакуумной среды. Хаос в движении электронных оболочек, находящихся под действием атомных ядер, обусловлен действием на них хаотических колебаний пространственного упорядочения вакуумной среды, т. е. возможно, того «материала», из которого «изготовлено» трёхмерное пространство.
   Возможно также, что этот «материал» сформировался в процессе «космической инженерии» под действием Большого взрыва и непрерывного расширения во всех направлениях материи Метагалактики. И не исключено, что «космическая инженерия» протекала по «программе» и в последовательности, сложившейся на предметагалактической стадии эволюции.
   Колебания происходят в самых различных материалах, происходят они и в материале, из которого «сделана» Вселенная. Пространственно-временная ткань бытия очень прочна, и поэтому незаметна для тех, чья материя тела тоже распложена на этой ткани, т. е. для нас, людей. Она проявляет себя лишь в виртуальных процессах в вакууме. По крайней мере таково наше предположение, приносимое в подарок физикам со стороны философии. Когда-нибудь эта предполагаемая нами субстратная модель пространства-времени подтвердится либо будет опровергнута. Но она представляется нам вполне правомерной с точки зрения сегодняшних научных знаний и к тому же открывает определённые возможности для объяснения полевых процессов и дальнодействия физических тел.
   Виртуальные частицы отличаются от реальных тем, что при их появлении нарушается релятивистское соотношение энергии и импульса, временно как бы приостанавливается действие закона сохранения энергии, поскольку энергия возникает из пустоты, из кажущегося ничто. На самом же деле не закон сохранения энергии нарушается, а энергия лишь как бы берётся взаймы в результате соотношения неопределённостей между энергией и временем, что может происходить лишь в очень короткие промежутки времени, микроскопические доли секунды, после чего энергия возвращается в вакуум и поглощается им. Виртуальные частицы возникают в краткие мгновения взаимоперехода и взаимодействия. Так, при взаимодействии электронов один их них испускает виртуальный фотон, а другой поглощает его. Взаимодействие нуклонов – протонов и нейтронов – осуществляется посредством испускания и поглощения виртуальных мезонов. Каждый нуклон окутан облаком виртуальных пионов, на основе которых формируется поле ядерных взаимодействий. В современной физической теории очень многие структурные особенности элементарных частиц объясняются и описываются при помощи представлений о возникновении, поглощении или распаде виртуальных частиц.
   Сама квантованность элементарных и виртуальных частиц проистекает, по-видимому, из разорванности пространственно-временного континуума, разрывов или «шероховатостей» той непрерывной «стены», которой «космическая инженерия» эволюционного процесса отделила Метагалактику от других космических систем. Мы не замечаем этой «стены», поскольку наш способ восприятия приспособлен к отражению лишь тех объектов, которые обладают соответствующими земным условиям качествами и свойствами. Неуниверсальность этого способа восприятия прослежена нами на самых различных примерах, но особенно ярко она проявляется в так называемой «скрытой» материи, существование которой никак не обнаруживается в изображениях, доносимых от космических объектов нашему зрению, а выявляется лишь по «неправильному» поведению космических объектов, свидетельствующему о появлении из пустоты колоссальных по мощности гравитационных полей.
   Как элементарные, так и виртуальные частицы обладают способностью рождаться и уничтожаться, испускаться и поглощаться в процессах взаимодействия с другими частицами. Это кажущееся возникновение из ничего и исчезновение в ничто обусловлено неконтролируемостью взаимопереходов, нечёткостью границ и размытостью определённостей на микроуровне.
   По «времени жизни» частицы подразделяются на стабильные и нестабильные. Стабильных элементарных частиц всего пять К ним относятся электрон, фотон, протон и два вида нейтрино. Остальные более 400 видов частиц нестабильны, они существуют ничтожные доли секунды, изредка минуты, как нейтрон в свободном состоянии, затем они распадаются.
   Макроскопическую определённость и упорядоченность создают мобилизационные структуры атомных ядер. Они возникают из хаоса свободных элементарных частиц в процессах элементарной самоорганизации на определённом этапе эволюции «космической инженерии» Метагалактики.
   Хаос преобразований в микромире, отсутствие чётко выраженной дискретности телесных форм при наличии квантовой дискретности, разорванности полевых формаций, которые в макроскопическом мире, накладываясь друг на друга, образуют непрерывное (континуальное) единство, приводит к широко известному феномену наличия у микрочастиц свойств частицы и волны.
   Очень верно по этому поводу высказался известный американский физик и философ Герман Вейль. «Согласно представлениям о строении вещества и теории поля, – отмечает он, – материальная частица, скажем, электрон, – представляет собой не что иное, как небольшой участок электрического поля, в пределах которого напряжённость достигает фантастических величин, что свидетельствует о концентрации большого количества энергии в малом объёме пространства. Такой сгусток энергии, не имеющий чётких границ на фоне всего остального поля, подобно волне на поверхности водоёма, перемещается в пустом пространстве; поэтому мы не можем утверждать, что электрон состоит из одной и той же определённой субстанции – такой просто не существует» (Weyl H. Philosofi of Mathematics and Natural Science. Princeton: Princeton University Press, 1949, р. 171). Нет мобилизационной структуры – нет и постоянной субстанции, есть фрагмент поля, распределяющийся с определённой вероятностью по окружающей среде, захватывая или покидая её субстанцию, её материальное содержание.
   При этом необходимо иметь в виду, что если в макромире мы имеем дело со сформированной на атомно-молекулярном уровне материей, то в микромире нам предстаёт материя, которая не имеет локализуемой в пространстве формы, поскольку не существует границ, отделяющих одно образование от другого. Микрообъекты – это сплошной переход из одного состояния в другое. Микромир как нельзя лучше характеризуется образом реки, использованным древнегреческими философами для демонстрации всеобщей изменчивости первоначала всего существующего в мире. Это «река», в которую нельзя войти дважды, поскольку в ней уже будет другая вода, но невозможно войти и один раз, поскольку за время вхождения она изменится полностью. При отсутствии относительно устойчивых форм материя становится полностью зависимой от движения, она не просто течёт и изменяется, она не существует вне течения и изменения.
   Однако уже на микроуровне закладываются предпосылки макроскопической устойчивости, упорядоченности и самоорганизации. Они проявляются в направленном движении больших масс частиц, в закономерностях их поведения, доступных для вероятностного описания, в проявлении свойств частицы либо волны.
   «Космическая технология» микромира функционирует при свободном состоянии микрочастиц в отрыве от «космической инженерии», которая проявляется лишь под мобилизующим действием атомных ядер.
   Наиболее фундаментальной, и в то же время наиболее гипотетичной и парадоксальной из всех элементарных частиц, изучаемых физикой, является кварк. Эта таинственная, обладающая наиболее немакроскопичным поведением частица считается и наиболее элементарной, мельчайшей, не содержащей с точки зрения современного уровня знаний более мелких, входящих в её состав частиц.
   Существование кварков предположил американский физик М. Гелл-Манн, который вводил это понятие скорее как удобную теоретическую конструкцию, позволяющую хотя бы в какой-то степени упорядочить физическое описание той пёстрой хаотической смеси из более чем двухсот элементарных частиц, которые были идентифицированы физикой уже в начале 60-х годов. Кварки считались теоретической функцией, результатом игры уравнениями, пока в 1968 г. в лаборатории Стэнфордского университета в США «обстрел» электронами протоновой «мишени» не дал результаты, отличные от прежних представлений о протонах как частицах ядра, не состоящих из более мелких образований. В данной же серии опытов разброс электронов показал, что внутри протонов «что-то есть». Так теоретическая конструкция Гелл-Манна нашла экспериментальное подтверждение, а сам её автор был удостоен нобелевской премии уже в 1969 г. В последующие годы были идентифицированы шесть типов кварков, получивших экзотические названия, в духе воспринимаемого нами мира явлений. К ним относятся «верхний», «нижний», «странный», «очарованный», «красивый» и «истинный» кварки. Последний, «истинный» кварк был идентифицирован в 1994–1995 годах в Национальной лаборатории имени Э.Ферми в Чикаго (США) в ходе экспериментов на «Теватроне» – в тот момент самом мощном ускорителе в мире с длиной разгона 6,3 км.
   После этого физики вздохнули с облегчением. Комбинируя взаимодействия кварков при помощи формул, отныне можно было описать и даже объяснить поведение всех частиц, участвующих в сильных взаимодействиях. Загадкой остаются лишь сами кварки. Сила их взаимного притяжения возрастает не обратно, а прямо пропорционально расстоянию между ними, причём возрастает в очень высокой пропорции. Поэтому получение отдельных кварков путём разрыва межкварковых связей остаётся непосильной задачей. Предполагается, что в новорожденной Метагалактике в условиях колоссальных плотностей и температур кварки существовали в индивидуальном состоянии, но по мере остывания и разрежения вещества слиплись в единое нерасторжимое целое.
   При этом «слипание» трёх кварков порождает протоны и нейтроны, атомных ядер, а двух – пионы и к-мезоны (каоны). В 2003 г. была идентифицирована частица, состоящая из пяти кварков, названная пентакварком. Она крайне нестабильна, и в нашем мире существует лишь ничтоные доли секунды.
   Кварки наделяются исследователями «цветом» и «ароматом» – свойствами, заимствованными из мира воспринимаемых явлений, но характеризующими степень и характер участия в сильных взаимодействиях. «Цветовой» заряд кварков определяет их участие в сильных взаимодействиях, подобно тому, как электрический заряд определяется участием во взаимодействиях электромагнитных. При этом заряд у кварков не целостный, а дробный. Для объяснения монолитной слипаемости кварков были введены в научный оборот специальные частицы – глюоны (от англ. «клей»). Их гипотетическая природа состоит именно в том, чтобы «приклеивать», прижимать кварки друг к другу, не давать им обрести индивидуальное, отделённое существование.

8.6. Движение в квантовом мире как предпосылка космического порядка

   Весьма интересную, хотя и далеко не безупречную интерпретацию движения в квантовом мире предложил российский физик В. Янчилин. Важна не только интерпетация, но и размышления автора о понимании элементарного порядка квантового мира. Вот как автор описывает исходное состояние на пути к предлагаемому им объяснению квантовых процессов:
   «Когда в университете я изучал квантовую механику и пытался выяснить, что же в действительности описывают её процессы, то ничего не мог понять. То же самое можно было сказать и о других моих сокурсниках. По крайней мере, мы её понимали меньше, чем Фейнман, который, по его словам, сам квантовую механику не понимал. Преподаватели же, в свою очередь, утешали нас и говорили примерно так: «Не пытайтесь что-либо понять в квантовой механике, вместо этого учитесь работать с математическим аппаратом, а понимание придёт потом». Но, несмотря на такие обещания, понимание так и не пришло. Пришло не понимание, а всего лишь привыкание к формулам» (Янчилин В.Л. Логика квантового мира и возникновение жизни на Земле – М.: Новый центр, 2004 – 151 с., с. 89).
   Непонимаине побудило автора к постоянным размышлениям, к которым его вдобавок побуждала его жена Фирюза, просившая объяснить, как же всё-таки на самом деле движется электрон. В результате автор попытался обосновать в какой-то мере наглядную модель принципиально ненаглядных процессов микромира, что привело его к понятию дискретного движения. Такое движение, по мнению автора, обусловлено свойством электрона (и других элементарных частиц) исчезать из одной точки пространства и появляться в другой. Исчезновение и появление подобного рода он интерпретирует как квантовые скачки.
   Электрон движется внутри виртуального облака, объём которого ограничен той областью пространства, в котором волновая функция отлична от нуля (Там же с. 92). Как полагает В. Янчилин, эта функция определяется именно способностью электрона исчезать и появляться только в пределах этого облака, причём исчезать и появляться во всех точках виртуального облака, имея каждый раз разный импульс. За самое короткое время, за которое свет проходит расстояние, равное ядру атома, электрон успевает исчезнуть и появиться бесконечное число раз, вследствие чего он находится сразу во всех точках одного пространства. Это время составляет приблизительно 10-23 секунды, поскольку при движении за меньшее время будет превышена световая скорость и возникнет противоречие с общей теорией относительности.
   Следует отметить, что попытка сделать наглядным принципиально ненаглядный процесс движения электрона при помощи представления о его исчезновении из одного места и появлении в другом и с другим импульсом к движению, здесь не очень удалось. Пока мы не ответим на вопрос, каким образом он исчезает и как появляется, никакой наглядности не получится. Со времён Лукреция нам известно «золотое правило» материалистической философии, положенное в основу научного познания: «из ничего ничто», т. е. ничто в ничто не исчезает и не появляется из ничего. На этом основан закон сохранения энергии и любое эволюционное учение. Поэтому оставаясь на научной почве, никак нельзя избавиться от вопросов, куда электрон исчезает и откуда появляется, из чего возникает и во что превращается и т. д. Ранее мы доказали, что ответы на эти вопросы находятся за пределами естественного человеческого способа восприятия, и могут быть получены на основе искусственного квантовомеханического способа восприятия.
   Здесь же перед нами стоит совсем другая задача: показать, как из хаоса бестраекторного, принципиально наглядно непредставимого движения образуются элементы порядка и «летучие», мгновенно рассыпающиеся мобилизационные структуры, которые являются предпосылкой космической упорядоченности на элементарном уровне и в чрезвычайно больших массах образуют макроскопическую упорядоченность вещества.
   Янчилин называет главу своей брошюры «Наглядное объяснение квантовых парадоксов». Мы не стремимся к наглядному объяснению квантовых явлений и парадоксов. Наша задача – вскрыть механизмы эволюции и показать, каким образом на самом деле уже на микроуровне упорядочивается хаос.
   В. Янчилин признаёт, что электрон существует в виде электронного облака, но само это облако, по его мнению, образуется исчезновениями и появлениями электрона как частицы в разных точках облака, причём распределение скоростей электрона определяет форму облака и его перемещение. Вследствие постоянных появлений и исчезновений электрона за пределами облака, совершаемых с низкой, но всё же отличной от нуля вероятностью, электронное облако, образуемое прыжками электрона, достаточно быстро расплывается, расширяется и занимает объём, ограниченный определёнными препятствиями, например, стенкой, непроницаемым экраном и т. д. Таким образом, движение электрона в облаке совершенно хаотично, но он за короткое время, имея собственный радиус не более 10-16см, успевает побывать во всех точках охватываемого его дискретным движением облака. Если пренебречь последовательностью появлений и исчезновений электрона в разных частях облака, то вследствие чрезвычайно короткого времени его «облёта» облака можно с известной степенью условности заключить, что электрон как бы находится во всех точках облака одновременно.
   Электрон как частица временно локализуется в определённой точке виртуального облака, чтобы в следующее мгновение его покинуть. Электрон как волна, появляясь в различных точках облака с определённой вероятностью, волнообразно распространяется за пределы облака, огибая различные препятствия и занимая пространство, ограниченное непроницаемыми препятствиями, что называется расплыванием волнового пакета.
   Если это замкнутое пространство осветить, ворвавшиеся в него фотоны создадут вероятность столкновения одного из них с образующим облако электроном. В случае такого столкновения произойдёт редукция волновой функции и мгновенное «схлопывание» облака, уменьшение его размеров. Энергия фотона и направление его движения изменятся, а электрон на мгновение получит точное местоположение (Там же, с. 97).
   При этом резкое уменьшение области локализации электрона вызовет столь же резкое возрастание величины электромагнитного поля, которое создаётся его зарядом, локализацию поля в чрезвычайно малом объёме. Это приведёт к столь же резкому увеличению неопределённости импульса электрона. Вот почему нельзя одновременно измерить и точно описать и импульс, и местоположение электрона. Чем более определённым становится импульс, тем менее определённым оказывается положение в облаке, и наоборот, что соответствует соотношению неопределённостей Гейзенберга.
   Так же легко объясняется автором другой парадокс квантовой механики – прохождение «точечного» электрона через два отверстия одновременно. Вот как описывает В. Янчилин это явление:
   «Электрон в виде виртуального облака вылетает из источника и движется к экрану с двумя отверстиями. При этом виртуальное облако непрерывно увеличивается в размерах. Когда облако долетает до экрана, то какая-то его часть проходит через одно отверстие, какая-то – через другое, а какая-то часть отражается от экрана и движется в обратную сторону… Если при дальнейшем движении эти волновые пакеты соединяются на детекторе, то произойдёт их интерференция. Хотя электрон при этом только один. Движение любого другого квантового объекта (например, фотона) будет происходить аналогично» (Там же, с. 101). Так объясняется корпускулярно-волновой дуализм и принцип дополнительности Бора.
   Многое объясняет и пример случая «перетекания» квантового объекта через потенциальный барьер. Виртуальное облако расширяется вверх, при этом его плотность, которая прямо пропорциональна вероятности обнаружить частицу, уменьшается соответственно высоте препятствия и объёму облака. При этом полная энергия частицы остаётся постоянной. Чем выше барьер, тем ниже плотность облака на большой высоте и тем дольше облако будет перетекать через него. Но энергетический фактор более существен, чем плотность и связан с последней напрямую. Чем ниже плотность, тем ниже энергия электромагнитного поля. Именно энергетика, ограниченность энергоресурса не позволяет электронному облаку неограниченно расширяться.
   В качестве примера перетекания элементарной частицы через потенциальный барьер автор приводит радиоактивный распад с испусканием альфа-частиц. Он отмечает, что если бы частица была классическим (т. е. макроскопическим) объектом, она никогда не могла бы преодолеть потенциальный барьер ядерных сил и вылететь из ядра. Ядерные силы притяжения (сильного взаимодействия) гораздо сильнее электромагнитных сил отталкивания, но они действуют на очень коротких расстояниях. Внутри ядра альфа-частица не обладает энергией для преодоления ядерных сил. Лишь поскольку альфа-частица представляет собой квантовый объект, она постепенно «просачивается» из ядра в соответствии с примером, описывающим «перетекание» частицы через барьер (Там же, с. 111).
   Так же, разумеется, можно объяснить и так называемый «туннельный эффект», т. е. прохождение квантовых объектов через непроницаемые барьеры.
   Мысленные эксперименты, приведенные В. Янчилиным, очень важны для понимания поведения квантовых объектов. Однако модель для их объяснения – дискретное движение микрообъектов – достаточно фантастична. Такая ненаучная фантастика проявляет себя при объяснении движения электрона в раздельных между собой виртуальных облаках, т. е. в условиях расщепления волнового пакета.
   Автор мысленно помещает электрон в ограниченное пространство, заполняемое виртуальным облаком, а затем разделяет это пространство непроницаемым барьером. «Итак, – пишет В. Янчилин, – у нас получились две изолированные друг от друга комнаты, внутри которых движется дискретно (хаотически) только один электрон. И если мы начнём отодвигать друг от друга эти комнаты, то электрон будет продолжать двигаться хаотически, находясь по-прежнему в обеих комнатах… Расстояние между комнатами можно сделать сколь угодно большим – электрон будет продолжать двигаться в двух комнатах» (Там же, с. 101).
   Причём, по мнению автора, волновые пакеты можно разнести даже на межпланетные или любые космические расстояния, электрон (или любая другая микрочастица) будет «прыгать» из одного пакета в другой, образуя тем самым виртуальное облако в обоих пакетах. Как же он ухитряется не преодолевать сверхсветовой барьер и запрет, налагаемый на сверхсветовую скорость общей теорией относительности?