(Конечно, я заручился согласием Алена Горо, администратора Коллежа.) КАЭ вносил в договор свою лабораторию, расположенную в Орм де Меризье, с ее оборудованием, персоналом и бюджетом, который превышал взнос Коллежа более, чем в сто раз, т. е. это соответствовало пропорциям в паштете из куропатки: "одна куропатка, одна лошадь", хотя надо признать, что меня можно было считать довольно упитанной куропаткой. Никто не мог бы придраться, что нарушалось незыблемое правило КАЭ об уходе с работы в шестьдесят пять лет, и обе стороны подписали договор, который дал мне еще пять безмятежных лет в лаборатории, до 1985 года, когда, как у нас говорится, я стал почетным профессором Коллежа, т. е. ушел на пенсию. Перечитывая эту главу, я испытываю некоторою неловкость. Я все время описываю здесь себя самым разумным, тем, за которым всегда остается последнее слово и который всегда принимает правильное решение. Не могу не спросить себя, так ли оно было на самом деле? Не умолчал ли я про обстоятельства, при которых, исполняя свои директорские обязанности, я наделал грубых ошибок и вынужден был идти на попятный или просто попадал впросак, как не раз бывало в моем прошлом? Когда я роюсь в своей памяти, у меня нет такого впечатления, но что это доказывает? В течение долгой жизни разум приучается процеживать воспоминания, чтобы сохранить умственное и душевное равновесие. Может быть, на диване психоаналитика или в кабинете опытного следователя я бы оказался совсем иным. Может быть. Но мне моя верная, послушная память повторяет то, что я рассказал в этой главе. Ядерный магнитный порядок"… порядок новый учредить" Чем я занимался. — *Порядок внутренний и внешний. — (Ватикан и Лондон). — * Ключи к задаче. — ** Вращающаяся система и лампа в холодильнике. — Старт. — *Первые шаги и первые результаты. — **Микроскопические зонды. — **Нейтроны на подмогу. — *На стыке двух наук. — *Взяв быка за рога. — **Упорядоченные вращающиеся фазы. — **Ядерный псевдомаг-нитизм. — * Псевдоядерный магнетизм. — Действующие лица. — Трутни. — *fiSR — поздний ребенокЗа тридцать лет, которые я провел в своей лаборатории, мы, конечно, брались не за одну проблему. Мы их подбирали и решали с некоторым пристрастием к изяществу, которое наперекор великому Больцману, мы не считали исключительной привилегией портных. Мои личные вкусы влекли меня к решающим — "да или нет" — экспериментам и к оригинальным и специфическим методам, применяемым, к сожалению, обыкновенно лишь к тем проблемам, для которых они были придуманы. Мне не хватало терпения для длительных, тщательных и точных измерений (которого, к счастью, хватало моим сотрудникам). Меня могли бы обвинить вполне справедливо в недостатке настойчивости, если бы исследование, протянувшееся на два десятилетия через удачи и неудачи, которое дало заглавие этой главе, не составляло бы доказательства обратного. Перед тем, как обратиться к этой задаче, было бы неприлично не напомнить о двух областях ЯМР, в которых работают более девяноста процентов исследователей и почти сто процентов фабрикантов и в которых моя лаборатория совсем не принимала участия. Первой областью является, так называемый "ЯМР высокого разрешения", посвященный наблюдению и истолкованию очень сложных спектров ЯМР органических и биологических молекул. Изощренное (и дорогое) оборудование, включающее усовершенствованные компьютеры в сочетании с остроумными, постоянно обновляемыми методами ЯМР, позволяет глубоко проникнуть в структуру биологических молекул. Это, безусловно, увлекательная область науки и можно, конечно, спросить, почему моя лаборатория осталась в стороне от столь интересных и важных исследований. На это легко ответить: физик, специалист по ЯМР, — будь он семи пядей во лбу, — который предлагает свои услуги биохимии или биологии, никогда не станет выше инженера-техника в этой области, если не решится радикально изменить свое направление и стать наполовину, а пожалуй на все сто процентов, биологом или биохимиком. Если бы я встретился с хорошим специалистом, способным увлечь меня за собой, я, может быть, перешагнул бы через этот порог, так как долго хранил некоторую гибкость и способность менять направление. Но такого специалиста я не встретил. Вторая область, более знакомая широкой публике, это изображение (томография) человеческих органов с помощью ЯМР. Назову ее для краткости ЯМР-томография. Эта техника, которая широко развернулась в течение последнего десятилетия, делает возможным наблюдение человеческих органов с более высоким разрешением, чем рентгеновская томография. И здесь моя лаборатория осталась в стороне, но по другой причине. В этом методе каждая малая часть изучаемого органа дает по очереди ЯМР сигнал от протонов, которые она содержит. С помощью специально выработанной техники сигналы от разных частей наблюдаются и регистрируются один за другим, и компьютерный алгоритм превращает временную последовательность этих сигналов в пространственную карту плотности протонов в органе, точно так же, как рентгеновский сканнер дает пространственную карту электронной плотности. Контраст может быть подчеркнут благодаря неоднородности скоростей ядерной релаксации в образце. ЯМР-томография — это на 95 % компьютеры, и именно их фантастические успехи за последние пятнадцать лет выдвинули ее на первый план. Предвидение и настойчивость пионеров, которые в начале семидесятых годов предпринимали первые исследования с довольно примитивными средствами, вызывают восхищение, но нельзя не признать, что без компьютерного взрыва, который про-изошел за последние годы, их усилия вряд ли увенчались бы успехом. Успехи ЯМР-томографии ставят меня иногда в неловкое положение. Ввиду успеха, которым пользовалась моя книга "Принципы ядерного магнетизма", многие воображают, что я принимал участие в развитии томографии и некоторые врачи-радиологи, желающие ознакомиться с нею, покупают мою книгу и, конечно, страшно бывают разочарованы. Эта неловкость приняла особенно острую форму, когда французское Общество радиологов присудило мне в 1986 году свою медаль за услуги, оказанные томографии. Чтобы предотвратить незаслуженную награду, я написал президенту общества, что я не только ничего не принес томографии, но вначале просто не верил в ее будущее. В ответ они возразили, что Резер-форд тоже не верил в будущее атомной энергии. Тот факт, что Резерфорд открыл атомное ядро, в то время как ЯМР открывал не я, по-видимому, их не смущал. Не желая их обидеть, я принял незаслуженную медаль и отблагодарил лекцией о ядерном дальнем порядке, который их интересовал как прошлогодний снег. Но довольно о том, чего я не сделал.*Порядок внутренний и внешнийМне помнится, что я услышал в первый раз про ядерный ферромагнетизм от Парселла, когда встретился с ним на Амстердамской конференции в 1950 году. Он считал, что это очень интересное явление, но ненаблюдаемое при тогдашних криогенных возможностях. С тех пор я задумывался об этом время от времени, но только после того, как открыл динамическую ядерную поляризацию (ДЯП), догадался, как это сделать. Чтобы понять суть ядерного ферромагнетизма или вообще любого дальнего ядерного порядка, неплохо сначала вспомнить природу так называемого внешнего или зеемановского (Zeeman) порядка, который создает в системе ядерных спинов внешнее магнитное поле. Таков порядок, который существует при всех ЯМР-экспериментах. Ядерный спин, погруженный в магнитное поле, стремится направить связанный с ним магнитный момент параллельно полю, чтобы уменьшить его магнитную энергию. Однако в веществе ядерные спины постоянно меняют ориентацию из-за теплового движения. Между ориентацией, навязанной внешним полем Я, и дезориентацией, производимой тепловым движением, возникает компромисс, при котором ядерная поляризация вдоль поля равняется приблизительно отношению (?Н/kТ) между магнитной энергией ядерного момента ?Н и тепловой энергией kТ. </p> <p>Мы видели в главе "Ядерный магнетизм и я", что для протонов при комнатной температуре это отношение равняется нескольким миллионным долям в поле 1 Тесла. Но мы также видели, что при температуре жидкого гелия, пользуясь ДЯП, можно произвести поляризации, близкие к единице. А каковы условия для возникновения дальнего ядерного порядка, скажем ферромагнитного, при отсутствии внешнего поля? Он может появиться, когда энергия единичного спина, возникающая за счет его взаимодействия с соседями, не мала по сравнению с тепловой энергией кТ. Грубую оценку температуры можно произвести следующим образом: можно считать, что каждый спин находится в локальном поле Hi, создаваемом его соседями. Для локального поля порядка нескольких гауссов и для магнитного момента протона это соответствует температуре ниже микрокельвина. Неудивительно, что Парселл считал это пределом криогенных возможностей того времени.*Возможности достичь этой цели будут рассмотрены дальше, но сперва я хотел бы пояснить разницу между зеемановским порядком, который создает внешнее поле, и внутренним порядком, который создают спиновые взаимодействия, с помощью образа, который мне подсказывает моя одновременная принадлежность к Британскому Королевскому Обществу и к Ватиканской Папской Академии. Представьте себе римскую толпу, собравшуюся на площади Святого Петра, к которой обращается Святой Отец из окна Ватикана. В толпе все взоры обращены к этому окну и, конечно, неизбежно все носы, которые мы примем за векторные модели спинов. Все носы параллельны друг другу (если пренебречь малым параллаксом). Мы имеем здесь зеемановский порядок носов, производимый внешним "папским полем".Теперь представим себе ту же толпу, но за час до того, как папа должен появиться в окне. Нет необходимости обращать свои взоры (и носы) к этому окну, поэтому можно считать, что ориентация римских носов совершенно беспорядочна. Чтобы увидеть, как мог бы появиться внутренний порядок расположения носов, мы должны сделать кое-какие предположения насчет их взаимодействия. Мы предположим (гипотеза отнюдь не абсурдная), что все эти римляне охотно употребляют в пищу в немалом количестве чеснок, но что они ценят вкус чеснока более, чем его запах от дыхания своих ближайших соседей. Каждый римский нос будет отворачиваться от лица ближайшего соседа и ориентироваться на его спину, что сделает эти носы параллельными друг другу. Возникает своего рода "ферромагнитная" связь между их ориентациями. Означает ли это, что все носы на площади будут параллельны друг другу? Ничуть. Я уже сказал, что это — римская толпа, оживленная и разгоряченная. Люди обмениваются замечаниями и шутками, толкают друг друга, и не один нос не сохраняет долго одно и то же направление. Кроме того, их неприязнь к запаху чеснока не так уж сильна. Иными словами, мы имеем дело со слабым взаимодействием j "с высокой температурой. В результате будет иметь место ближний порядок, где два соседние носа будут параллельны, но этот порядок не распространяется на большое расстояние, и между двумя носами, отдаленными друг от друга, скажем на десять шагов, никакой корреляции не будет. Представьте себе теперь толпу британских джентльменов (вымирающая порода, как я понимаю), которые незнакомы друг с другом и которым, конечно, никогда в голову не приходило есть чеснок. Зато они смертельно боятся, чтобы с ними заговорил сосед, который не был им представлен. Поэтому они испытывают сильную потребность уставиться в спину соседа, подозреваемого в подобном намерении. Это тоже ведет к ферромагнитному упорядочению носов, причем с гораздо более сильным взаимодействием, чем у римлян. Кроме того, это толпа "холодная". Люди не толкаются и не вертятся на месте, и каждый британский нос сохраняет ориентацию в течение долгого промежутка времени. Здесь мы имеем сильное взаимодействие и низкую температуру и, значит, дальний порядок; все британские носы будут параллельны друг другу. Ферромагнетизм не единственный дальний порядок, который может существовать среди спинов: с электронными спинами наблюдался уже более полувека тому назад антиферромагнитный порядок, при котором два ближайших соседа антипараллельны друг другу (читатель сможет сообразить сам, какого рода пища могла бы произвести такого рода порядок в модели римской толпы). Легкомысленную аналогию между системой спинов и римской толпой можно провести немного дальше. Внешнее "папское поле" действует на взоры, а не на носы римлян и ориентирует носы лишь косвенно, ввиду их вынужденного анатомического параллелизма со взорами. Внутренний порядок в "чесноковой модели", наоборот, обусловливают сами носы. Нечто подобное происходит в электронном ферромагнетизме. Там каждый спин является носителем параллельного ему магнитного момента, напоминая параллелизм между носом и взглядом римлян. Внешнее магнитное поле ориентирует не спины, а магнитные моменты, за которыми спины следуют из-за своего вынужденного параллелизма с ними. За внутренний порядок ферромагнитного вещества отвечают сами спины благодаря немагнитному квантовому обменному механизму связи, как было объяснено раньше в другой главе, а магнитные моменты лишь послушно следуют за ними. В ядерном порядке обменная связь между спинами не встречается (за исключением 3Не, к которому я еще вернусь). Между ними существует лишь магнитная связь, которая, по крайней мере для легких ядер, имеет вполне определенную математическую форму так называемого дипольного взаимодействия и силу, обусловленную величиной магнитных моментов и междуатомных расстояний, — все вещи хорошо известные. В дипольном магнитном упорядочении все может быть подсчитано из первых принципов: это "чистая" задача. Именно эти два свойства — чистота и трудность (нечто вроде недоступной белизны Гималайской вершины) — влекли меня к ядерному магнитному порядку в течение двадцати лет, меня и тех, которые согласились проделать со мной хоть часть этого пути. Хорошо, но "Как и Кто, и Когда", — сказал Киплинг. "Вот вопрос", — сказал некто другой.* Ключи к задачеКлючи к задаче были в моих руках: это динамическая ядерная поляризация (ДЯП) и спиновая температура. Первая создает почти совершенный зеемановский порядок спинов; вторая — "охлаждение" спинов до температур, потребных для появления дальнего ядерного порядка (до микрокельвина или меньше), при которых зеемановский порядок переходит во внутренний, дипольный. На самом деле вместо понятия спиновой температуры удобно пользоваться понятием энтропии, о которой здесь достаточно напомнить, что она является количественной мерой беспорядка, царствующего в системе. Энтропия равняется нулю при совершенном порядке и принимает максимальное значение при полном хаосе. Создавая почти совершенный зеемановский порядок, мы приводим энтропию почти к нулю или, по крайней мере, к значению, которое ниже критической энтропии, соответствующей дальнему порядку. Следующий шаг заключается в том, чтобы снять внешнее поле, но очень медленно, почти адиабатически, т. е. увеличивая при этом энтропию как можно меньше. Во время этого адиабатического размагничивания внешний зеемановский порядок постепенно переходит во внутренний, дипольный. (Римской аналогией здесь являлось бы медленное исчезновение папы из своего окна, подобно исчезновению чеширского (Cheshire) кота в "Алисе в стране чудес".)В 1960 году я предал бумаге свои мысли о ядерном магнитном порядке с некоторыми подробностями о возможности их осуществления в письме в "Physical Review" под заглавием "О возможности наблюдать кооперативные явления в ядерном магнетизме."10 А. АбрагамОно ко мне вернулось от рецензента с двумя замечаниями, одним лестным, другим не столь. В первом говорилось, что раз автор руководит лабораторией с международной репутацией, почему бы ему не поставить сначала опыт, а потом писать о нем. Во втором говорилось, что эта идея приходила в голову многим физикам. Первое замечание не было лишено здравого смысла, а насчет второго можно теперь спросить, почему ни один из физиков, к 0 торому эта идея приходила в голову, ничего с ней не сделал. Я не стал спорить и опубликовал свои размышления в "Докла-Дах (Compte Rendus) нашей академии, журнале гостеприимном и мало читаемом за границей, что иногда позволяет публиковать промежуточные результаты, не возбуждая внимания соперников. С экспериментальной точки зрения было одно затруднение, к о торое от меня не ускользнуло. Ввиду малости ядерных магнитных моментов ЯМР был тогда и, пожалуй, остался (почти) теперь единственным методом для наблюдения поведения ядерных спинов. Но ЯМР наблюдают в сильном поле. Если мы снизим его до нуля через адиабатическое размагничивание, мы, может быть, создадим упорядоченное состояние спинов, но тем самым лишим себя возможности убедиться в его существовании. Это как п 0 пытка узнать, гаснет ли лампа в холодильнике, когда закрываешь дверцу. Об этом я думал, когда опубликовал в "Compte Rendus" в 1962 году краткую заметку под заглавием "Ядерный ферромагнетизм во вращающейся системе координат". Теперь я открою скобки, чтобы объяснить сущность вращающейся системы, понятия широко употребляемого в ЯМР, а затем изложу принцип решения задачи "лампы в холодильнике". *Вращающаяся система и лампа в холодильникеРаз ЯМР требует сильного поля, надо сделать так, чтобы были и волки сыты и овцы целы, т. е. ухитриться обеспечить обмен энтропией между резервуарами зеемановской и дипольной энергии в таком поле. Трудность заключается в том, что зеемановская энергия квантована в квантах, скажем, по сто мегагерц каждый, в то время как спектр дипольной энергии простирается на протяжении не более ста килогерц. В сильном поле эти системы, как говорятся, друг с другом не разговаривают. Однако существует возможность обеспечить поток энергии, а значит, и энтропии между ними, если снабдить дипольную систему энергией, которой ей не хватает, чтобы "разговаривать" с зеемановской системой. Это снабжение осуществляется радиочастотным полем, вращающимся с частотой ^> близкой к зеемановской частоте По. Одну из этих частот (обыкновенно зеемановскую По) медленно (адиабатически) изменяют, начиная со значения, отдаленного от п, ДО самого q т. е. до резонанса. При резонансе большая часть энтропии неупорядоченной дипольной системы переходит в зеемановскую систему или, что то же самое, большая часть зеемановского порядка переходит в дипольную систему. Затем радиочастотное поле выключается, и обе системы, зеемановская и дипольная, становятся сноваизолированными друг от друга. Казалось бы, что после этого можно было бы просто забыть про существование сильного магнитного поля, но это не так. Хотя выключение радиочастотного поля останавливает переход энергии из одной системы в другую, можно показать (мы не будем здесь этого делать), что само присутствие сильного поля делает некоторые части дипольного взаимодействия неэффективным и что эти части необходимо отбросить. Эффективная часть взаимодействия, обыкновенно называемая "усеченной" (truncated), имеет ту особенность, что ее форма и величина зависят от ориентации сильного магнитного поля по направлению к осям монокристаллическогообразца, что очень важно. Предыдущие соображения можно уточнить, если ввести понятие вращающейся системы координат. Чтобы описать поведение спинов в присутствии вращающегося поля, удобно выбрать систему координат, которая вращается с угловой скоростью П этого поля. В этой системе вращающееся поле с амплитудой Н\, ортогональное к сильному полю Я, становится статическим полем Н\, чт0, конечно, гораздо проще. Но не надо забывать, что новая система координат, ввиду того что она вращается, не является инерциаль-ной и что нужно учесть инерциальные силы. Можно показать, что для этого достаточно заменить внешнее поле H фиктивным полем ДЯ = (Я — jj*^ где Я* — значение поля Я при резонансе, когда По — П. Во вращающейся системе спинам "кажется", что они испытывают эффективное поле Нс, которое является геометрической суммой двух статических полей ДЯ и Н\, ортогональных друг к другу. Операция, которая приводит к обмену энтропией между зеемановской и дипольной системами, называется Адиабатическим Размагничиванием во Вращающейся Системе, АРВС. (Adiabatic Demagnetisation in the Rotating Frame, ADRF). Вдали от резонанса эффективное поле #е почти параллельно внешнему полю Я, а, значит, также и равновесной намагниченности М. Во время АРВС намагниченность "следует" за эффективным полем Не, направление которого отклоняется от направления поля Я тем более, чем ближе к резонансу. При резонансе фиктивное поле ДЯ обращается в нуль, а эффективное поле Ht сводится к полю Н\. АРВС • завершают, выключая это поле Hi. Если начальная поляризация была достаточно высокой, наблюдается дипольный дальний порядок. Надо заметить, что, если АРВС начинать с той стороны рез 0 нанса, где ДЯ = (Я — #*) антипараллельно внешнему полю Я, значит, АРВС было начато исходя из состояния, где равновесная намагниченность М, которая, конечно, параллельна внешнему п о лю Я, была антипараллельна эффективному полю jj С точки зрения вращающейся системы спины находились в состоянии с отрицательной температурой. Знак температуры сохраняется на протяжении АРВС и при его завершении ведет к дапольному состоянию с отрицательной температурой. Так как АРВС проводится в сильном внешнем поле, по его окончании возможно употребить ЯМР, чтобы наблюдать свойства размагниченного состояния спинов и, как было сказано раньше, решить таким образом проблему "лампы в холодильнике". Но АРВС позволяет к тому же осуществить новые замечательные вариации на тему обыкновенного дипольного порядка. Во-первых различные ориентации внешнего поля по отношению к осям образца приводят к различным формам дальнего порядка. Во-вторых для каждой ориентации поля противоположные знаки спиновой температуры тоже приводят к различным дипольным структурам. Не надо забывать, что при отрицательной температуре стабильной структурой является та, которая максимизирует энергию. Время жизни упорядоченного состояния спинов, в котором абсолютное значение их температуры в миллион раз ниже температуры окружающей их среды, ограничено временем спин-решеточной релаксации дипольной энергии Td, которое короче на несколько порядков обыкновенного зеемановского времени релаксации Т\. Тем не менее при благоприятных условиях значение Td может превысить час> что делает изучение дальнего дипольного порядка вполне возможным.* 'СтартМне кажется, что большинство идей, изложенных выше, были у меня на уме, по крайней мере в качественной форме, в 1965 году, когда я предложил двум из моих лучших сотрудников — двум Морисам — Морису Шапелье и Морису Гольдману (Maurice Chapellier, Maurice Goldman) — заняться со мной этим делом, предварительно успешно преодолев "пробу на кислую реакцию" моего присяжного критика Жака Винтера. В 1965 году Шапелье было двадцать семь, Гольдману — тридцать два, мне — пятьдесят, и ни один из нас не был политехником. Вклад Морисов в наше совместное предприятие трудно преувеличить, и я был очень рад, когда несколько лет спустя они разделили со мной самую крупную премию нашей академии. В следующие годы наша маленькая команда обогатилась другими участниками, которых я назову позже. Постепенно Шапелье удалился от нас (это было в начале семидесятых годов), чтобы работать в области низких температур, но в первых наблюдениях ядерного магнитного порядка он был главным действующим лицом. Деятельность Гольдмана оставалась тесно связанной с моей собственной до моего ухода в 1985 году. Он прослужил четырнадцать лет моим заместителем на кафедре в Коллеже. Его вклад в теорию ядерного магнитного порядка неоценим: там мало пунктов, в которых бы он не принимал участия. Мы написали вместе обширную монографию, которая вышла в свет в 1982 году под заглавием "Ядерный магнетизм: порядок и беспорядок" (Nuclear magnetism: order and disoder; имеется русский перевод). Там мы рассматривали лишь области ядерного магнетизма, к которым испытывали влечение, что объясняет отсутствие биохимических и медицинских применений ЯМР. Львиная доля была отдана спиновой температуре, динамической ядерной поляризации и, конечно, ядерному магнитному порядку, который я впредь буду сокращать в ЯМП. Теории ЯМП посвящена целая глава, где Гольдман больше напирал на строгость, а я — на ясность. В 1976 году Гольдману была присуждена Гольвековская премия (через 18 лет после меня и через пять лет после Соломона), и в 1986 году он был избран членом-корреспондентом нашей академии. И то, и другое доставило мне большое удовольствие. Среди физиков его поколения Гольдман занимает особое место. Его физическая интуиция, которая опирается на прекрасную теоретическую подготовку, его постоянное стремление к научной строгости, наши общие вкусы и интересы вместе с весьма различным подходом к проблемам — все вместе сделало его идеальным товарищем в нашем долгом совместном путешествии по ядерному магнетизму. Я мечтал, чтобы он занял кафедру, когда я уйду. Мои коллеги решили иначе. Не знаю, надоел ли им ЯМР или физика вообще, но, как я уже говорил, меня сменил специалист по геодинамике. Первые шаги и первые результатыПрежде всего, надо было выбрать подходящий образец, в котором мы могли бы создать и наблюдать ЯМП. В 1965 году мы умели поляризовать разные вещества, содержащие водород, служившие нам материалом для поляризованных мишеней, но мы отбросили их с самого начала, потому что их структура была так сложна и так мало исследована, что даже если бы нам удалось; создать в них ЯМП, мы не смогли бы в этом убедиться методами10* А. АбрагамЯМР. Вместо этого мы выбрали монокристалл фтористого кальция CaFz, в котором ядра фтора 19Fco спином (1/2) составляют простую кубическую решетку, а ядра кальция, за исключением редкого изотопа, к которому мы вернемся позже, имеют нулевой спин. Так как форма упорядоченных состояний зависит от ориентации внешнего поля по отношению к осям кристалла, необходимо было пользоваться монокристаллами. Гольдман рассчитал все структуры, которые могли возникнуть при разных ориентациях внешнего поля, для обоих знаков спиновой температуры, пользуясь приближенным методом локального среднего поля Вейсса (Weiss). Следующим шагом явился выбор парамагнитных примесей, которые исполняли бы обязанности царя Соломона по отношению к ядерным спинам фтора. Последовал долгий период испытаний в этом качестве трехвалентного урана, с которым ядерные поляризации в 30 % были достигнуты в 1966 году и в 50 % в 1967. Решающим шагом явилась замена трехвалентного урана двухвалентным туллием и, что было еще важнее, понижение температуры решетки до 0,3 К. Это было достигнуто с криостатом на жидком 3Яе, который Шапелье нахально состряпал за шесть месяцев, не имея в этом деле никакого предварительного опыта. Третьим новшеством было удвоение микроволновой частоты, употребляемой в ДЯП: длина волны была укорочена от четырех миллиметров до двух. Ядерная поляризация спинов 19F достигла 60 %, а позже и всех 90 %. Проделав на них АРВС, мы, наконец, увидели плато на кривой зависимости спиновой поперечной магнитной восприимчивости от дипольной энергии. Согласно предсказаниям, сделанным Гольдманом, это был безошибочный признак ядерного антиферромагнетизма. Итак в 1969 году, через четыре года после начала нашего предприятия, Шапелье, Гольдман, Вю-Гоанг-Шо (молодой аспирант) и я опубликовали описание того, чего никто еще не видел, — создания и наблюдения ядерного антиферромагнитного состояния. Среди работ по ЯМП во фтористом кальции за следующие годы самой интересной я считаю обнаружение ферромагнетизма с доменной структурой. Согласно теории такая структура должна существовать при отрицательной спиновой температуре, когда внешнее поле направлено вдоль оси