HRESULT hr = SetErrorInfo(0, ex.mpei);
   assert(SUCCEEDED(hr));
   ex.mpei->Release();
   hrex = ex.mhresult;
   }
   return hrex;
   }
 
   Заметим, что реализация метода заботится о том, чтобы не позволить чисто С++-исключениям переходить через границы метода. Таково безусловное требование СОМ.
 

Где мы находимся?

   В этой главе была представлена концепция интерфейса СОМ. Интерфейсы СОМ обладают простыми двоичными сигнатурами, которые позволяют любому клиенту обращаться к объекту независимо от языка программирования, использованного клиентом или конструктором объекта. Чтобы облегчить поддержку различных языков, интерфейсы СОМ определяются на языке IDL (Interface Definition Language). Эти IDL-определения интерфейса могут быть также использованы для генерирования кода передачи данных (communications code), который позволяет получать доступ к объекту через сеть.
   Большая часть этой главы была посвящена IUnknown – базовому интерфейсу, на котором построен весь СОМ. Все интерфейсы СОМ должны наследовать от IUnknown. Следовательно, все объекты СОМ должны реализовывать IUnknown. В IUnknown предусмотрено три сигнатуры метода, посредством которых клиент может безошибочно управлять иерархией типов объекта для доступа к дополнительным возможностям, предоставляемым этим объектом. С учетом этого QueryInterface можно рассматривать как оператор приведения типа в СОМ. По этой же причине IUnknown можно рассматривать как «void *» (указатель на пустой тип) среди указателей интерфейса, так как от него не слишком много пользы до тех пор, пока он не «приведен» (is «cast») к чему-нибудь более содержательному с помощью QueryInterface.
   Следует заметить, что при обращении или реализации IUnknown не было сделано никаких существенных системных вызовов. В этом смысле IUnknown просто является протоколом или набором обещаний (promises), которого должны придерживаться все программы. Это позволяет объектам СОМ быть очень простыми и эффективными. Реализация IUnknown в C++ требует всего нескольких строк стандартного кода. Чтобы автоматизировать реализацию IUnknown в C++, была представлена серия макросов для препроцессора, которые реализуют QueryInterface под табличным управлением. Хотя эти макросы не были совершенно необходимыми, они удаляли большую часть общего стандартного кода из каждого определения класса, не внося при этом заметных усложнений в реализацию.
 

Глава 3. Классы

   int cGorillas = Gorilla::GetCount();
   IApe *pApe = new Gorilla();
   pApe->GetYourStinkingPawsOffMeYouDamnDirtyApe();
Charleton Heston, 1968

   В предыдущей главе обсуждались принципы интерфейсов СОМ вообще и интерфейс IUnknown в частности. Были показаны способы управления указателями интерфейса из C++, и детально обсуждалась фактическая техника реализации IUnknown. Однако не обсуждалось, как обычно клиенты получают начальный указатель интерфейса на объект, или как средства реализации объекта допускают, чтобы их объекты могли быть обнаружены внешними клиентами. В данной главе демонстрируется, как реализации объектов СОМ интегрируют в среду выполнения СОМ, чтобы дать клиентам возможность найти или создать объекты требуемого конкретного типа.
 

Снова об интерфейсе и реализации

   В предыдущей главе интерфейс СОМ был определен как абстрактный набор операций, выражающий некоторую функциональность, которую может экспортировать объект. Интерфейсы СОМ описаны на языке IDL (Interface Definition Language – язык определений интерфейса) и имеют логические имена, которые указывают на моделируемые ими функциональные возможности. Ниже приведено IDL-определение СОМ-интерфейса IApe:
 
   [object, uuid(753A8A7C-A7FF-11d0-8C30-0080C73925BA)]
   interface IApe : Unknown
   {
   import «unknwn.idl»;
   HRESULT EatBanana(void);
   HRESULT SwingFromTree(void);
   [propget] HRESULT Weight([out, retval] long *plbs);
   }
 
   Сопровождающая IApe документация должна специфицировать примерную семантику трех операций: EatBanana, SwingFromTree и Weight. Все объекты, раскрывающие IАре посредством QueryInterface , должны гарантировать, что их реализации этих методов придерживаются семантического контракта IАре. В то же время определения интерфейса почти всегда специально оставляют место для интерпретации разработчиком объекта. Это означает, что клиенты никогда не могут быть полностью уверены в точном поведении любого заданного метода, а только в том, что его поведение будет следовать схематическим правилам, описанным в документации к интерфейсу. Эта контролируемая степень неопределенности является фундаментальной характеристикой полиморфизма и одной из основ развития объектно-ориентированного программного обеспечения.
   Рассмотрим только что приведенный интерфейс IАре. Вероятно (и даже возможно), что будет более одной реализации интерфейса IАре. Поскольку определение IАре является общим для всех реализаций, то предположения, которые могут сделать клиенты о поведении метода EatBanana, должны быть достаточно неопределенными, чтобы позволить каждой обезьяне – гориллам, шимпанзе и орангутангам (все они могут реализовывать интерфейс IАре ), получить свои допустимые (но слегка различные) интерпретации данной операции. Без этой гибкости полиморфизм невозможен.
   СОМ определенно трактует интерфейсы, реализации и классы как три различных понятия. Интерфейсы являются абстрактными протоколами для связи с объектом. Реализации – это конкретные типы данных, поддерживающие один или несколько интерфейсов с помощью точных семантических интерпретаций каждой из абстрактных операций интерфейса. Классы – это именованные реализации, представляющие собой конкретные типы, которым можно приписывать значения, и формально называются СОМ-классами, или коклассами (coclasses).
   В смысле инкапсуляции о СОМ-классе известно только его имя и потенциальный список интерфейсов, которые он выставляет. Подобно СОМ-интерфейсам, СОМ-классы именуются с использованием GUID (globally unique identifier – глобально уникальный идентификатор), хотя если GUID используются для именования СОМ-классов, то они называются идентификаторами класса – CLSID. Аналогично именам интерфейсов, эти имена классов должны быть хорошо известны клиенту до того, как он их использует. Поскольку для обеспечения полиморфизма СОМ-интерфейсы являются семантически неопределенными, то СОМ не позволяет клиентам просто запрашивать любую доступную реализацию данного интерфейса. Вместо этого клиенты должны точно специфицировать требуемую реализацию. Это лишний раз подчеркивает тот факт, что СОМ-интерфейсы – это всего лишь абстрактные коммуникационные протоколы, единственное назначение которых – обеспечить клиентам связь с объектами, принадлежащими конкретным, имеющим ясную цель классам реализации [1].
   Кроме того, что реализации могут быть именованы с помощью CLSID, СОМ поддерживает текстовые псевдонимы, так называемые программные идентификаторы (programmatic identifiers), иначе ProgID. Эти ProgID поступают в формате libraryname.classname.version и, в отличие от CLSID, являются уникальными только по соглашению. Клиенты могут преобразовывать ProgID в CLSID и обратно с помощью API-функций СОМ CLSIDFromProgID и ProgIDFromCLSID:
 
   HRESULT CLSIDFromProgID([in, string] const OLECHAR *pwszProgID, [out] CLSID *pclsid);
   HRESULT ProgIDFromCLSID([in] REFCLSID rclsid, [out, string] OLECHAR **ppwszProgID);
 
   Для преобразования ProgID в CLSID нужно просто вызвать CLSIDFromProgID:
 
   HRESULT GetGorillaCLSID(CLSID& rclsid)
   {
   const OLECHAR wszProgID[] = OLESTR(«Apes.Gorilla.1»);
   return CLSIDFromProgID(wszProgID, &rclsid);
   }
 
   На этапе выполнения будет просматриваться база данных конфигураций СОМ для преобразования ProgID Apes.Gorilla.1 в CLSID, соответствующий классу реализации СОМ.
 

Объекты классов

   Основное требование всех СОМ-классов состоит в том, что они должны иметь объект класса. Объект класса – это единственный экземпляр (синглетон), связанный с каждым классом, который реализует функциональность класса, общую для всех его экземпляров. Объект класса ведет себя как метакласс по отношению к заданной реализации, а реализуемые им методы выполняют роль статических функций-членов из C++. По логике вещей, может быть только один объект класса в каждом классе; однако в силу распределенной природы СOМ каждый класс может иметь по одному объекту класса на каждую хост-машину (host machine), на учетную запись пользователя или на процесс, – в зависимости от того, как используется этот класс. Первой точкой входа в реализацию класса является ее объект класса.
   Объекты класса являются очень полезными программистскими абстракциями. Объекты класса могут вести себя как известные объекты (когда их идентификатор CLSID выступает в качестве имени объекта), которые позволяют нескольким клиентам связываться с одним и тем же объектом, определенным с помощью данного CLSID. В то время как системы в целом могли быть созданы с использованием исключительно объектов класса, объекты класса часто используются как посредники (brokers) при создании новых экземпляров класса или для того, чтобы найти имеющиеся экземпляры, определенные с помощью какого-нибудь известного имени объекта. При использовании в этой роли объект класса обычно объявляет только один или два промежуточных интерфейса, которые позволят клиентам создать или найти те экземпляры, которые в конечном счете будут выполнять нужную работу. Например, рассмотрим описанный ранее интерфейс IАре . Объявление интерфейса IАре не нарушит законы СОМ для объекта класса:
 
   class GorillaClass : public IApe
   {
   public:
   // class objects are singletons, so don't delete
   // объекты класса существуют в единственном экземпляре,
   // так что не удаляйте их
   IMPLEMENTUNKNOWNNODELETE (GorillaClass)
   BEGININTERFACETABLE(GorillaClass)
   IMPLEMENTSINTERFACE(IApe)
   ENDINTERFACETABLE()
   // IApe methods
   // методы IApe
   STDMETHODIMP EatBanana(void);
   STDMETHODIMP SwingFromTree(void);
   STDMETHODIMP getWeight(long *plbs);
   };
 
   Если для данного класса C++ может существовать лишь один экземпляр (так ведут себя все объекты классов в СОМ), то в любом заданном экземпляре может быть только одна горилла (gorilla). Для некоторых областей одноэлементных множеств достаточно. В случае с гориллами, однако, весьма вероятно, что клиенты могут захотеть создавать приложения, которые будут использовать несколько различных горилл одновременно. Чтобы обеспечить такое использование, объект класса не должен экспортировать интерфейс IApe , а вместо этого должен экспортировать новый интерфейс, который позволит клиентам создавать новых горилл и/или находить известных горилл по их имени. Это потребует от разработчика определить два класса C++: один для реализации объекта класса и другой для реализации действительных экземпляров класса. Для реализации гориллы класс C++, который определяет экземпляры гориллы, будет реализовывать интерфейс IApe:
 
   class Gorilla : public IApe
   {
   public:
   // Instances are heap-based, so delete when done
   // копии размещены в куче, поэтому удаляем после выполнения
   IMPLEMENTUNKNOWN()
   BEGININTERFACETABLE()
   IMPLEMENTSINTERFACE(IApe)
   ENDINTERFACETABLE()
   // IApe methods
   // методы IApe
   STDMETHODIMP EatBanana(void);
   STDMETHODIMP SwingFromTree(void);
   STDMETHODIMP getWeight(long *plbs):
   };
 
   Второй интерфейс понадобится для определения тех операций, которые будет реализовывать объект класса Gorilla:
 
   [object, uuid(753A8AAC-A7FF-11d0-8C30-0080C73925BA)]
   interface IApeClass : IUnknown
   {
   HRESULT CreateApe([out, retval] IApe **ppApe);
   HRESULT GetApe([in] long nApeID, [out, retval] IApe **ppApe);
   [propget]
   HRESULT AverageWeight([out, retval] long *plbs);
   }
 
   Получив это определение интерфейса, объект класса будет реализовывать методы IApeClass или путем создания новых экземпляров С++-класса Gorilla (в случае CreateApe), или преобразованием произвольно выбранного имени объекта (в данном случае типа integer) в отдельный экземпляр (в случае GetApe):
 
   class GorillaClass : public IApeClass
   {
   public: IMPLEMENTUNKNOWNNODELETE(GorillaClass)
   BEGININTERFACETABLE(GorillaClass)
   IMPLEMENTSINTERFACE(IApeClass)
   ENDINTERFACETABLE()
   STDMETHODIMP CreateApe(Ape **ppApe)
   {
   if ((*ppApe = new Gorilla) == 0) return EOUTOFMEMORY;
   (*ppApe)->AddRef();
   return SOK;
   }
   STDMETHODIMP GetApe(long nApeID, IApe **ppApe)
   {
   // assume that a table of well-known gorillas is
   // being maintained somewhere else
   // допустим, что таблица для известных горилл
   // поддерживается где-нибудь еще
   extern Gorilla *grgWellKnownGorillas[];
   extern int gnMaxGorillas;
   // assert that nApeID is a valid index
   // объявляем, что nApeID – допустимый индекс
   *ррАре = 0;
   if (nApeID > gnMaxGorillas || nApeID < 0) return EINVALIDARG;
   // assume that the ID is simply the index into the table
   // допустим, что ID – просто индекс в таблице
   if ((*ppApe = grgWellKnownGorillas[nApeID]) == 0) return EINVALIDARG;
   (*ppApe)->AddRef();
   return SOK;
   }
   STDMETHODIMP getAverageWeight(long *plbs)
   {
   extern *grgWellKnownGorillas[];
   extern int gnMaxGorillas;
   *plbs = 0;
   long lbs;
   for (int i = 0; i < gnMaxGorillas; i++)
   {
   grgWellKnownGorillas[i]->getWeight(&lbs);
   *plbs += lbs;
   }
   // assumes gnMaxGorillas is non-zero
   // предполагается, что gnMaxGorillas ненулевой
   *plbs /= gnMaxGorillas;
   return SOK;
   }
   };
 
   Отметим, что в этом коде предполагается, что внешняя таблица известных горилл уже поддерживается – или самими копиями Gorilla, или каким-нибудь другим посредником (agent).
 

Активация

   Клиентам требуется механизм для поиска объектов класса. В силу динамической природы СОМ это может привести к загрузке библиотеки DLL или запуску обслуживающего процесса (server process). Эта процедура вызова объекта к жизни называется активацией объекта.
   В СОМ имеется три модели активации, которые можно использовать для занесения объектов в память, чтобы сделать возможными вызовы методов. Клиенты могут попросить СОМ связать объект класса с данным классом. Кроме того, клиенты могут попросить, чтобы СОМ создала новые экземпляры классов, определенные с помощью CLSID. Наконец, клиенты могут попросить СОМ вызвать к жизни перманентный (persistent) объект, состояние которого определено как постоянное. Из этих трех моделей только первая (связывание с объектом класса) является абсолютно необходимой. Две другие модели являются просто оптимизациями обычно применяющихся способов активации. Дополнительные, определенные пользователем, модели активации могут быть реализованы в терминах одного (или более) из этих трех примитивов.
   Каждая из описанных трех моделей активации пользуется услугами имеющегося в СОМ диспетчера управления сервисами SCM (Service Control Manager)[1]. SCM является основной точкой рандеву для всех запросов на активацию в каждой отдельной машине. Каждая хост-машина, поддерживающая СОМ, имеет свой собственный локальный SCM, который переадресовывает удаленные запросы на активацию на SCM удаленной машины, где этот запрос будет трактоваться как локальный запрос на активацию. SCM используется только для того, чтобы активировать объект и привязать к нему начальный указатель интерфейса. Как только объект активирован, SCM более не связан с вызовом методов клиента и объекта. Как показано на рис. 3.1, под Windows NT SCM реализован в службе RPCSS (Remote Procedure Call Service System – система сервиса удаленного вызова процедур). Службы SCM объявляются в программы как высокоуровневые типы моникеров[2] и как низкоуровневые API-функции, причем все они реализованы в библиотеке СОМ (как это называется в Спецификации СОМ). Под Windows NT большая часть библиотеки СОМ реализована в OLE32.DLL. Для повышения эффективности библиотека СОМ может использовать локальный или кэшированный режим, чтобы избежать ненужных запросов службы RPCSS со стороны IPC (interprocess communication – межпроцессное взаимодействие).
   Напомним, что главным принципом СОМ является разделение интерфейса и реализации. Одной из деталей реализации, скрытых от клиента, является местонахождение реализации объекта. Невозможно определить, не только на каком хосте был активирован объект, но и был ли локальный объект активирован в клиентском процессе или в отдельном процессе на локальной машине. Это дает разработчикам объектов очень большую гибкость при решении того, как и где использовать реализации объектов, учитывая такие проблемы, как устойчивость к сбоям (robustness), обеспечение безопасности, распределение нагрузки и производительность. Клиент имеет возможность во время активации указать свои предпочтения относительно того, где будет активирован объект. Многие клиенты, однако, выражают свое безразличие к данному вопросу. В таком случае этот выбор сделает SCM, исходя из текущей конфигурации нужного класса.
   Когда объект активирован внутри процесса, то в процесс клиента загружается та библиотека DLL, которая реализует методы объекта, и все данные-члены хранятся в адресном пространстве клиента. Так как не требуется никаких переключении процессов, то эффективность вызова методов чрезвычайно высока. Кроме того, клиентский поток может быть использован для прямого выполнения кода метода, при условии, что требования по организации поточной обработки (threading requirements) объекта соответствуют клиентским требованиям. Если у клиента и у объекта требования по организации поточной обработки совместимы, то также не нужно никаких переключении потоков. Если вызовы метода могут выполняться с использованием клиентского потока, после активации объекта не требуется участия никакой промежуточной среды времени выполнения, и цена вызова метода просто равна вызову виртуальной функции. Это обстоятельство делает СОМ, встроенный в процесс, особенно хорошо приспособленным для приложений, чувствительных к эффективности выполнения, так как вызов метода обходится не дороже, чем обычный вызов глобальной функции в DLL[3].
   Когда объект активирован извне процесса (то есть в другом процессе на локальной или удаленной машине), то код, реализующий методы объекта, выполняется в процессе определенного сервера и все данные-члены объекта сохраняются в адресном пространстве процесса сервера. Чтобы позволить клиенту связываться с внепроцессным (out-of-process ) объектом, СОМ прозрачно (скрытно от клиента) возвращает ему «заместитель» (proxy ) во время активации. В главе 5 подробно обсуждается, что этот «заместитель» выполняется в клиентском потоке и переводит вызовы метода, преобразованные в RPC-запросы (Remote Procedure Call – удаленный вызов процедуры), в контекст исполнения сервера, где эти RPC-запросы затем преобразуются обратно в вызовы метода текущего объекта. Это делает вызов метода менее эффективным, так как при каждом обращении к объекту требуются переключение потока и переключение процесса. К преимуществам внепроцессной (то есть работающей не в клиентском процессе) активации относятся изоляция ошибок, распределение и повышенная безопасность. В главе 6 внепроцессная активация будет рассматриваться подробно.
 

Использование SCM

   Напомним, что SCM поддерживает три примитива активации (связывание с объектами класса, связывание с экземплярами класса, связывание с постоянными экземплярами из файлов). Как показано на рис. 3.2, эти примитивы логически разделены на уровни[1]. Примитивом нижнего уровня является связывание с объектом класса. Этот примитив также наиболее прост для понимания.
   Вместо того чтобы вручную загружать код класса, клиенты пользуются услугами SCM посредством низкоуровневой API-функции СОМ CoGetClassObject. Эта функция запрашивает SCM присвоить значение указателю на требуемый объект класса:
 
   HRESULT CoGetClassObject(
   [in] REFCLSID rclsid,
   // which class object?
   // Какой объект класса?
   [in] DWORD dwClsCtx,
   // locality?
   //местонахождение?
   [in] COSERVERINFO *pcsi,
   // host/security info
   //сведения о сервере и обеспечении безопасности
   [in] REFIID riid,
   // which interface?
   // какой интерфейс?
   [out, iidis(riid)] void **ppv);
   // put it here!
   // поместим его здесь!
   Первый параметр в CoGetClassObject показывает, какой класс реализации запрашивается. Последний параметр – это ссылка на указатель интерфейса, с которым нужно связаться, а четвертый параметр – это просто IID , описывающий тип указателя интерфейса, на который ссылается последний параметр. Более интересные параметры – второй и третий, которые определяют, когда объект класса должен быть активирован.
   В качестве второго параметра CoGetClassObject принимает битовую маску (bitmask), которая позволяет клиенту указать характеристики скрытого и живучего состояний объекта (например, будет ли объект запущен в процессе, вне процесса или вообще на другом сервере). Допустимые значения для этой битовой маски определены в стандартном перечислении CLSCTX:
 
   enum tagCLSCTX { CLSCTXINPROCSERVER = 0х1,
   // run -inprocess
   // запуск в процесс
   CLSCTXINPROCHANDLER = 0х2,
   // see note[2]
   // смотрите сноску[2]
   CLSCTXLOCALSERVER = 0х4,
   // run out-of-process
   // запуск вне процесса
   CLSCTXREMOTESERVER = 0х10
   // run off-host
   // запуск вне хост-машины
   } CLSCTX;
 
   Эти флаги могут быть подвергнуты побитному логическому сложению (bit-wise-ORed together), и в случае, когда доступен более чем один запрошенный CLSCTX, СОМ выберет наиболее эффективный тип сервера (это означает, что СОМ будет, когда это возможно, использовать наименее значимый бит битовой маски). Заголовочные файлы SDK также включают в себя несколько сокращенных макросов, которые сочетают несколько флагов CLSCTX , используемых во многих обычных сценариях:
 
   #define CLSCTXINPROC (CLSCTXINPROCSERVER |
   \ CLSCTXINPROCHANDLER)
   #define CLSCTXSERVER (CLSCTXINPROCSERVER |
   \ CLSCTXLOCALSERVER |
   \ CLSCTXREMOTESERVER)
   #define CLSCTXALL (CLSCTXINPROCSERVER |
   \ CLSCTXINPROCHANDLER |
   \ CLSCTXLOCALSERVER |
   \ CLSCTXREMOTESERVER)
 
   Заметим, что такие среды, как Visual Basic и Java, всегда используют CLSCTXALL, показывая тем самым, что подойдет любая доступная реализация.
   Третий параметр CoGetClassObject – это указатель на структуру, содержащую информацию об удаленном доступе и безопасности. Эта структура имеет тип COSERVERINFO и позволяет клиентам явно указывать, какой машине следует активировать объект, а также как конфигурировать установки обеспечения безопасности, используемые при создании запроса на активацию объекта:
 
   typedef struct COSERVERINFO
   {
   DWORD dwReserved1;
   // reserved, must be zero
   // зарезервировано, должен быть нуль
   LPWSTR pwszName;
   // desired host name, or null
   // желаемое имя хост-машины или нуль
   COAUTHINFO *pAuthInfo;
   // desired security settings
   // желаемые установки безопасности DWORD dwReserved2;