Комплементация ) .Если сочетаемые мутации принадлежат одному гену, то в гибриде обе копии данного гена повреждены и обнаруживается мутантный фенотип (мутации некомплементарны). Усовершенствование транс-теста, предложенное Э. Льюисом, состоит в исследовании сочетаемых мутаций также в цис-положении для исключения артефактов за счёт взаимодействия генов на уровне генных продуктов. Если фенотип гибрида при Ц.-т.-т. одинаков в цис- и транс-положениях (нет цис-транс-эффекта), то исследуемые мутации принадлежат разным генам. Если же фенотип гибрида в цис- и транс-положениях различен (есть цис-транс-эффект), то мутации принадлежат одному гену. Американский генетик С. Бензер (1957) предложил единицу, определяемую Ц.-т.-т., называть цистроном.Получение цис-положения для мутаций, близко расположенных в хромосоме, затруднено, поэтому Ц.-т.-т. проводится редко. Открытие случаев комплементации некоторых мутаций одного гена, а также цис-транс-эффекта для мутаций разных генов одного оперона уменьшило теоретическое значение как транс-теста, так и Ц. -т. -т .В практике генетического анализа по-прежнему широко применяется транстест для выявления принадлежности мутаций одному гену (цистрону).
     Лит.:Стент Г., Молекулярная генетика, пер. с англ., М., 1974; Физиологическая генетика, Л., 1976.
      Т. Р. Сойдла.

рекомбинации ) и «мутон» (единица мутации ) .Бензер высказал верное предположение, что все 3 единицы не что иное, как разные по протяжённости участки молекул нуклеиновых кислот. Величина Ц. в среднем равна 1200 нуклеотидам и чаще всего колеблется между 400 и 4000 нуклеотидами. В современной генетике Ц. обычно определяется как участок нуклеиновой кислоты, кодирующий структуру одного полипептида, т. о., термины «Ц.» и ген являются синонимами. См. также Цис-транс-тест.
   
      Лит.:Физиологическая генетика, Л., 1976.

Мерве ) ,за пределами городских укреплений (например, Пенджикент ) или внутри города (например, Ц. Салах-ад-дина в Каире ) .Нередко Ц., воздвигнутая на высоком искусственном холме, господствовала над городом ( Халеб ) .См. также Арк, Крепость.
     2) В переносном смысле — главный опорный пункт (центр) какая-либо организации, твердыня, оплот.

цитварное семя,используют как противоглистное средство. Заготавливают корзинки и траву. Сантонин содержится и в др. видах полыни (A. szovitziana, A. transiliensis, A. santonica).
     Лит.:Атлас лекарственных растений СССР, М., 1962.
      Т. Г. Леонова.

цитварной полыни;содержит не менее 2% сантонина. Применяют как противоглистное средство при аскаридозе.

куркумы,используемое в парфюмерии.

цитозина,углевода рибозы и фосфорной кислоты (см. формулу в ст. Нуклеотиды ) .Бесцветные пластинки, хорошо растворимые в воде; молекулярная масса 323,2. Присутствует во всех живых клетках, являясь одним из 4 основных типов мономеров, из которых построены полимерные цепи рибонуклеиновых кислот.

цитозина и углевода рибозы.Длинные иглоподобные кристаллы или белый кристаллический порошок. Хорошо растворим в воде, гигроскопичен; молекулярная масса 243,2. Содержится во всех живых клетках в составе рибонуклеиновых кислот и нуклеотидов.

ракитник.

цитология ) .

цито... и генетика ) ,наука, изучающая закономерности наследственности во взаимосвязи со строением и функциями различных внутриклеточных структур. Основной предмет исследований Ц. — хромосомы,их морфология, структурная и химическая организация, функции и поведение в делящихся и неделящихся клетках. Как пограничная наука Ц. использует методы генетики и цитологии и тесно связана с разделами этих наук — молекулярной генетикой, цитохимией, кариологией, кариосистематикой и др. Подразделяется на общую Ц., изучающую общие клеточные основы наследственности, и Ц. растений, животных, человека.
     Ц. возникла в начале 20 в. после переоткрытия в 1900 Менделя законов,в результате поисков цитологических объяснений менделевского расщепления и независимого распределения генов. К этому времени было накоплено значительное количество данных по морфологии хромосом (русский учёный И. Д. Чистяков, 1872, 1874; немецкий учёный Э. Страсбургер, 1875, немецкий учёный В. Флемминг, 1882, 1892) и поведению их в митозе и мейозе (Э. Страсбургер; В. Флемминг; русский учёный П. И. Перемежко, 1878; бельгийский учёный Э. ван Бенеден, 1883; немецкие учёные Т. Бовери, О. Гертвиг, 1884). Было выявлено наличие парного (диплоидного) набора хромосом в соматических (неполовых) клетках и вдвое уменьшенного (гаплоидного) набора в половых клетках и созданы предпосылки для установления связи между хромосомами и «наследственными факторами» Менделя, природа которых не была тогда ясна. В 1902 американский учёный У. Сеттон и немецкий учёный Т. Бовери, обнаружившие связь между передачей из поколения в поколение хромосом и «наследственных факторов» (название впоследствии генами), предположили, что хромосомы являются носителями генов и обеспечивают преемственность признаков в ряду поколений организмов. Основные положения хромосомной теории наследственности,обоснованной и развитой американским генетиком Т. Х. Морганом и его школой, стали теоретическим фундаментом Ц.
     В СССР первые цитогенетические исследования были выполнены С. Г. Навашиным. Исследуя метафазные хромосомы растения гальтонии беловатой (Galtonia candicans), С. Г. Навашин установил наличие пары хромосом, обладающих на одном конце маленьким тельцем — спутником, что блестяще подтвердило правильность теории индивидуальности хромосом и непарную их гомологичность (1912). С. Г. Навашину принадлежит также открытие основного принципа строения хромосом из двух плеч, обусловленного прикреплением нитей веретена деления клетки к строго определенного участку хромосомы (1914). Значительную роль в становлении Ц. как самостоятельной науки сыграли книги советского учёного Г. А. Левитского «Материальные основы наследственности» (1924) и немецкого учёного К. Белара «Цитологические основы наследственности» (1928, рус. пер. 1934). Фундаментальные работы в области Ц. выполнены советскими учёными Н. К. Кольцовым, А. А. Прокофьевой-Бельговской, Б. Л. Астауровым, Г. Д. Карпеченко и др.
     В процессе развития Ц. были получены цитологические обоснования явлений расщепления, независимого распределения, сцепления генов и кроссинговера.При изучении поведения хромосом в мейозе установлено, что расщепление признаков в потомстве обеспечивается процессом конъюгации хромосом, в результате расхождения которых в 1 мейотическом делении к разным полюсам клетки гамета содержит одинарный (гаплоидный) их набор вместо двойного (диплоидного), имеющегося в соматических клетках организма. Независимое распределение генов, расположенных в негомологичных хромосомах, обусловлено свободной перекомбинацией в мейозе хромосом, полученных от отца и матери. Подтверждено, что сцепление генов может нарушаться в процессе кроссинговера в результате обмена участками между гомологичными хромосомами, а этот обмен приводит к рекомбинации наследственного материала.
     При цитогенетическом анализе процесса конъюгации хромосом обнаружено, что нарушение конъюгации приводит к неправильному расхождению хромосом и образованию гамет с набором хромосом, не кратным гаплоидному, т. е. к анеуплоидии, а это вызывает снижение плодовитости или бесплодие у гибридов (особенно у отдалённых) растений и животных. В 1927 Г. Д. Карпеченко разработал метод восстановления плодовитости гибридов растений, заключающийся в удвоении их хромосомного набора, т. е. в создании организмов-амфидиплоидов. Метод широко используется в селекции растений (большое значение придаётся пшенично-ржаным амфидиплоидам — тритикале). В 1936 Б. Л. Астауровым получены первые амфидиплоиды у животных (тутовый шелкопряд). Изучение конъюгации хромосом, которая служит показателем генетического родства, позволило японскому цитогенетику Х. Кихаре (1924) разработать один из цитогенетических методов — геномный анализ.Этому анализу были подвергнуты пшеницы, хлопчатники и др. полиплоидные (см. Полиплоидия ) культурные растения и их дикие сородичи, в результате чего удалось установить происхождение многих культурных растений, использовать дикую флору в целях селекции, для обогащения хозяйственно-полезных свойств культурных растений, изучать их эволюцию.
     Микроскопическим анализом структуры и поведения хромосом в митозе и мейозе обнаружены изменения в хромосомных наборах растений, животных и человека — хромосомные перестройки (основополагающие работы выполнены американским цитогенетиком Б. Мак-Клинток на кукурузе, 1929—38). В дальнейших исследованиях хромосомные перестройки классифицированы, установлены многие их генетические последствия, влияние на их возникновение ионизирующих излучений. Совершенствование методов исследования позволило приступить к изучению полиморфизма структуры хромосом в природе (работы Н. П. Дубинина с сотрудниками, школы Ф. Г. Добжанского в США, 30—40-е гг.). Последующими работами цитогенетиков обнаружено, что многие хромосомные перестройки, а также явления моносомии (утеря одной хромосомы в хромосомном наборе) и трисомии (добавление одной хромосомы к набору) обусловливают ряд аномалий в развитии и многие заболевания человека (см. Хромосомные болезни ) .В связи с этим началось интенсивное развитие Ц. человека и генетики медицинской.
     Применение в Ц. электронной микроскопии, методов радиоактивных изотопов, микрофотометрии, рентгеноструктурного анализа и др. значительно расширило и углубило представления о тонкой структурной организации хромосом (см. Хромонема, Хроматида, Хромомеры) ,позволило исследовать их вещество (см. Хроматин ) и изучать функционирование хромосом в процессах репликации,синтеза рибонуклеиновой кислоты ( транскрипция ) и белков ( трансляция ) .
     С 60-х гг. для решения ряда генетических проблем широко применяется цитогенетический метод культуры соматических клеток (см. Соматических клеток генетика ) .Получила развитие гипотеза о дифференциальной активности генов как основе клеточной дифференцировки (английский учёный Дж. Гёрдон, 1962—76). В связи с обнаружением дезоксирибонуклеиновой кислоты (ДНК) в хлоропластах и митохондриях (немецкий учёный К. Корренс, 1909, 1937, и др.) развёртываются исследования наследственности цитоплазматической и взаимоотношений её с ядерной наследственностью.
     Для Ц. 70-х гг. характерно изучение строения и функций хромосом на молекулярном уровне. Данные Ц. важны для понимания эволюции кариотипов, а следовательно, процессов видообразования.
     Проблемы Ц. разрабатываются в СССР в институте цитологии АН СССР, институте общей генетики АН СССР, институте цитологии и генетики Сибирского отделения АН СССР, институте медицинской генетики АМН, институте молекулярной биологии АН СССР, на кафедрах генетики и цитологии. Работы по Ц. печатаются в советских журналах: «Генетика» (с 1965), «Цитология» (с 1959), «Цитология и генетика» (с 1967); в зарубежных журналах: «Canadian Journal of Genetics and Cytology» (Ottawa, с 1959), «Chromosoma» (В. — W., с 1939), «Cytogenetics» (Basel, с 1962), «Cytologia» (Tokyo, с 1929), «Experimentaf Cell Research» (N. Y., с 1950), «American Journal of Human Genetics» (Balt., с 1949).
     Лит.:Астауров Б. Л., Цитогенетика развития тутового шелкопряда и ее экспериментальный контроль, М., 1968; Суонсон К., Мерц Т., Янг У., Цитогенетика, пер. с англ., М., 1969; Константинов А. В., Цитогенетика, Минск, 1971; Цитогенетика пшеницы и ее гибридов, М., 1971; Карпеченко Г. Д., Избр. труды, М., 1971; Цитология и генетика мейоза, М., 1975; Burnham С. R., Discussions in cytogenetics, Minneapolis, 1962.
      В. В. Хвостова.

пиримидиновых оснований.Белые кристаллы или тонкие блестящие пластинки; молекулярная масса 111,1. Содержится во всех живых клетках, входя в состав нуклеотидов—соединений, из которых состоят нуклеиновые кислоты, коферменты и некоторые др. биологически активные вещества. С углеводом рибозой образует нуклеозид цитидин.

цито... и греч. kнnesis — движение), разделение тела растительной или животной клетки; то же, что