Перенесение генетических представлений в область иммунологии позволило советскому учёному В. П. Эфроимсону сформулировать эволюционно-генетическую концепцию иммуногенеза, объясняющую внутривидовое антигенное разнообразие и гетерогенность антител по специфичности. Каждая здоровая зрелая в иммунологическом отношении особь способна к иммунному ответу на тканевые антигены особи с другим генотипом. Таким образом, тканевая несовместимость — универсальная биологическая закономерность. Лишь однояйцевые близнецы и животные одной чистой линии не разделены барьером тканевой несовместимости, выраженность которой зависит от степени несходства генотипов донора и реципиента. Для успешных пересадок органов и тканей, переливаний крови и клеток костного мозга очень важно снизить до минимума величину этого несходства путём подбора совместимого донора. Изучение клеточных антигенов, их наследования и разнообразия, их обнаружение (типирование) — это те разделы И. , которые особенно важны для трансплантологии, трансфузиологии, иммуногематологии и клинической иммунологии. См. также Иммунология .
     Лит.:Медведев Н. Н., Линейные мыши, Л., 1964; Хатт Ф., Генетика животных. пер. с англ., М., 1969; Эфроимсон В. П., Иммуногенетика, М., 1971; Hildemann W. Н., Immunogenetics, San Francisco, 1970.
      А. Н. Мац, О. В. Рохлин.
   Трёхмерное изображение зависимости жизнеспособности макроорганизма от его устойчивости к патогенным агентам и от вирулентности возбудителя.

антителами к каким-либо антигенам . Известно 5 классов И. человека: G, М, A, D, Е ( см. табл. ). Наиболее полно изучены И. класса G (IgG). Их молекулы построены из двух идентичных лёгких (молекулярная масса 22000) и двух идентичных тяжёлых (молекулярная масса 55000—70000) полипептидных цепей, скрепленных дисульфидными связями ( см. рис. ). При расщеплении протеолитическими ферментами (например, папаином) молекула И. распадается на три части: два одинаковых фрагмента (обозначаются Fab), каждый из которых сохраняет способность к связыванию с антигеном, и фрагмент (обозначается Fc), способствующий прохождению И. через биологические мембраны . Все три фрагмента соединены короткими гибкими участками, расположенными в середине тяжёлой цепи. Гибкость позволяет молекулам И. оптимально присоединяться к антигенам, имеющим разное пространственное строение. Участки молекулы, ответственные за связывание с антигеном ( активный центр ), образованы N-кoнцевыми (несут на конце аминогруппу — NH 2) отрезками тяжёлых и лёгких цепей. Последовательность аминокислот в этих отрезках специфична для каждого IgG, в других участках цепей она почти не варьирует. На основании различий в строении тяжёлых цепей И. относят к определённым классам.
     Особенности разных классов иммуноглобулинов здорового человека

Класс иммуноглобулина Молекулярная масса Содержание углеводов, % Содержание в сыворотке, мг  %
lgG 140 000 2 800-1680
lgM 900 000 10 50-190
lgA 170 000 и выше 7 140-420
lgD 180 000 12 3-40
lgE 196 000 10 0,01-0,14

     Большинство антител находится главным образом среди IgG (применяемые в лечебных целях препараты гамма-глобулинов состоят преимущественно из IgG). IgM эволюционно наиболее древние И.; они синтезируются на первых стадиях иммунной реакции. Их молекулы состоят из 5 мономерных субъединиц, каждая из которых напоминает молекулу IgG. Для IgA характерна способность проникать в различные секреты (слюну, молозиво, кишечный сок), где они встречаются в полимерной форме. Антитела, участвующие в аллергических реакциях (см. Аллергия ), относятся к недавно открытым IgE.
     И. синтезируются лимфатическими клетками. При некоторых поражениях этих клеток в крови и моче накапливается большое количество так называемых миеломных И., которые, в отличие от И. здорового организма, однородны по составу. См. также Иммунология и Иммуногенетика .
     Лит.:Гауровиц Ф., Иммунохимия и биосинтез антител, пер. с англ., М., 1969: Незлин Р. С., Биохимия антител, М., 1966; Портер Р., Структура антител, в сборнике: Молекулы и клетки, в. 4, пер. с англ., М., 1969; Kabat Е. A., Structural concepts in immunology and immunochemistry, N. Y., 1968.
      Р. С. Незлин.
   Схема молекулы иммуноглобулина G. Показаны две тяжёлые и две лёгкие полипептидные цепи, соединённые межцепьевыми дисульфидными связями. Лёгкая цепь состоит из 2, тяжёлая — из 4 структурных единиц (петель), образованных внутрицепьевыми дисульфидными связями. Жирными линиями обозначены N-кoнцевые участки цепей, стрелкой — участок, чувствительный к протеолитическому расщеплению, в результате которого молекула распадается на два Fab —фрагмента, сохраняющих активность антител, и на Fc —фрагмент.

иммунитет и диагностика ), раздел практической иммунологии , задача которого — распознавание инфекционных болезней при помощи серологических реакций (бактериолиза, агглютинации, преципитации и др.), а также аллергических диагностических проб . Серологическими реакциями пользуются также при определении групп крови и в судебной медицине для выяснения принадлежности крови человеку или тому или иному виду животных.
     И. используется в ветеринарной практике для распознавания многих инфекционных болезней животных, а также выявления больных животных и микробоносителей. Для диагностики туберкулёза, бруцеллёза, сапа И. осуществляется систематически, в плановом порядке.

иммунитет и ...логия ), наука о защитных реакциях организма, направленных на сохранение его структурной и функциональной целостности и биологической индивидуальности. И. — быстро развивающаяся дисциплина широкого биологического профиля, выросшая как отрасль медицинской микробиологии. Теоретические направления в И. — изучение на клеточном и молекулярном уровне механизма образования антител, их патогенетической роли, филогенеза и онтогенеза иммунной системы — всё чаще объединяют термином иммунобиология.
     И. берёт своё начало из следующего наблюдения: люди, перенёсшие заразное заболевание, обычно могут без опасности для себя ухаживать за больными во время эпидемий данного заболевания. В 1796 Э. Дженнер разработал способ искусственной иммунизации против оспы путём заражения человека коровьей оспой. Начало И. как самостоятельной науке положило открытие Л. Пастера (1880), обнаружившего, что иммунизация кур старой холерной культурой создаёт у них устойчивость к заражению высоковирулентным возбудителем куриной холеры. Пастер сформулировал основной принцип создания вакцин и получил вакцины против сибирской язвы и бешенства. И. И. Мечников (1887) открыл феномен фагоцитоза и создал клеточную (фагоцитарную) теорию иммунитета. К 1890 работами немецкого бактериолога Э. Беринга и его сотрудников было показано, что в ответ на введение микробов и их ядов в организме вырабатываются защитные вещества — антитела . Немецкий учёный П. Эрлих (1898, 1900) выдвинул гуморальную теорию иммунитета. В 1898—99 бельгийский учёный Ж. Борде и русский учёный Н. Н. Чистович обнаружили образование антител в ответ на введение чужеродных эритроцитов и сывороточных белков. Это открытие положило начало неинфекционной И. В 1900 австрийский иммунолог К. Ландштейнер открыл группы крови человека и создал основу учения о тканевых изоантигенах (см. Антигены ). Новое, предсказанное австралийским учёным Ф. Бёрнетом направление в И. — учение об иммунологической толерантности — возникло после экспериментального воспроизведения этого феномена английским учёным П. Медаваром (1953).
     Начало отечественной И. положили работы И. И. Мечникова, А. А. Безредки, Г. Н. Габричевского, Н. Ф. Гамалеи, Л. А. Тарасевича. Советская И. 20—30-х гг. наряду с решением практических вопросов плодотворно занималась теоретическими исследованиями (работы И. Л. Кричевского, В. А. Барыкина, В. А. Любарского, С. И. Гинзбург-Калининой). В 40—60-е гг. проблемы И. успешно решались под руководством Л. А. Зильбера, П. Ф. Здродовского, Г. В. Выгодчикова, М. П. Покровской, В. И. Иоффе, А. Т. Кравченко, П. Н. Косякова и др.
     И. развивается очень быстрыми темпами, особенно на стыках с химией, генетикой, физиологией, радиобиологией и др. отраслями биологии и медицины. И. состоит из ряда более или менее четко определившихся направлений ( см. рис. 1), перечисленных ниже.
     Иммуноморфология изучает анатомию, гистологию и цитологию иммунной системы организма. В ней используются гистологические и цитологические методы исследования, культивирование клеток вне организма, световая, флуоресцентная и электронная микроскопия, авторадиография и др. В последние годы весь процесс первичного иммунного ответа лимфоидных клеток удалось воспроизвести в пробирке. Установлено, что специфический иммунный ответ, а отчасти и естественная устойчивость организма обеспечиваются функцией его лимфоидной системы и рассеянных по всем тканям фагоцитирующих клеток (см. Фагоцитоз ). Свойством захватывать антиген обладают нейтрофильные и эозинофильные гранулоциты, моноциты и тромбоциты в крови; гистиоциты в соединительной ткани; микроглия в мозге; синусные клетки печени, селезёнки, надпочечников, костного мозга и передней доли гипофиза; ретикулярные клетки селезёнки, лимфатических узлов, костного мозга, тимуса (вилочковой, или зобной, железы) и небольшая часть циркулирующих лимфоцитов. Основная масса введённого во внутреннюю среду организма антигена захватывается, разрушается и устраняется этими клетками. Лишь доли процента антигенных молекул сохраняются долгое время, вызывая специфические иммунологические реакции. Особо важную роль приписывают тем молекулам антигена, которые оседают на поверхности ретикулярных клеток в лимфатических узлах. Иммунный ответ происходит при взаимодействии, по крайней мере, двух типов малых лимфоцитов ( рис. 2), которые постоянно мигрируют в тканях, циркулируя по лимфатическим и кровеносным путям.
     Клетки одного типа (В-клетки) происходят из костного мозга и при встрече с антигеном превращаются в клетки, образующие антитела (плазматические клетки). Клетки другого типа (Т-клетки) происходят из тимуса. Им свойственна способность специфически реагировать на антигенные молекулы и обеспечивать взаимодействие В-клеток с антигеном.
     В иммунологически зрелом (иммунокомпетентном) организме фагоцитирующие клетки и Т- и В-лимфоциты осуществляют все формы специфического ответа: образуют циркулирующие антитела, относящиеся к разным классам иммуноглобулинов (верхняя часть рис. 2), реализуют иммунные реакции клеточного типа — замедленную повышенную чувствительность, отторжение трансплантата и др. Так организм отвечает на ряд бактериальных и паразитарных инвазий (туберкулёз, бруцеллёз, лейшманиоз), а также на пересадку клеток и тканей от другого организма (см. Тканевая несовместимость , Трансплантация ). Дифференцировка и взаимодействие этих клеток под влиянием антигена могут привести к возникновению иммунологической «памяти» или специфической иммунологической толерантности.
     Сравнительная И. изучает иммунный ответ у разных видов животных. Эволюционное толкование явлений иммунитета помогает выяснить их механизмы. Лимфоидная система и способность к образованию специфических антител впервые появляются только у позвоночных. Например, морская минога имеет примитивный лимфоэпителиальный тимус, лимфоидные островки в селезёнке и костном мозге и циркулирующие лимфоциты; у неё образуются антитела и возникает иммунологическая память, но ассортимент антигенов, на которые отвечает минога, очень ограничен. У примитивных хрящевых рыб (акул, скатов) лимфоидная система более развита; они способны реагировать на большее число антигенов. Типичные плазматические клетки появляются у хрящевых, лучепёрых и костистых рыб. У этих животных вырабатывается несколько типов иммуноглобулинов. У земноводных впервые в филогенетическом ряду образуется система плазматических клеток, синтезирующих высоко- и низкомолекулярные иммуноглобулины, различающиеся по антигенным свойствам. Весьма похожая система имеется у пресмыкающихся. Система комплемента (состоящая из различных белков нативной сыворотки), по-видимому, очень древняя, так как в сходной форме имеется как у низших, так и у высших позвоночных.
     У большинства млекопитающих иммунные реакции развиваются в полной мере только после рождения. Во время эмбрионального развития, когда зародыш защищен от действия антигенов, функционирует система избирательного переноса иммуноглобулинов от матери к плоду. Однако к 4—5 месяцам плод человека самостоятельно образует иммуноглобулины М и G. Птицы и млекопитающие, в том числе человек, обладают одинаковым спектром иммунологических реакций. Степень иммунореактивности связана с возрастом и заметно снижается по мере старения организма.
     Физиология иммунных реакций изучает механизмы, с помощью которых организм обнаруживает и удаляет «чужое» — вещества, не являющиеся нормальными компонентами его собственных тканей: мёртвые и злокачественно перерожденные клетки, собственные поврежденные молекулы, чужеродные клетки и молекулы, бактерии, вирусы, простейшие, гельминты и их яды и т. п. Функциональным выражением чужеродности антигена является его способность вызывать образование специфических антител и соединяться с ними. Природа антигенности, вопрос о том, почему организм, не вырабатывая антитела на громадное множество собственных молекул, образует антитела к бесконечному числу чужеродных антигенов, сущность специфического иммунного ответа, в частности синтеза антител, являются главными вопросами так называемой теории образования антител. Предполагают, что образование антител, т. е. биосинтез высокоспециализированных белковых молекул, осуществляется подобно синтезу других белков плазмы крови (см. Иммуногенетика ).
     Общая теория иммунологических реакций должна объяснить физико-химическую природу антигенности, описать молекулярные механизмы синтеза антител и расшифровать иммунохимическую специфичность. Создание такой теории возможно при последовательном решении трёх важнейших и взаимосвязанных проблем иммунного ответа: 1) генетические основы разнообразия иммуноглобулинов; 2) вопросы о том, сколько различных по специфичности антител может синтезировать клетка, о межклеточных взаимодействиях и о том, на каком уровне, клеточном или субклеточном, осуществляется действие антигена; 3) механизм специфической иммунологической толерантности (отсутствие специфического ответа на антиген). Первая попытка химической интерпретации иммунологических реакций была предпринята П. Эрлихом (1900). Он полагал, что каждая антителообразующая клетка обладает преформированной «боковой цепью», случайно пространственно соответствующей антигену. «Боковые цепи», отделившиеся от клетки-носителя и попавшие в кровоток, отождествлялись с антителами. Эта гипотеза поразительно близка к современным представлениям о биосинтезе белка тем, что в ней предполагается предсуществование (до воздействия антигена) генетического кода для каждого вида антител. Антигенные молекулы должны только «выбрать» (произвести селекцию) предсуществующую структуру и усилить её воспроизведение. Популярность селекционной идеи Эрлиха была поколеблена открытием К. Ландштейнера (1936), который показал, что большое количество искусственных антигенов, полученных синтетическим путём, может вызвать образование специфических антител. В связи с этим американские учёные Ф. Брейнль и Ф. Гауровиц, Д. Александер и С. Мадд (1930) предположили, что преформированных антител не существует. Антиген вмешивается в процесс образования молекулы глобулина, нарушая её сборку. В результате образуется антитело со специфичной для данного антигена структурой. Действие антигена в этом случае является инструктивным, что легко объясняет беспредельное разнообразие синтезируемых организмом антител. Американский учёный Л. Полинг (1940) приписывал антигену роль «матрицы», на которой складываются полипептидные цепи антитела. Новым этапом в развитии И. было появление концепции австралийских учёных Ф. Бёрнета и Ф. Феннера (1941), рассматривавших синтез антител как частный случай адаптивного белкового синтеза, подобный синтезу индуцируемых ферментов у бактерий. Предполагалось, что антиген в клетке осуществляет косвенное инструктивное действие, вызывая изменения в комплексе ферментов, участвующих в синтезе молекулы антитела. Впоследствии эта концепция была дополнена гипотезой о существовании особых «меток» для собственных антигенов организма, что объясняло естественную толерантность к ним. Согласно представлению американских учёных Р. Швита и Р. Оуэна (1957), антиген, подобно мутагену , вызывает соответствующие изменения дезоксирибонуклеиновой кислоты (ДНК), следствием которых является биосинтез молекул антител. Американский учёный Д. Голдштейн (1960) предположил аналогичное действие антигена на информационную рибонуклеиновую кислоту (и-РНК). В 1950 немецкий учёный Н. Ерне выдвинул новую гипотезу специфического иммунного ответа, основанную на селекционной идее Эрлиха. Гипотеза «натуральной селекции» Ерне сводилась к тому, что в эмбриональном периоде в тимусе образуются различные по специфичности молекулы антител. Комплекс антигена с соответствующим антителом попадает в синтезирующую антитела клетку, которая использует антитело как модель для образования подобных молекул. Ерне постулировал отсутствие антител к собственным антигенам организма и «распознавание» только чужеродных конфигураций. Дальнейшим развитием селекционной идеи была клонально-селекционная теория приобретённого иммунитета, выдвинутая Ф. Бёрнетом (1957). Клоном называют группу клеток, происшедших путём деления от одной клетки-предшественницы. По Бёрнету, лимфоидная система иммунологически зрелого организма содержит множество (не менее 10 4—10 5) клонов клеток, способных специфически отвечать на различные антигены. Природа генетического разнообразия иммуноглобулинов неизвестна. Однако именно клонально-селекционная теория представляется наиболее правдоподобной и соответствующей современным представлениям о биосинтезе белка. Отсутствие реакции на собственные антигены Бёрнет объяснил устранением «запрещенных клонов» (способных синтезировать антитела к «своему») в эмбриональном периоде. Согласно этой теории, антиген, попадая в организм, «выбирает» клетку, которая способна образовать соответствующее антитело, и стимулирует её к размножению с последующим синтезом антитела. Как происходит этот выбор — на уровне клеточных клонов (как полагает Бёрнет) или субклеточных единиц, — зависит от того, сколько различных по специфичности молекул антител способна синтезировать клетка. Можно думать, что клетка несёт генетическую информацию для синтеза более чем 10 5различных иммуноглобулинов. Однако в результате дифференцировки её способность синтезировать антитела практически подавлена. Антиген вызывает дерепрессию синтеза соответствующих антител, в результате чего синтезируются антитела только одной специфичности. Это положение лежит в основе гипотезы «репрессии-депрессии», выдвинутой американским учёным Л. Силардом, австралийским — И. Финчем и советским учёными В. П. Эфроимсоном, А. Е. Гурвичем и Р. С. Незлиным.