Страница:
В ракетно-космической технике «земля» играет гораздо большую и более ответственную роль, чем в авиации, поэтому для этой техники недооценка «земли» — вредное заблуждение. Только хорошая «земля» дает возможность полноценно проверить и выпустить в космос надежный «борт». Плохая «земля» может привести к аварии еще до запуска. Катастрофа 24 октября 1960 года — жестокий, но поучительный тому пример. Мы имели сотни случаев, к счастью без человеческих жертв, отказов «борта» еще на Земле по причинам ложных команд, подаваемых испытательной «землей».
Петр Куприянчик организовал совместную разработку бортовой схемы «Молнии-1» и испытательной «земли».
Основной объем электрических испытаний был осуществлен наземной станцией, которая получила индекс 11Н650. Ее идеологию разрабатывали Анатолий Максимов, Борис Бугеря, Артур Термосесов. Я высказал идею о полной автоматизации испытаний. При этом потребовалась система регистрации всех испытательных операций. Спрос породил предложение. Инженер Борис Барун предложил Куприянчику устройство автоматической подачи команд на «борт» с помощью перфорированной ленты и автоматическую систему цифропечати всего происходящего на другой ленте. Такая автоматическая система получила название «Волна». Чертежи сложного по тем докомпьютерным временам испытательного оборудования были разработаны в приборном конструкторском отделе Чижикова под руководством Ивана Ивановича Зверева.
«У меня фамилия птичья, — говорил Чижиков, — со зверями я плохо уживаюсь». Идя навстречу «пожеланиям трудящихся», мы разделили конструкторские отделы. За Чижиковым остался «борт», а Звереву поручили всю испытательную «землю». Таким образом, «земля» получила полноценный конструкторский отдел. Нашим приборным производством было изготовлено только два комплекта станций 11Н650 вместе с «Волной»: для КИСа и технической позиции полигона. Уже при испытании первой «Молнии-1» мы поняли, что эпоха полной автоматизации еще не пришла. Требовалось создать компромиссную полуавтоматическую систему, более универсальную, чем 11Н650. Как часто бывает, трудности, возникающие в процессе создания нового, приводят к решениям более удачным, чем первоначально предполагалось.
Идея создания унифицированной наземной испытательной станции «висела в воздухе». В поисках оптимальных решений Юрий Карпов вместе со своими уже обстрелянными на полигонах сподвижниками Владимиром Куянцевым, Владимиром Шевелевьм, Ремом Николаевым предложил структуру испытательной станции, в которой не было полной автоматизации, но зато обеспечивалась более глубокая диагностика, гибкость и возможность оперативного изменения технологии испытаний. В системе предлагалась уплотненная многоканальная линия телесигнализации.
К первым «Молниям» эта система «не успевала». Однако необходимость создания подобной системы была столь очевидной, что я предложил объединить и форсировать разработку всей «земли» в едином коллективе. Работу возглавили Петр Куприянчик и Артур Термосесов. В 1964 году появился изготовленный нашим приборным производством первый образец универсальной испытательной станции.
Соответствующее управление Министерства обороны узаконило эту разработку в качестве универсального средства для наземных испытаний космических объектов и присвоило станции индекс 11Н6110.
Впервые с помощью этой станции начали испытывать первые корабли 7К — будущие «Союзы». Опыт оказался столь удачным, что возникла потребность в изготовлении серии. Это было уже не под силу нашему производству. Без внешнего принуждения за серийный выпуск 11Н6110 взялся директор Азовского оптико-механического завода Георгий Васильев. Станция со временем нашла такое широкое применение, что всего их было выпущено более сотни. Удачные технические решения оказываются долгожителями несмотря на моральное старение. Даже в 1990-е годы, при триумфальном шествии цифровой вычислительной техники с ее безграничными возможностями для автоматизации самых различных видов испытаний, диагностики и обработки информации, старые станции 11Н6110 (спустя 30 лет!) остаются в эксплуатации на заводах и полигонах. В 1966 году, когда мы начали передавать «Молнию-1» Михаилу Решетневу в красноярский филиал, испытания ориентировались уже только на 11Н6110.
На современных спутниках связи выбор типа и конструкции антенн — одна из кардинальных проблем. Для «Молнии-1», не имея опыта, мы решили задачу «в лоб» и предложили две параболические антенны, резервирующие друг друга, диаметром по 1,4 метра. Они устанавливались на специальных штангах и управлялись электрическим приводом. Капланов поддержал наше предложение. Это придало уверенность антенщикам, которые отвечали за преобразование энергии передатчиков его ретранслятора в «конечный продукт» — энергию радиоволн.
Для передачи сигналов с «борта» на все наземные пункты, находящиеся одновременно в зоне радиовидимости, требовалось разработать бортовую антенну направленного излучения на прием и передачу одновременно.
К этому времени антенная лаборатория Михаила Краюшкина разрослась и выделилась в самостоятельный отдел. Коллектив отдела объявил, что антенные проблемы в радиотехнической части они берут на себя, начиная от расчетов и моделирования до сдаточных испытаний. Самую трудную часть задачи выполняли Владлен Эстрович, Иван Дордус, Геннадий Сосулин, Надежда Офицерова и механики макетной мастерской.
На этой и многих последующих разработках очень доходчиво было показано, какое значение для сокращения общего цикла разработки имеют смекалка и золотые руки квалифицированных рабочих, находящихся непосредственно при лаборатории, а не только в цехах завода. С появлением ЦВМ удалось значительно сократить продолжительность расчетно-теоретических работ, предшествующих выпуску чертежей. Однако ни одна остронаправленная антенна, при всей мощи современной вычислительной техники, не получалась без предварительной отработки на макетах. В этом процессе лабораторного моделирования трудно переоценить роли мастера и рабочего, которые понимают инженера с полуслова и не требуют детальных чертежей. Только после многоразовых переделок завод получал оформленные по всем правилам чертежи на изготовление летных образцов антенн. Те, кто окончательно изготавливали антенны в металле, не догадывались, что их проектирование начиналось с решения системы дифференциальных уравнений, открытых еще в прошлом веке.
На облучателе антенны устанавливались «трубы Медведева». Так мы называли оптические датчики, которые, захватив в свое поле зрения края диска Земли, посылали сигналы для управления приводом антенны и разворотом всего объекта так, чтобы в течение всего сеанса связи антенна ориентировалась на центральную часть видимого диска. Борис Медведев — инженер оптико-электрической «Геофизики» — тогда только начинал создавать свой ставший впоследствии богатым перечень всевозможных датчиков для космической техники, а затем и для подводных ракет.
Электромеханический привод для управления антенной оказался сложным механизмом. Он должен был работать в условиях космического вакуума непрерывно в течение каждого сеанса связи. Это была одна из труднейших задач обеспечения надежности. Лев Вильницкий, начальник отдела рулевых машин, приводов и механизмов, и Владимир Сыромятников основное время проводили в цехах завода, дожидаясь, когда можно будет выхватить первый образец привода для отработочных испытаний.
Я умолял Туркова и Казакова форсировать изготовление первых механизмов, чтобы мы могли до полета испытать их на ресурс в течение шести-восьми месяцев.
Идею создания бортовой электростанции, по нашей терминологии СЭП — системы электропитания, тоже изобретали заново. Для питания основного потребителя — ретранслятора и расходов на все прочие служебные системы за время сеанса связи, а это 8-9 часов, требовалось получать от солнечных батарей непрерывно до 1500 ватт.
В 1961 году такая мощность для космического аппарата казалась столь же грандиозной, как в 1921 году мощность Волховской ГЭС, первенца плана ГОЭЛРО. Ее мощность — 60 тысяч киловатт -тоже казалась фантастической.
Александр Шуруй, отличившийся у Грабина искусством управления по радио противотанковой ракетой, разработал электростанцию для «Молнии-1».
«СЭПом для „Молнии-1“ я вправе гордиться», — говорил Шуруй, вспоминая героическую эпопею начала шестидесятых годов.
Разработку «Молнии-1» я решил использовать для «революции» в космонавтике: ввести новый единый для всех на «борту» и «земле» стандарт — 27 вольт, вместо той чехарды, которая была на космических объектах. На стандарт 24 — 27 вольт предполагала переходить и авиация. Нам грозило отставание.
После объединения с коллективом Грабина численность и квалификация электротехнических групп выросла настолько, что мы могли взять на себя головную роль по разработке нового стандарта и доказать его преимущества на реальном космическом аппарате. «Молния-1» была для этого очень подходящим объектом. Одновременно аналогичную революцию следовало провести и на «Зените», электрооборудование которого под началом Карпова разрабатывали Шевелев и братья Петросяны. После моих обвинений в твердолобом консерватизме они стали нашими союзниками по новому 27-вольтовому стандарту.
Убедившись, что поддержка «снизу» будет обеспечена, я должен был обзавестись союзниками среди смежников.
Основной потребитель — Капланов поддержал меня без всяких оговорок. Переход на 27 вольт позволял в два раза снизить массу бортовой кабельной сети. Мы понимали, что «Молния-1» — это только начало. Еще в 1959 году вышли постановления о проектах больших носителей и новых тяжелых космических кораблях. С учетом этой перспективы мы доказывали все преимущества 27 вольт.
После дискуссий, в которых новый номинал не встретил дружной поддержки большинства, я объявил решение о 27 вольтах как ультиматум головной организации. К такому приему я прибегал редко, стараясь избегать конфликтов, приводящих к арбитражу у Королева.
Неожиданно возразил Рязанский. Он должен был перенять у СКБ-567 изготовление управляющего радиокомплекса, аппаратурно заимствованного с 12-вольтовых венеро-марсианских объектов. Требовались переделки, и, как обычно, возникали осложнения на заводах.
Королев поддержал меня в самой решительной форме. Стандарт 27 вольт ± 3 вольта был узаконен и действует до сих пор во всей ракетно-космической технике.
Второй проблемой в СЭП оказался выбор буферных аккумуляторов с гарантированным ресурсом работы в режиме циклирования «заряд-разряд» не менее одного года. Серебряно-цинковые батареи имели неоспоримые весовые преимущества, но не выдерживали конкуренции по числу циклов с никель-кадмиевыми.
Во Всесоюзном научно-исследовательском аккумуляторном институте в Ленинграде Виктором Теньковцевым после совместных с нами обсуждений был создан новый тип герметичного никель-кадмиевого аккумулятора с встроенным датчиком давления. Такой датчик позволял нам разработать центральный регулятор, обеспечивающий напряжение в пределах 24-31 вольт за счет отключения от бортовой сети или подключения к ней отдельных аккумуляторов, составляющих бортовую батарею.
Основной источник электроэнергии космического аппарата — Солнце, а потому без Николая Степановича Лидоренко не обходилась подготовка ни одного космического полета. К этому времени ВНИИИТ — Всесоюзный научно-исследовательский институт источников тока, в котором Лидоренко был и директором, и главным конструктором, фактически стал монополистом в создании солнечных батарей.
Конструкцию солнечных батарей, механику их раскрытия после отделения от носителя мы разработали после того, как согласовали с Лидоренко все параметры кремниевых фотоэлектрических преобразователей.
Аркадий Ландсман и Валерий Кузнецов были во ВНИИИТе основными разработчиками преобразователей солнечной энергии. Забегая вперед, скажу, что «детские» болезни «Молнии-1» были связаны прежде всего с солнечными батареями.
На третьем и последующих полетах «Молнии-1» в космосе обнаружилась быстрая деградация ФЭПов — фотоэлектрических преобразователей. Сказалось малоизученное влияние облучения при пересечении околоземных радиационных поясов. Другим фактором, влиявшим на эффективность солнечных батарей, было термоциклирование — перепад температур от плюс 120 градусов на солнце до минус 180 градусов в тени на каждом витке.
Для снижения потерь и продления жизни солнечных батарей институт Лидоренко в 1966 году ввел покрытие рабочей поверхности ФЭПов кварцевым стеклом. Кроме того, мы пошли на увеличение массы, благо стараниями проектантов Дудникова резервы у нас были. За счет утяжеления установили дополнительные солнечные батареи, выполненные в виде специальных шторок. По мере необходимости шторки открывались и в работу включались свежие, не пострадавшие ни от радиации, ни от термоциклирования элементы.
Одной из немногих систем, заимствованных с венеро-марсианских объектов, была КДУ — корректирующая двигательная установка. От Исаева мы получили «добро» на ее использование. Он внес туда незначительные изменения, получив заверения, что включать ее для коррекции мы будем не более трех-четырех раз. Этого было достаточно для года эксплуатации. Более чем на год наши мечты не распространялись.
КДУ размещалась на корпусе таким образом, что вектор тяги совпадал с продольной осью, постоянно ориентируемой на Солнце. На обоих днищах корпуса были установлены приборы ИКВ — построители местной вертикали, чувствительные к инфракрасной области спектра по границам видимого из космоса диска Земли.
За два с половиной часа до подлета «Молнии-1» к перигею, пока еще спутник был в зоне видимости щелковского командного пункта, выключалась постоянная ориентация на Солнце.
Антенны, снабженные своими ИКВ, тоже «теряли» Землю. После этого включалась одна из двух ИКВ, расположенных на корпусе, и весь спутник разворачивался до тех пор, пока Земля не попадала в его поле зрения. Продольная ось постоянно ориентировалась на центр Земли до тех пор, пока спутник не достигал точки, в которой его ось располагалась параллельно вектору скорости в перигее. В этот момент ИКВ выключалась, и спутник продолжал полет в состоянии инерциальной ориентации с запомненной ориентацией продольной оси до точки перигея. В этой точке включалась КДУ и выдавался корректирующий импульс на разгон или торможение в зависимости от того, какой из двух приборов ИКВ был выбран с Земли.
После выключения КДУ включался солнечный датчик, восстанавливалась ориентация батарей на Солнце и «Молния-1» была снова готова дня проведения сеансов связи.
Последовательность описываемых операций не могла быть передана с Земли, потому что коррекция проходила над южным полушарием вне видимости наших НИПов. Наземного оператора и командную радиолинию в данном случае заменяло ПВУ — примитивный предшественник современных бортовых компьютеров.
По нашим заданиям в ЦКБ «Геофизика» на Стромынке разрабатывались новые оптико-электронные датчики для ориентации на Солнце и Землю. Главный конструктор разработки Владимир Хрусталев не подвел: сложные приборы мы получили вовремя. «Это потому, — говорил Хрусталев, — что, слава Богу, для „Молнии“ вы не требуете ориентации по звездам». Дело в том, что датчики ориентации по звездам для аппаратов MB и Е-6 приносили массу хлопот. Неприятностей у Хрусталева по этой части более чем хватало.
Любые проблемы, возникавшие при разработке и изготовлении первых «Молний-1», в большей или меньшей степени входили в круг моей деятельности. В решении основных вопросов я принимал непосредственное участие, по другим — давал советы, по третьим — указания типа: «Это ваше дело — решайте», по четвертым — просто принимал к сведению. Коллективными творениями были проектные документы, расчеты, которые именовались «PC», электрические схемы всего спутника, описания основных систем. Тысячи рабочих чертежей всего аппарата, приборной и прочей начинок не могут быть изучены одним руководителем, будь он «семи пядей во лбу» и трудись хоть круглые сутки. Его дело — в лучшем случае ознакомиться с общими видами и дать добро на передачу всего комплекта чертежей в производство. Детальные чертежи по установившемуся у нас порядку требовали подписи не выше начальника отдела. «PC», определявшие траектории полета, параметры носителя и общую компоновку с конкретным аппаратом, утверждал Королев лично. Он обязательно читал и утверждал каждый том эскизного проекта.
По мере приближения сроков начала летных испытаний возникало все больше проблем, по которым требовались доклады Королеву. От «Молнии-1» он не отмахивался, но все больше ощущалось его стремление к расширению программы пилотируемых полетов, увлеченность проблемами облета Луны и программой Н1-Л3. Человеком в космосе был захвачен первый крохотный плацдарм. Надо было закрепиться и на волне первых успехов его расширять. Королев это чувствовал лучше нас.
Эскизный проект «Молнии-1» был закончен в 1962году. К этому времени еще не было полной ясности по структуре наземных средств первой спутниковой системы связи.
Основную работу по «земле» выполняли НИИ-695 под руководством того же Капланова и новый смежник по системам спутниковой связи — НИИ радио, возглавлявшийся Александром Дмитриевичем Фортушенко.
Из Министерства связи к нашей деятельности подключились новые люди. Среди них наибольшей активностью и стремлением координировать внутри этого ведомства все работы по системе выделялся Николай Владимирович Талызин.
С ним я впервые встретился в Щелкове при обсуждении подготовки НИП-14 к предстоящим летным испытаниям. Талызин был специалистом, хорошо разбирающимся в особой специфике проблем связи, с которыми я знакомился впервые. К «ракетчикам», как нас называли наземные связисты, он относился с подчеркнутым уважением и не жалел времени, чтобы рассказать о специфических проблемах наземной радио — и телефонной связи. В 1965 году 36-летний Талызин был назначен заместителем министра, а в 1975 году — министром связи СССР. Советской технике спутниковых систем связи явно повезло, что будущий министр связи стоял у ее истоков ведущим инженером.
В конце 1962 года была уверенность, что новый спутник будет готов к запуску через год.
Создание специальной «земли» для «Молнии-1» к началу ЛКИ в эти сроки было невозможным. Изучив наземный парк средств, которые уже работали для всех других космических программ, Фортушенко с Каплановым и Талызиным предложили использовать комплекс наземных станций системы «Сатурн», разработанных в НИИ-695 под руководством Гуськова. В 1963 году НИИ-695 объединился с НИИ-885 и Рязанский поручил Гуськову и Ходареву заботы о переоборудовании «Сатурна» для выполнения новых задач. Станциями комплекса «Сатурн» были оснащены почти все НИПы. Они использовались в системах контроля траекторий ракет, орбит космических аппаратов и передачи команд. Параболические антенны диаметром 12 метров обеспечивали требуемый запас по энергетике радиолинии связи для «Молнии-1». Так было найдено на первые годы простое решение по наземным средствам связи.
В работу по «Молнии-1» включились офицеры в/ч 32103, хорошо знакомые нам по предыдущим работам, — Агаджанов, Фадеев, Большой и начальники четырех пунктов: НИП-15 в Уссурийске, НИП-4 в Енисейске, НИП-3 в Сарышагане и НИП-14 в Щелкове.
НИП-14 соединялся высокочастотным кабелем и радиорелейной линией с Московским телецентром и междугородной АТС. Связь уссурийского НИП-15 с Владивостоком осуществлялась по радиорелейной линии.
Фортушенко и ленинградские инженеры НИИ-380 разработали аппаратуру сопряжения НИПов с телецентрами Москвы и Владивостока.
Для сопряжения спутниковых каналов с магистральными междугородными линиями телефонной связи Капланов разработал «Ручей» — многоканальную систему уплотнения и кодирования. Несколько позднее, когда «Молния-1» уже уйдет из тематики ОКБ-1, Капланов создаст спутниковую систему «Корунд» для управления войсками. Это была первая космическая линия с цифровой передачей информации.
В апреле 1964 года постановлением ЦК КПСС и Совета Министров Псурцев, несмотря на его личные возражения, был назначен председателем Государственной комиссии по испытаниям «Молнии-1».
Королев проговорился, что приложил немало усилий, чтобы председателем стал министр связи. «Это заставит его глубже вникать в существо дела и уделять спутниковой связи больше внимания, а командовать по делу в этот первый год все равно нам», — сказал он.
При подготовке постановления Королев ощутил равнодушие и даже сопротивление идеям спутниковой связи в аппарате Министерства связи. По его мнению, назначение Псурцева председателем Госкомиссии должно было внести перелом и мы получили бы новых союзников.
Для «командования по делу» началось срочное комплектование оперативных групп управления испытаниями. Техническим руководителем Госкомиссии предстояло быть мне. Во всех предыдущих Государственных комиссиях на этот пост назначалось первое лицо — Главный конструктор. Королев в 1964 году уже занимал этот пост в трех разных Госкомиссиях: по пилотируемым пускам, по полетам автоматических аппаратов на Луну, Марс, Венеру и по боевой Р-9.
На время летных испытаний назначался еще и руководитель главной оперативной группы. Главная оперативная группа несла основную ответственность за руководство и принятие решений в процессе управления полетом. Это был орган Государственной комиссии, которому она передоверяла принятие оперативных решений, оставляя за собой только стратегию.
В процессе горячих споров между нами — головными по программе, руководством ЦУКОСа — Центрального управления космических средств, в/ч 32103 и многими заинтересованными в новой работе организациями был согласован перечень и состав рабочих групп. Главной оперативной группе подчинялись специализированные: по разработке программ, контролю полета, испытаниям комплекса связи, анализу и дешифровке телеметрической информации, управлению объектом, группы, ответственные за работу НИП-14 и НИП-15, и даже отдельная группа по выработке сообщений ТАСС.
Списочный состав каждой группы насчитывал до сотни специалистов. В него включались главные конструкторы всех систем, руководители главков министерств, командование КИКа, проектанты и разработчики всех рангов. Это было интеллектуальное и одновременно командно-административное ядро, от которого зависело будущее системы.
Современные службы управления полетами, опирающиеся на мощные вычислительные машины и автоматизированные средства обработки отображения информации, комплектуются профессионалами, которые не имеют других обязанностей, кроме работы в ЦУПе.
В шестидесятые годы вычислительными машинами владели только баллистические центры. Оперативные группы управления полетом имели в своем распоряжении в качестве основного средства приема, передачи и обработки информации простой телефон. Зато большинство членов оперативной группы прошли через все стадии создания космического аппарата: проект, производство, отработку в КИСе завода и на полигоне. Для основного состава оперативных групп «Молния-1» была не чужим ребенком, а своим, родным, которого надо вывести в люди, не жалея сил.
Обстановка на тогдашних пунктах управления была свободной от иерархической субординации и формализма. Преобладал дух товарищества, взаимного доверия и солидарности независимо от ведомственной принадлежности. Я был уверен, что Королев предложит Псурцеву утвердить мою кандидатуру в качестве руководителя главной оперативной группы. В этом случае я надеялся после удачного первого пуска улететь с полигона, вместе с друзьями поселиться в подмосковном Щелкове. Я мечтал с головой погрузиться там в изучение космического характера такого перспективного объекта, каким обещала быть наша «Молния-1». Но Королев решил по-другому. И тому были причины.
В один из дней марта 1964 года я направлялся по коридору 65-го корпуса в кабинет Королева.
Неожиданно СП буквально вылетел из приемной, за ним следовал Феоктистов. Увидев меня, СП сказал:
— Вот хорошо, идем с нами!
Задавать вопросы на ходу было бесполезно. Мы прошли по переходу в новый 67-й корпус. Здесь в наполовину пустом зале по инициативе СП собирали экспонаты для нашего будущего музея. Основными экспонатами были вернувшиеся из космоса три спускаемых аппарата (СА): Гагарина, Титова и Терешковой. Остальные СА были подарены другим выставкам. Вдоль всего зала у стены лежал полностью собранный пакет четырехступенчатой «семерки». Королев подошел к спускаемому аппарату Терешковой и через открытый люк стал молча внимательно разглядывать внутреннюю компоновку. Потом быстро повернулся ко мне и Феоктистову и сказал:
— Вот вам задание. Вместо одного здесь надо разместить троих.
Эта команда была началом переделки «Востока» в «Восход». Решения следовало принимать поистине революционные. Разместить троих в скафандрах невозможно. Без скафандров с грехом пополам, в тесноте да не в обиде, стараниями Феоктистова, удавалось. У Феоктистова был сильнейший стимул для переделки — он увидел возможность самому себе обеспечить место в экипаже. Не только проектировать для других, но самому на своем аппарате побывать в космосе.
Петр Куприянчик организовал совместную разработку бортовой схемы «Молнии-1» и испытательной «земли».
Основной объем электрических испытаний был осуществлен наземной станцией, которая получила индекс 11Н650. Ее идеологию разрабатывали Анатолий Максимов, Борис Бугеря, Артур Термосесов. Я высказал идею о полной автоматизации испытаний. При этом потребовалась система регистрации всех испытательных операций. Спрос породил предложение. Инженер Борис Барун предложил Куприянчику устройство автоматической подачи команд на «борт» с помощью перфорированной ленты и автоматическую систему цифропечати всего происходящего на другой ленте. Такая автоматическая система получила название «Волна». Чертежи сложного по тем докомпьютерным временам испытательного оборудования были разработаны в приборном конструкторском отделе Чижикова под руководством Ивана Ивановича Зверева.
«У меня фамилия птичья, — говорил Чижиков, — со зверями я плохо уживаюсь». Идя навстречу «пожеланиям трудящихся», мы разделили конструкторские отделы. За Чижиковым остался «борт», а Звереву поручили всю испытательную «землю». Таким образом, «земля» получила полноценный конструкторский отдел. Нашим приборным производством было изготовлено только два комплекта станций 11Н650 вместе с «Волной»: для КИСа и технической позиции полигона. Уже при испытании первой «Молнии-1» мы поняли, что эпоха полной автоматизации еще не пришла. Требовалось создать компромиссную полуавтоматическую систему, более универсальную, чем 11Н650. Как часто бывает, трудности, возникающие в процессе создания нового, приводят к решениям более удачным, чем первоначально предполагалось.
Идея создания унифицированной наземной испытательной станции «висела в воздухе». В поисках оптимальных решений Юрий Карпов вместе со своими уже обстрелянными на полигонах сподвижниками Владимиром Куянцевым, Владимиром Шевелевьм, Ремом Николаевым предложил структуру испытательной станции, в которой не было полной автоматизации, но зато обеспечивалась более глубокая диагностика, гибкость и возможность оперативного изменения технологии испытаний. В системе предлагалась уплотненная многоканальная линия телесигнализации.
К первым «Молниям» эта система «не успевала». Однако необходимость создания подобной системы была столь очевидной, что я предложил объединить и форсировать разработку всей «земли» в едином коллективе. Работу возглавили Петр Куприянчик и Артур Термосесов. В 1964 году появился изготовленный нашим приборным производством первый образец универсальной испытательной станции.
Соответствующее управление Министерства обороны узаконило эту разработку в качестве универсального средства для наземных испытаний космических объектов и присвоило станции индекс 11Н6110.
Впервые с помощью этой станции начали испытывать первые корабли 7К — будущие «Союзы». Опыт оказался столь удачным, что возникла потребность в изготовлении серии. Это было уже не под силу нашему производству. Без внешнего принуждения за серийный выпуск 11Н6110 взялся директор Азовского оптико-механического завода Георгий Васильев. Станция со временем нашла такое широкое применение, что всего их было выпущено более сотни. Удачные технические решения оказываются долгожителями несмотря на моральное старение. Даже в 1990-е годы, при триумфальном шествии цифровой вычислительной техники с ее безграничными возможностями для автоматизации самых различных видов испытаний, диагностики и обработки информации, старые станции 11Н6110 (спустя 30 лет!) остаются в эксплуатации на заводах и полигонах. В 1966 году, когда мы начали передавать «Молнию-1» Михаилу Решетневу в красноярский филиал, испытания ориентировались уже только на 11Н6110.
На современных спутниках связи выбор типа и конструкции антенн — одна из кардинальных проблем. Для «Молнии-1», не имея опыта, мы решили задачу «в лоб» и предложили две параболические антенны, резервирующие друг друга, диаметром по 1,4 метра. Они устанавливались на специальных штангах и управлялись электрическим приводом. Капланов поддержал наше предложение. Это придало уверенность антенщикам, которые отвечали за преобразование энергии передатчиков его ретранслятора в «конечный продукт» — энергию радиоволн.
Для передачи сигналов с «борта» на все наземные пункты, находящиеся одновременно в зоне радиовидимости, требовалось разработать бортовую антенну направленного излучения на прием и передачу одновременно.
К этому времени антенная лаборатория Михаила Краюшкина разрослась и выделилась в самостоятельный отдел. Коллектив отдела объявил, что антенные проблемы в радиотехнической части они берут на себя, начиная от расчетов и моделирования до сдаточных испытаний. Самую трудную часть задачи выполняли Владлен Эстрович, Иван Дордус, Геннадий Сосулин, Надежда Офицерова и механики макетной мастерской.
На этой и многих последующих разработках очень доходчиво было показано, какое значение для сокращения общего цикла разработки имеют смекалка и золотые руки квалифицированных рабочих, находящихся непосредственно при лаборатории, а не только в цехах завода. С появлением ЦВМ удалось значительно сократить продолжительность расчетно-теоретических работ, предшествующих выпуску чертежей. Однако ни одна остронаправленная антенна, при всей мощи современной вычислительной техники, не получалась без предварительной отработки на макетах. В этом процессе лабораторного моделирования трудно переоценить роли мастера и рабочего, которые понимают инженера с полуслова и не требуют детальных чертежей. Только после многоразовых переделок завод получал оформленные по всем правилам чертежи на изготовление летных образцов антенн. Те, кто окончательно изготавливали антенны в металле, не догадывались, что их проектирование начиналось с решения системы дифференциальных уравнений, открытых еще в прошлом веке.
На облучателе антенны устанавливались «трубы Медведева». Так мы называли оптические датчики, которые, захватив в свое поле зрения края диска Земли, посылали сигналы для управления приводом антенны и разворотом всего объекта так, чтобы в течение всего сеанса связи антенна ориентировалась на центральную часть видимого диска. Борис Медведев — инженер оптико-электрической «Геофизики» — тогда только начинал создавать свой ставший впоследствии богатым перечень всевозможных датчиков для космической техники, а затем и для подводных ракет.
Электромеханический привод для управления антенной оказался сложным механизмом. Он должен был работать в условиях космического вакуума непрерывно в течение каждого сеанса связи. Это была одна из труднейших задач обеспечения надежности. Лев Вильницкий, начальник отдела рулевых машин, приводов и механизмов, и Владимир Сыромятников основное время проводили в цехах завода, дожидаясь, когда можно будет выхватить первый образец привода для отработочных испытаний.
Я умолял Туркова и Казакова форсировать изготовление первых механизмов, чтобы мы могли до полета испытать их на ресурс в течение шести-восьми месяцев.
Идею создания бортовой электростанции, по нашей терминологии СЭП — системы электропитания, тоже изобретали заново. Для питания основного потребителя — ретранслятора и расходов на все прочие служебные системы за время сеанса связи, а это 8-9 часов, требовалось получать от солнечных батарей непрерывно до 1500 ватт.
В 1961 году такая мощность для космического аппарата казалась столь же грандиозной, как в 1921 году мощность Волховской ГЭС, первенца плана ГОЭЛРО. Ее мощность — 60 тысяч киловатт -тоже казалась фантастической.
Александр Шуруй, отличившийся у Грабина искусством управления по радио противотанковой ракетой, разработал электростанцию для «Молнии-1».
«СЭПом для „Молнии-1“ я вправе гордиться», — говорил Шуруй, вспоминая героическую эпопею начала шестидесятых годов.
Разработку «Молнии-1» я решил использовать для «революции» в космонавтике: ввести новый единый для всех на «борту» и «земле» стандарт — 27 вольт, вместо той чехарды, которая была на космических объектах. На стандарт 24 — 27 вольт предполагала переходить и авиация. Нам грозило отставание.
После объединения с коллективом Грабина численность и квалификация электротехнических групп выросла настолько, что мы могли взять на себя головную роль по разработке нового стандарта и доказать его преимущества на реальном космическом аппарате. «Молния-1» была для этого очень подходящим объектом. Одновременно аналогичную революцию следовало провести и на «Зените», электрооборудование которого под началом Карпова разрабатывали Шевелев и братья Петросяны. После моих обвинений в твердолобом консерватизме они стали нашими союзниками по новому 27-вольтовому стандарту.
Убедившись, что поддержка «снизу» будет обеспечена, я должен был обзавестись союзниками среди смежников.
Основной потребитель — Капланов поддержал меня без всяких оговорок. Переход на 27 вольт позволял в два раза снизить массу бортовой кабельной сети. Мы понимали, что «Молния-1» — это только начало. Еще в 1959 году вышли постановления о проектах больших носителей и новых тяжелых космических кораблях. С учетом этой перспективы мы доказывали все преимущества 27 вольт.
После дискуссий, в которых новый номинал не встретил дружной поддержки большинства, я объявил решение о 27 вольтах как ультиматум головной организации. К такому приему я прибегал редко, стараясь избегать конфликтов, приводящих к арбитражу у Королева.
Неожиданно возразил Рязанский. Он должен был перенять у СКБ-567 изготовление управляющего радиокомплекса, аппаратурно заимствованного с 12-вольтовых венеро-марсианских объектов. Требовались переделки, и, как обычно, возникали осложнения на заводах.
Королев поддержал меня в самой решительной форме. Стандарт 27 вольт ± 3 вольта был узаконен и действует до сих пор во всей ракетно-космической технике.
Второй проблемой в СЭП оказался выбор буферных аккумуляторов с гарантированным ресурсом работы в режиме циклирования «заряд-разряд» не менее одного года. Серебряно-цинковые батареи имели неоспоримые весовые преимущества, но не выдерживали конкуренции по числу циклов с никель-кадмиевыми.
Во Всесоюзном научно-исследовательском аккумуляторном институте в Ленинграде Виктором Теньковцевым после совместных с нами обсуждений был создан новый тип герметичного никель-кадмиевого аккумулятора с встроенным датчиком давления. Такой датчик позволял нам разработать центральный регулятор, обеспечивающий напряжение в пределах 24-31 вольт за счет отключения от бортовой сети или подключения к ней отдельных аккумуляторов, составляющих бортовую батарею.
Основной источник электроэнергии космического аппарата — Солнце, а потому без Николая Степановича Лидоренко не обходилась подготовка ни одного космического полета. К этому времени ВНИИИТ — Всесоюзный научно-исследовательский институт источников тока, в котором Лидоренко был и директором, и главным конструктором, фактически стал монополистом в создании солнечных батарей.
Конструкцию солнечных батарей, механику их раскрытия после отделения от носителя мы разработали после того, как согласовали с Лидоренко все параметры кремниевых фотоэлектрических преобразователей.
Аркадий Ландсман и Валерий Кузнецов были во ВНИИИТе основными разработчиками преобразователей солнечной энергии. Забегая вперед, скажу, что «детские» болезни «Молнии-1» были связаны прежде всего с солнечными батареями.
На третьем и последующих полетах «Молнии-1» в космосе обнаружилась быстрая деградация ФЭПов — фотоэлектрических преобразователей. Сказалось малоизученное влияние облучения при пересечении околоземных радиационных поясов. Другим фактором, влиявшим на эффективность солнечных батарей, было термоциклирование — перепад температур от плюс 120 градусов на солнце до минус 180 градусов в тени на каждом витке.
Для снижения потерь и продления жизни солнечных батарей институт Лидоренко в 1966 году ввел покрытие рабочей поверхности ФЭПов кварцевым стеклом. Кроме того, мы пошли на увеличение массы, благо стараниями проектантов Дудникова резервы у нас были. За счет утяжеления установили дополнительные солнечные батареи, выполненные в виде специальных шторок. По мере необходимости шторки открывались и в работу включались свежие, не пострадавшие ни от радиации, ни от термоциклирования элементы.
Одной из немногих систем, заимствованных с венеро-марсианских объектов, была КДУ — корректирующая двигательная установка. От Исаева мы получили «добро» на ее использование. Он внес туда незначительные изменения, получив заверения, что включать ее для коррекции мы будем не более трех-четырех раз. Этого было достаточно для года эксплуатации. Более чем на год наши мечты не распространялись.
КДУ размещалась на корпусе таким образом, что вектор тяги совпадал с продольной осью, постоянно ориентируемой на Солнце. На обоих днищах корпуса были установлены приборы ИКВ — построители местной вертикали, чувствительные к инфракрасной области спектра по границам видимого из космоса диска Земли.
За два с половиной часа до подлета «Молнии-1» к перигею, пока еще спутник был в зоне видимости щелковского командного пункта, выключалась постоянная ориентация на Солнце.
Антенны, снабженные своими ИКВ, тоже «теряли» Землю. После этого включалась одна из двух ИКВ, расположенных на корпусе, и весь спутник разворачивался до тех пор, пока Земля не попадала в его поле зрения. Продольная ось постоянно ориентировалась на центр Земли до тех пор, пока спутник не достигал точки, в которой его ось располагалась параллельно вектору скорости в перигее. В этот момент ИКВ выключалась, и спутник продолжал полет в состоянии инерциальной ориентации с запомненной ориентацией продольной оси до точки перигея. В этой точке включалась КДУ и выдавался корректирующий импульс на разгон или торможение в зависимости от того, какой из двух приборов ИКВ был выбран с Земли.
После выключения КДУ включался солнечный датчик, восстанавливалась ориентация батарей на Солнце и «Молния-1» была снова готова дня проведения сеансов связи.
Последовательность описываемых операций не могла быть передана с Земли, потому что коррекция проходила над южным полушарием вне видимости наших НИПов. Наземного оператора и командную радиолинию в данном случае заменяло ПВУ — примитивный предшественник современных бортовых компьютеров.
По нашим заданиям в ЦКБ «Геофизика» на Стромынке разрабатывались новые оптико-электронные датчики для ориентации на Солнце и Землю. Главный конструктор разработки Владимир Хрусталев не подвел: сложные приборы мы получили вовремя. «Это потому, — говорил Хрусталев, — что, слава Богу, для „Молнии“ вы не требуете ориентации по звездам». Дело в том, что датчики ориентации по звездам для аппаратов MB и Е-6 приносили массу хлопот. Неприятностей у Хрусталева по этой части более чем хватало.
Любые проблемы, возникавшие при разработке и изготовлении первых «Молний-1», в большей или меньшей степени входили в круг моей деятельности. В решении основных вопросов я принимал непосредственное участие, по другим — давал советы, по третьим — указания типа: «Это ваше дело — решайте», по четвертым — просто принимал к сведению. Коллективными творениями были проектные документы, расчеты, которые именовались «PC», электрические схемы всего спутника, описания основных систем. Тысячи рабочих чертежей всего аппарата, приборной и прочей начинок не могут быть изучены одним руководителем, будь он «семи пядей во лбу» и трудись хоть круглые сутки. Его дело — в лучшем случае ознакомиться с общими видами и дать добро на передачу всего комплекта чертежей в производство. Детальные чертежи по установившемуся у нас порядку требовали подписи не выше начальника отдела. «PC», определявшие траектории полета, параметры носителя и общую компоновку с конкретным аппаратом, утверждал Королев лично. Он обязательно читал и утверждал каждый том эскизного проекта.
По мере приближения сроков начала летных испытаний возникало все больше проблем, по которым требовались доклады Королеву. От «Молнии-1» он не отмахивался, но все больше ощущалось его стремление к расширению программы пилотируемых полетов, увлеченность проблемами облета Луны и программой Н1-Л3. Человеком в космосе был захвачен первый крохотный плацдарм. Надо было закрепиться и на волне первых успехов его расширять. Королев это чувствовал лучше нас.
Эскизный проект «Молнии-1» был закончен в 1962году. К этому времени еще не было полной ясности по структуре наземных средств первой спутниковой системы связи.
Основную работу по «земле» выполняли НИИ-695 под руководством того же Капланова и новый смежник по системам спутниковой связи — НИИ радио, возглавлявшийся Александром Дмитриевичем Фортушенко.
Из Министерства связи к нашей деятельности подключились новые люди. Среди них наибольшей активностью и стремлением координировать внутри этого ведомства все работы по системе выделялся Николай Владимирович Талызин.
С ним я впервые встретился в Щелкове при обсуждении подготовки НИП-14 к предстоящим летным испытаниям. Талызин был специалистом, хорошо разбирающимся в особой специфике проблем связи, с которыми я знакомился впервые. К «ракетчикам», как нас называли наземные связисты, он относился с подчеркнутым уважением и не жалел времени, чтобы рассказать о специфических проблемах наземной радио — и телефонной связи. В 1965 году 36-летний Талызин был назначен заместителем министра, а в 1975 году — министром связи СССР. Советской технике спутниковых систем связи явно повезло, что будущий министр связи стоял у ее истоков ведущим инженером.
В конце 1962 года была уверенность, что новый спутник будет готов к запуску через год.
Создание специальной «земли» для «Молнии-1» к началу ЛКИ в эти сроки было невозможным. Изучив наземный парк средств, которые уже работали для всех других космических программ, Фортушенко с Каплановым и Талызиным предложили использовать комплекс наземных станций системы «Сатурн», разработанных в НИИ-695 под руководством Гуськова. В 1963 году НИИ-695 объединился с НИИ-885 и Рязанский поручил Гуськову и Ходареву заботы о переоборудовании «Сатурна» для выполнения новых задач. Станциями комплекса «Сатурн» были оснащены почти все НИПы. Они использовались в системах контроля траекторий ракет, орбит космических аппаратов и передачи команд. Параболические антенны диаметром 12 метров обеспечивали требуемый запас по энергетике радиолинии связи для «Молнии-1». Так было найдено на первые годы простое решение по наземным средствам связи.
В работу по «Молнии-1» включились офицеры в/ч 32103, хорошо знакомые нам по предыдущим работам, — Агаджанов, Фадеев, Большой и начальники четырех пунктов: НИП-15 в Уссурийске, НИП-4 в Енисейске, НИП-3 в Сарышагане и НИП-14 в Щелкове.
НИП-14 соединялся высокочастотным кабелем и радиорелейной линией с Московским телецентром и междугородной АТС. Связь уссурийского НИП-15 с Владивостоком осуществлялась по радиорелейной линии.
Фортушенко и ленинградские инженеры НИИ-380 разработали аппаратуру сопряжения НИПов с телецентрами Москвы и Владивостока.
Для сопряжения спутниковых каналов с магистральными междугородными линиями телефонной связи Капланов разработал «Ручей» — многоканальную систему уплотнения и кодирования. Несколько позднее, когда «Молния-1» уже уйдет из тематики ОКБ-1, Капланов создаст спутниковую систему «Корунд» для управления войсками. Это была первая космическая линия с цифровой передачей информации.
В апреле 1964 года постановлением ЦК КПСС и Совета Министров Псурцев, несмотря на его личные возражения, был назначен председателем Государственной комиссии по испытаниям «Молнии-1».
Королев проговорился, что приложил немало усилий, чтобы председателем стал министр связи. «Это заставит его глубже вникать в существо дела и уделять спутниковой связи больше внимания, а командовать по делу в этот первый год все равно нам», — сказал он.
При подготовке постановления Королев ощутил равнодушие и даже сопротивление идеям спутниковой связи в аппарате Министерства связи. По его мнению, назначение Псурцева председателем Госкомиссии должно было внести перелом и мы получили бы новых союзников.
Для «командования по делу» началось срочное комплектование оперативных групп управления испытаниями. Техническим руководителем Госкомиссии предстояло быть мне. Во всех предыдущих Государственных комиссиях на этот пост назначалось первое лицо — Главный конструктор. Королев в 1964 году уже занимал этот пост в трех разных Госкомиссиях: по пилотируемым пускам, по полетам автоматических аппаратов на Луну, Марс, Венеру и по боевой Р-9.
На время летных испытаний назначался еще и руководитель главной оперативной группы. Главная оперативная группа несла основную ответственность за руководство и принятие решений в процессе управления полетом. Это был орган Государственной комиссии, которому она передоверяла принятие оперативных решений, оставляя за собой только стратегию.
В процессе горячих споров между нами — головными по программе, руководством ЦУКОСа — Центрального управления космических средств, в/ч 32103 и многими заинтересованными в новой работе организациями был согласован перечень и состав рабочих групп. Главной оперативной группе подчинялись специализированные: по разработке программ, контролю полета, испытаниям комплекса связи, анализу и дешифровке телеметрической информации, управлению объектом, группы, ответственные за работу НИП-14 и НИП-15, и даже отдельная группа по выработке сообщений ТАСС.
Списочный состав каждой группы насчитывал до сотни специалистов. В него включались главные конструкторы всех систем, руководители главков министерств, командование КИКа, проектанты и разработчики всех рангов. Это было интеллектуальное и одновременно командно-административное ядро, от которого зависело будущее системы.
Современные службы управления полетами, опирающиеся на мощные вычислительные машины и автоматизированные средства обработки отображения информации, комплектуются профессионалами, которые не имеют других обязанностей, кроме работы в ЦУПе.
В шестидесятые годы вычислительными машинами владели только баллистические центры. Оперативные группы управления полетом имели в своем распоряжении в качестве основного средства приема, передачи и обработки информации простой телефон. Зато большинство членов оперативной группы прошли через все стадии создания космического аппарата: проект, производство, отработку в КИСе завода и на полигоне. Для основного состава оперативных групп «Молния-1» была не чужим ребенком, а своим, родным, которого надо вывести в люди, не жалея сил.
Обстановка на тогдашних пунктах управления была свободной от иерархической субординации и формализма. Преобладал дух товарищества, взаимного доверия и солидарности независимо от ведомственной принадлежности. Я был уверен, что Королев предложит Псурцеву утвердить мою кандидатуру в качестве руководителя главной оперативной группы. В этом случае я надеялся после удачного первого пуска улететь с полигона, вместе с друзьями поселиться в подмосковном Щелкове. Я мечтал с головой погрузиться там в изучение космического характера такого перспективного объекта, каким обещала быть наша «Молния-1». Но Королев решил по-другому. И тому были причины.
В один из дней марта 1964 года я направлялся по коридору 65-го корпуса в кабинет Королева.
Неожиданно СП буквально вылетел из приемной, за ним следовал Феоктистов. Увидев меня, СП сказал:
— Вот хорошо, идем с нами!
Задавать вопросы на ходу было бесполезно. Мы прошли по переходу в новый 67-й корпус. Здесь в наполовину пустом зале по инициативе СП собирали экспонаты для нашего будущего музея. Основными экспонатами были вернувшиеся из космоса три спускаемых аппарата (СА): Гагарина, Титова и Терешковой. Остальные СА были подарены другим выставкам. Вдоль всего зала у стены лежал полностью собранный пакет четырехступенчатой «семерки». Королев подошел к спускаемому аппарату Терешковой и через открытый люк стал молча внимательно разглядывать внутреннюю компоновку. Потом быстро повернулся ко мне и Феоктистову и сказал:
— Вот вам задание. Вместо одного здесь надо разместить троих.
Эта команда была началом переделки «Востока» в «Восход». Решения следовало принимать поистине революционные. Разместить троих в скафандрах невозможно. Без скафандров с грехом пополам, в тесноте да не в обиде, стараниями Феоктистова, удавалось. У Феоктистова был сильнейший стимул для переделки — он увидел возможность самому себе обеспечить место в экипаже. Не только проектировать для других, но самому на своем аппарате побывать в космосе.