Страница:
Руководство проектными работами по Р-9 Мишин поручил Якову Коляко. Коляко, участник битвы под Москвой в 1941 году, получивший тяжелое ранение, выделялся среди проектантов удивительным спокойствием и выдержкой при стрессовых ситуациях, которые возникали в процессе общения с Мишиным. Мне не раз приходилось быть свидетелем крутых разговоров, когда Мишин заявлял проектантам: «Я вас научу, как работать!» Тем не менее мне он однажды сказал: «Вот Коляко меня понимает».
Сергей Охапкин, в молодости своей работавший у Туполева, рассказывал, что Андрей Николаевич умел «на глаз» оценивать летные качества самолета. «Чтобы самолет хорошо летал, он должен быть красивым»,. — говорил Туполев. «Девятка» у нас тоже получалась красивой. Так, по крайней мере, считали мы, ее создатели.
В самом начале проектирования было понятно, что легкой жизни, которую мы себе позволяли при распределении массы на «семерке», здесь быть не может. Нужны были принципиально новые идеи. Насколько я помню, Мишин первым высказал революционную идею об использовании переохлажденного жидкого кислорода. Если вместо минус 183°С, близких к точке кипения кислорода, понизить его температуру до минус 200°С, а еще лучше — до минус 210°С, то, во-первых, он займет меньший объем и, во-вторых, резко уменьшатся потери на испарение. Если такую температуру удастся поддержать, можно будет осуществить скоростную заправку: кислород, попадая в теплый бак, не будет бурно вскипать, как это происходит на всех наших ракетах от Р-1 до Р-7 включительно.
Проблема получения, транспортировки и хранения переохлажденного жидкого кислорода оказалась столь серьезной, что вышла за чисто ракетные рамки и приобрела с подачи Мишина, а затем и включившегося в решение этих задач Королева общесоюзное народнохозяйственное значение.
В качестве советника по кислородной проблеме был привлечен академик Петр Капица. Консультантом по проблемам поддержания высокого вакуума в больших объемах для теплоизоляции был академик Векшинский. Я встречался с одним из ведущих советских специалистов по электронным лампам Векшинским еще во время войны, когда мы с Поповьм проектировали РОКС — радиоопределитель координат самолета. Теперь Векшинский был директором крупного НИИ вакуумной техники, работавшего в интересах радиолокационной и атомной науки. Я взялся познакомить Королева и Мишина с Векшинским. Такая встреча в интересах Р-9 состоялась. Когда я напомнил Векшинскому о наших работах во время войны, он с тоской в голосе сказал: «Тогда работать на пустой желудок было почему-то легче».
В августе 1960 года в Загорске начались огневые испытания ракеты Р-16. Двигатели Глушко на несимметричном диметилгидразине и азотном тетраксиде работали устойчиво. В то же время новые кислородные двигатели на стендах в ОКБ-456 для Р-9 начинала трясти и разрушать «высокая частота».
Неприятности, сопровождавшие начальный период отработки кислородных двигателей для Р-9, сторонники Глушко объясняли принципиальной невозможностью на данном этапе создания мощного кислородного двигателя с устойчивым режимом. Даже не желавший открыто включаться в споры Исаев в приватной беседе со мной сказал примерно следующее: «Дело не в том, что Глушко не хочет. Он просто не может и не знает пока, как сделать устойчивым процесс на кислороде в камерах таких больших размеров. И я не знаю. И, по-моему, никто пока не понимает истинных причин появления высокой частоты».
По поводу выбора компонентов топлива Королев и Глушко никак не могли прийти к согласию. Когда была получена информация о том, что в «Титане-1» американцы используют жидкий кислород, Королев и на Совете главных, и в переговорах по «кремлевке» говорил, что это подтверждает правильность нашей линии при создании Р-9. Он считал, что мы не ошиблись, выбрав Р-9А на кислороде, а не Р-9Б на высококипящих компонентах, на чем настаивал Глушко.
Однако в конце 1961 года появилась информация, что та же фирма «Мартин» создала ракету «Титан-2», предназначенную для поражения важнейших стратегических объектов. Автономная система управления «Титана-2» обеспечивала точность стрельбы 1,5 км при дальности 16 000 км! В зависимости от дальности головная часть комплектовалась зарядом мощностью от 10 до 15 мегатонн.
Ракеты «Титан-2» размещались в одиночных шахтных пусковых установках в заправленном состоянии и могли стартовать через минуту после получения команды. Американцы отказались от кислорода и использовали высококипящие компоненты. Одновременно поступили данные о снятии «Титана-1» с вооружения в связи с невозможностью сокращения времени готовности из-за использования жидкого кислорода. Теперь уже злорадствовал Глушко.
Отношения между Королевьм и Глушко никогда не были дружескими. Конфликт по выбору двигателей для Р-9, начавшийся в 1958 году, в последующем привел к обострению и личных, и служебных отношений, от чего страдали как они оба, так и общее дело.
Между тем строительство технической и стартовой позиций для Р-16 заканчивалось. Это были так называемые «сороковые площадки». Подогреваемый Неделиным Янгель стремился выполнить обязательства по началу летных испытаний Р-16 досрочно еще в 1960 году. Но спешка есть спешка.
24 октября 1960 года при подготовке к первому пуску ракеты Р-16 произошла катастрофа, тяжелейшая в истории нашей ракетной техники. Об этом я подробно писал в книге «Ракеты и люди. Фили -Подлипки — Тюратам». Несмотря на моральный удар и людские потери, коллектив ОКБ-586 нашел в себе силы в декабре 1960 года успешно закончить летные испытания Р-14.
Разрушенная после взрыва и пожара стартовая площадка № 41 для ракеты Р-16 была восстановлена за три месяца.
Систему управления доработали и «вылечили» от роковых ошибок уже под руководством нового главного конструктора Владимира Сергеева. До катастрофы он работал начальником отдела у Пилюгина. После гибели Коноплева Сергеев согласился с предложением ЦК занять в харьковском НИИ-692 место погибшего. Пилюгин и специалисты соседних харьковских заводов оказывали коллективу, который принял Сергеев, большую помощь. Это позволило быстро оправиться от потрясения и через три месяца снова начать летные испытания.
В январе 1961 года я с Виктором Кузнецовым поехал на сороковые «янгелевские» площадки. Нас пригласил новый председатель Государственной комиссии по продолжению испытаний Р-16 генерал-лейтенант Андрей Илларионович Соколов. Со времени нашей совместной работы в Пенемюнде в 1945 году мне приходилось с ним встречаться много раз. Я и многие мои знакомые считали его жестким и требовательным генералом, но думающим, умеющим слушать и без признаков начальственного самодурства.
В то время Соколов был начальником НИИ-4 — головного института ракетных войск. Оказавшись председателем Госкомиссии вместо погибшего Главного маршала артиллерии Неделина, он захотел посоветоваться со специалистами «со стороны» перед новым этапом испытаний такой опасной ракеты.
Соколов провел нас на техническую позицию, где шли испытания первой прибывшей из Днепропетровска ракеты Р-16. Он сказал, что, несмотря на круглосуточный режим, им установлена четкая сменность и персональная ответственность при появлении замечаний, все процессы испытаний детально и жестко регламентируются документами и подписями ответственных лиц — военных и представителей промышленности. «Принуждать к жесточайшей дисциплине при испытаниях мне не потребовалось, — говорил Соколов. — После октябрьской катастрофы у людей появилось собственное стремление к порядку и внимание ко всем мелочам».
Несколько часов, проведенных на технической позиции Р-16, убедили меня в том, что по крайней мере организация всех испытательных работ здесь теперь лучше, чем в нашем «первом» управлении. Поясняю, что основными структурными военными подразделениями на полигоне были испытательные управления, каждое из которых ведало тематикой одного из главных конструкторов. Начальником «первого», королевского, управления был Анатолий Кириллов, а новым начальником «второго», янгелевского, был назначен переведенный из Капъяра Александр Курушин.
2 февраля 1961 года был проведен первый после катастрофы пуск доработанной Р-16. Участвовавший в нем Иосифьян рассказывал, что он боялся за самочувствие Янгеля больше, чем за провал пуска. В основном пуск был успешным. Большую ошибку по дальности для первого раза, учитывая, что не все еще доработано по электромагнитной совместимости, можно было простить.
Далее летно-конструкторские испытания проходили настолько уверено, что главком Москаленко с подачи Соколова и Янгеля предложил уже в апреле поставить Р-16 на дежурство в «полном боевом снаряжении», пока, правда, на стартах наземного варианта.
Полностью летные испытания ракеты Р-16 наземного базирования были закончены только в феврале 1962 года. Тогда же на полигоне в Тюратаме было закончено строительство боевых шахт и начались летные испытания Р-16 шахтного старта.
Далекому от ракетной техники читателю считаю нужным объяснить, что одной из эксплуатационных особенностей современных ракет дальнего действия является их значительно большая зависимость от «земли», чем у крылатых летательных аппаратов.
Самолетам для взлета и посадки нужна всего-навсего горизонтальная площадка — аэродром. На заре авиации самолетам вовсе не требовались бетонированные взлетные полосы, вполне годился лужок протяженностью в сотню метров.
Баллистические ракеты дальнего действия (БРДД) всех поколений нуждаются в сложном наземном стартовом оборудовании. Конструктор ракеты в отличие от конструктора самолета с первых дней проектирования и до начала летной эксплуатации или установки ракет на боевое дежурство не может ни защитить свой проект, ни провести летные испытания без совместной работы с конструктором наземных систем. Обязательным является условие совместной разработки ракеты и «земли» как единого комплекса. То же относится и к морским ракетам. В этом случае роль «земли» выполняет подводная лодка.
Проблема ракетной «земли» усложнилась не только с появлением тяжелых межконтинентальных ракет, но и с обострением «холодной войны». Каждая из противостоящих сторон опасалась первой подвергнуться ракетно-ядерному нападению. При этом считалось, что ракетный агрессор нанесет удар не только по важнейшим жизненным центрам страны, но прежде всего постарается уничтожить все разведанные стартовые системы ракет противника, упреждая возможность ответного удара. Ответный удар возмездия предусматривается всеми теоретиками ядерной стратегии. Концепция ответного удара предъявляет конструкторам боевых ракетных комплексов два взаимно противоречащих требования.
Первое. Ракеты для ответного удара должны быть пущены, как только станет известно, что ракеты противника уже стартовали. В этой ситуации возникает острейший дефицит времени. В доракетные времена сторона, подвергнувшаяся нападению, имела для подготовки ответного удара дни, в крайнем случае часы. Сама по себе подготовка нападения с помощью обычных вооружений при современных средствах разведки должна быть обнаружена по крайней мере за несколько часов. Принятие на вооружение БРДД коренным образом меняет стратегию. Если нападающий располагает десятками или сотнями ракет, находящимися на боевом дежурстве в течение месяцев и даже лет, время их пуска нельзя предугадать.
Средства противоракетной обороны на обнаружение, распознавание, передачу достоверной информации затратят основную долю из тех тридцати минут, которые нужны ракетам агрессора, чтобы достигнуть цели. С учетом времени, необходимого на принятие решения об ответном ударе и передачу приказа командованию Ракетными войсками стратегического назначения, самим ракетам на подготовку и покидание своих пусковых установок остается несколько минут. Первое требование сводится к тому, чтобы ракеты нападающей стороны поразили уже опустевшие пусковые установки.
Второе. На случай, если первое требование не выполнено и ракеты противника все же достигли цели раньше, чем сторона, подвергшаяся нападению, выпустила свои, необходимо, чтобы пусковые установки не вышли из строя при ядерных взрывах в непосредственной близости. Пусковые установки должны быть защищены от ударной волны, высокой температуры, электромагнитных, радиационных и всех прочих воздействий ядерных взрывов.
Каждая ракета должна иметь свой «дот». Немцы еще в 1944 году пытались проектировать стартовые установки дли пуска ракет А-4 из бомбозащитных укрытий. Американцы намного опередили нас с разработкой идеи укрытия ракет в вертикальных шахтах, выполняющих одновременно роль ядерного бомбоубежища и пусковой установки. Ракеты «Титан-2», а вслед за ними сотни твердотопливных «Минитменов» начиная с 1960 года принимались на вооружение и устанавливались на дежурство в шахтные пусковые установки (ШПУ).
Советское руководство с опозданием, только после изучения разведывательных данных об американских ракетных шахтах, приняло в 1960 году решение о строительстве ШПУ для Р-12, Р-14, Р-16, Р-9 и последующих модификаций. Сооружение ШПУ потребовало разработки новых подземных систем подготовки и пуска. На полигонах появились совершенно секретные объекты под речными названиями: «Двина», «Чусовая», «Шексна» и «Десна». Каждая река была приписана к «своей» ракете. Из-за требований автоматического пуска и переделки самих ракет под условия длительного хранения и безопасного вылета из шахт проблемы возникали одна за другой. Общие объемы работ и соответственно затраты на сооружение ШПУ намного превосходили соответствующие объемы для открытых наземных стартов. Первые Р-16 в варианте наземного старта были поставлены на дежурство уже в апреле 1961 года. Для сдачи на дежурство в шахтном варианте для этой же ракеты потребовалось еще два года упорной работы.
Нашу Р-9 предстояло вначале научить стартовать с открытой наземной площадки, а потом уже прятать в шахту. Для ускорения этого процесса было принято решение соорудить временную стартовую позицию в непосредственной близости к первой площадке старта «семерки». Временной стартовой позиции Р-9 присвоили номер «пятьдесят первая». Она находилась в низинке, всего в трехстах метрах от холма, на котором высились сооружения площадки № 1. Такая близость давала возможность использовать для подготовки монтажно-испытательный корпус (МИК) второй площадки, заправочное, наземное, электросиловое оборудование, действующие коммуникации связи и прочие удобства первой площадки. А еще было очень удобно, что наиболее квалифицированные специалисты, в том числе и главные конструкторы, занятые подготовкой пилотируемых и межпланетных пусков, никуда не переезжая, могли уделять должное внимание новой ракете.
В марте 1961 года для примерки Р-9 впервые установили на стартовый стол и мы получили возможность любоваться ею. Строгие и совершенные формы еще загадочной «девятки» резко отличались от «семерки», познавшей все тяготы полигонной жизни, опутанной многоэтажными стальными фермами обслуживания, заправочными и кабельными мачтами. Р-9 действительно сильно выигрывала по сравнению со своей старшей сестрой по стартовой массе. При дальности, равной или даже большей, чем у Р-7А, в ее головной части умещался заряд мощностью 1,65 мегатонн. Напомню, что «семерка» несла 3,5 мегатонны. Но такая ли уж большая разница — городу превратиться в пепел от попадания 80 или 175 бомб Хиросимы?
Красота и строгость форм «девятки» дались не даром. Борьба с лишними килограммами сухой массы велась непримиримо. Мы боролись за километры дальности жесткой весовой политикой и совершенствованием параметров всех систем. Глушко, несмотря на страх перед самовозбуждением колебаний «высокой частоты», увеличил давление в камерах по сравнению с «семеркой» и спроектировал двигатель РД-111 для «девятки» очень компактным, по размерам почти таким же, как РД-107 «семерки». Он развивал тягу у земли 140 тс (двигатель РД-107 — 82 тс), давление в камере достигало 80 атмосфер (у РД-107 — 60 атмосфер). Повышение давление и было одной из возможных причин возникновения «высокой частоты». РД-111 имел четыре камеры сгорания при одном, как и у РД-107, общем турбонасосном агрегате (ТНА). Принципиально новым было то, что камеры устанавливались на двигательной раме в подшипниках, оси которых располагались в плоскостях курса и тангажа. Путем поворота камер гидравлическими рулевыми машинами центрального привода на участке траектории первой ступени достигалось полное управление полетом. ТНА очень компактно располагался над камерами и был связан с ними гибкими сильфонными шлангами. В отличие от двигателей «семерки» для привода ТНА не требовалась перекись водорода. Газ для привода турбины вырабатывался в газогенераторе за счет сжигания небольшой части топлива. Первичная раскрутка ТНА производилась пороховьм стартером. Для регулирования двигателя по тяге и соотношению компонентов мы разработали специальные электроприводы.
Чтобы использовать все топливо, не оставляя сотни килограммов в виде «гарантийных запасов», мы разработали ДРОБ — дискретную (по современной терминологии — цифровую) систему регулирования опорожнения баков. Константин Маркс, Павел Кулиш и Владимир Вороскалевский имели все основания гордиться емкостными датчиками в баках и транзисторной логикой. Система оказалась надежнее и проще, чем аналогичная у «семерки». Революционное предложение по центральному приводу для качания камер двигателя кроме всех прочих преимуществ дало возможность снизить емкость и существенно уменьшить массу бортовых батарей. Еще одним революционным предложением был ЖБК — желоб бортовых коммуникаций. В этом желобе, протянувшемся по образующей от второй ступени до стартового стола, были проложены гидравлические и электрические коммуникации, необходимые для связи ракеты с «землей» до самых последних секунд. Обычно для связи с «землей» многочисленные трубки и кабели тянутся к наземному оборудованию по конструкции ракеты и летят затем вместе с ракетой ненужным в полете грузом. «Все, что не требуется в полете, не должно улетать» — под таким лозунгом мы «переселили» с «борта» в ЖБК сотни килограммов всяческих коммуникаций. Сам ЖБК внушительных размеров отстреливался от ракеты и с грохотом стукался о бетон стартовой площадки за секунды до взлета. Ажурная ферма соединяла вторую ступень с первой. После разделения ступеней сбрасывалась конструкция хвостовой части второй ступени. В полете вторая ступень таким образом сразу облегчалась на 800 кг.
Двигателю Косберга тягой 30 тонн второй ступени «девятки» предстояло надолго войти в историю космонавтики. После доработки вторая ступень с этим двигателем заняла место третьей ступени ракеты «Союз», получив наименование блок «И». Косберг создал надежный кислородно-керосиновый двигатель. Отработанный в турбонасосном агрегате двигателя генераторный газ использовался в качестве рабочего тела в рулевых управляющих соплах.
После двух недель наземных тренировок и устранения замечаний первый пуск первой ракеты Р-9 был назначен на 9 апреля 1961 года. Это совпадало с самыми напряженными днями подготовки к пуску Гагарина. Многие испытатели днем были заняты «семеркой» для «Востока», а ночью готовили первую «девятку». Даже плохо разбиравшийся в тонкостях ракетной техники новый Главнокомандующий Ракетными войсками стратегического назначения маршал Москаленко задал вопрос: «'А нельзя ли отложить этот пуск?»
Председатель гагаринской Госкомиссии Руднев тоже удивлялся, зачем нам такая накладка. Но Королев его убеждал, что после пуска первого человека, при любом исходе, нам будет не до «девятки». В этом отношении он был прав. Даже на этом первом пуске Королева не было в новом тесном бункере 51-й площадки. Он был занят переговорами с Москвой, лично с Хрущевым по окончательному решению вопроса о пуске человека. Первый пуск «девятки» было доверено проводить Воскресенскому, Кириллову, Дорофееву, Осташеву и ведущему конструктору по «девятке» Хомякову. Мишину и мне Королев приказал принять участие в пуске «на правах комиссаров». Мне было еще сказано: «Ты головой отвечаешь за этот свой центральный привод. Смотри, чтобы не было никакого масла!»
Королев имел в виду, что силовые цилиндры гидросистемы, управляющие отклонением камер первой ступени двигателей, для проверки системы управления до запуска заполнены жидким маслом. Специальный наземный агрегат создавал в гидросистеме центрального привода необходимое давление. При нарушениях герметичности в стыках масляных трубопроводов и гибких шлангов могли образоваться подтеки, якобы опасные в случае попадания на них жидкого кислорода.
Я терроризировал Калашникова, Вильницкого и Шутенко. Сам осматривал через люки хвостовую часть, пока не убеждался, что все сухо и чисто. Но чем черт не шутит, когда идет заправка жидким кислородом? Масляные магистрали отсекались от наземного агрегата перед запуском двигателя. Керосин из турбонасосного агрегата под высоким давлением поступал в гидросистему и вытеснял масло в керосиновый бак. В полете масло уже не участвовало, но натекание могло произойти перед самым стартом.
Подготовка к первому пуску ракеты проходила с большой задержкой. В наземной автоматике управления заправкой обнаружили ошибки, которые мешали набору готовности. С пятичасовой задержкой наконец вышли на пятнадцатиминутную готовность. Воскресенский, стоявший у перископа, вдруг объявил:
— Дать всем службам пятнадцатиминутную задержку. Повернувшись к нам, он сказал, что есть заметная течь кислорода из фланцевого соединения у стартового стола.
—Я выйду осмотрю. Осташев со мной, остальным из бункера не выходить!
Противные мысли лезут в голову в таких ситуациях. Надо же было Королеву напомнить мне о рулевом масле. Вот кислород потек после того, как все ушли с площадки. Вдруг потечет еще и масло? Я и Мишин наблюдали через перископ. Двое, не торопясь, шли к окутанному белыми парами стартовому столу. Воскресенский, как всегда, в своем традиционном берете.
— Леня и тут своей походочкой бравирует, — не выдержал Мишин.
Воскресенский в чрезвычайных ситуациях не спешил, шагал выпрямившись, не глядя под ноги, своеобразной, только ему свойственной походкой. Не спешил он потому, что в поединке с еще одним неожиданным дефектом сосредотачивался и обдумывал предстоящее решение.
Осмотрев парящее соединение, Воскресенский и Осташев, не спеша, скрылись за ближайшей стенкой стартового сооружения. Минуты через две Воскресенский снова появился в поле зрения, но уже без берета. Теперь он шагал решительно и быстро. На вытянутой руке он нес что-то и, подойдя к столу, приложил это «что-то» к парящему фланцу. Осташев тоже подошел, и, судя по жестикуляции, оба были довольны принятым решением. Постояв у стола, они повернулись и пошли к бункеру. Когда шагающие фигуры отошли от ракеты, стало ясно, что течь прекратилась: клубящихся белых паров больше не было. Вернувшись в бункер без берета, Воскресенский занял свое место у перископа и, ничего не объясняя, повторно объявил пятнадцатиминутную готовность.
В 12 часов 15 минут ракета окуталась пламенем, разбрасывающим стартовый мусор, и, взревев, резко ушла навстречу солнцу. Первая ступень отработала положенные ей 100 секунд. Телеметристы по громкой связи доложили: «Прошло разделение, сброшен переходной отсек».
На 155-й секунде последовал доклад: «Сбои, сбои!… В сбоях видна потеря стабилизации!»
Для первого пуска и это было неплохо. Проверены первая ступень, ее двигатель, система управления, центральный привод, запуск двигателя второй ступени, горячее разделение, сброс хвостового отсека второй ступени. Дальше пришел обычный доклад, что пленки срочно увозят в МИК на проявку.
— Пойду поищу «берет, — как-то неопределенно сказал Воскресенский, направляясь к „нулевой“ отметке.
Кто-то из солдат, присоединившихся к поиску, нашел берет метрах в двадцати от стартового стола, но Воскресенский не стал его надевать, а нес в руке, даже не пытаясь засунуть в карман. На мой немой вопрос он ответил:
— Надо бы простирнуть.
От Осташева мы узнали подробности импровизированного ремонта кислородной магистрали. Укрывшись за ближайшей стенкой от паров кислорода, Воскресенский снял свой берет, бросил его на землю и… помочился. Осташев присоединился и тоже добавил влаги. Затем Воскресенский быстро отнес мокрый берет к подтекающему фланцу и с виртуозностью опытного хирурга точно приложил его к месту течи. За несколько секунд прочная ледяная корка-заплата «заштопала» кислородную подпитку ракеты.
Среди специалистов, слетевшихся на полигон по случаю пилотируемого пуска, были женщины, которым, по мнению Воскресенского, из этических соображений не следовало знать о таком его «гусарском» подвиге.
Вечером, собравшись в «третьем» домике, мы не упустили случая повеселиться и острословили по адресу ремонтеров. Воскресенскому советовали на будущее запасаться анализами мочи для стартовой команды на предмет доказательства ее взрывобезопасности. Берет был выстиран и в дальнейшем использовался по прямому назначению. Подобный метод ремонта кислородных магистралей вошел в ракетную мифологию.
Однако были и трагические случаи, связанные с нарушениями целостности кислородной магистрали. Во время подготовки к пуску модифицированной «семерки» — 11К511У со спутником разведки на плесецком полигоне 18 марта 1980 года после заправки ракеты кислородом на стартовой площадке начался пожар, быстро перекинувшийся на заправленную ракету. В огне погибли десятки людей. Государственную комиссию по расследованию возглавил председатель ВПК. В подобных случаях установить истинные причины катастрофы, произошедшей на земле, труднее, чем при аварии ракеты в далеком полете. Одной из вероятных версий этого трагического чрезвычайного происшествия сочли попытку устранения течи из наземной кислородной магистрали. Говорили, что для ремонта использовали грязную тряпку, окунули ее в воду и попытались обмотать место течи. В обтирочной тряпке соотношение паров кислорода с неведомыми компонентами грязных машинных масел могло оказаться взрывоопасным. Об этой катастрофе, естественно, никаких публикаций не появилось — никто из высоких чинов тогда не погиб. Это была вторая после 24 октября 1960 года крупная наземная ракетно-пусковая катастрофа.
Сергей Охапкин, в молодости своей работавший у Туполева, рассказывал, что Андрей Николаевич умел «на глаз» оценивать летные качества самолета. «Чтобы самолет хорошо летал, он должен быть красивым»,. — говорил Туполев. «Девятка» у нас тоже получалась красивой. Так, по крайней мере, считали мы, ее создатели.
В самом начале проектирования было понятно, что легкой жизни, которую мы себе позволяли при распределении массы на «семерке», здесь быть не может. Нужны были принципиально новые идеи. Насколько я помню, Мишин первым высказал революционную идею об использовании переохлажденного жидкого кислорода. Если вместо минус 183°С, близких к точке кипения кислорода, понизить его температуру до минус 200°С, а еще лучше — до минус 210°С, то, во-первых, он займет меньший объем и, во-вторых, резко уменьшатся потери на испарение. Если такую температуру удастся поддержать, можно будет осуществить скоростную заправку: кислород, попадая в теплый бак, не будет бурно вскипать, как это происходит на всех наших ракетах от Р-1 до Р-7 включительно.
Проблема получения, транспортировки и хранения переохлажденного жидкого кислорода оказалась столь серьезной, что вышла за чисто ракетные рамки и приобрела с подачи Мишина, а затем и включившегося в решение этих задач Королева общесоюзное народнохозяйственное значение.
В качестве советника по кислородной проблеме был привлечен академик Петр Капица. Консультантом по проблемам поддержания высокого вакуума в больших объемах для теплоизоляции был академик Векшинский. Я встречался с одним из ведущих советских специалистов по электронным лампам Векшинским еще во время войны, когда мы с Поповьм проектировали РОКС — радиоопределитель координат самолета. Теперь Векшинский был директором крупного НИИ вакуумной техники, работавшего в интересах радиолокационной и атомной науки. Я взялся познакомить Королева и Мишина с Векшинским. Такая встреча в интересах Р-9 состоялась. Когда я напомнил Векшинскому о наших работах во время войны, он с тоской в голосе сказал: «Тогда работать на пустой желудок было почему-то легче».
В августе 1960 года в Загорске начались огневые испытания ракеты Р-16. Двигатели Глушко на несимметричном диметилгидразине и азотном тетраксиде работали устойчиво. В то же время новые кислородные двигатели на стендах в ОКБ-456 для Р-9 начинала трясти и разрушать «высокая частота».
Неприятности, сопровождавшие начальный период отработки кислородных двигателей для Р-9, сторонники Глушко объясняли принципиальной невозможностью на данном этапе создания мощного кислородного двигателя с устойчивым режимом. Даже не желавший открыто включаться в споры Исаев в приватной беседе со мной сказал примерно следующее: «Дело не в том, что Глушко не хочет. Он просто не может и не знает пока, как сделать устойчивым процесс на кислороде в камерах таких больших размеров. И я не знаю. И, по-моему, никто пока не понимает истинных причин появления высокой частоты».
По поводу выбора компонентов топлива Королев и Глушко никак не могли прийти к согласию. Когда была получена информация о том, что в «Титане-1» американцы используют жидкий кислород, Королев и на Совете главных, и в переговорах по «кремлевке» говорил, что это подтверждает правильность нашей линии при создании Р-9. Он считал, что мы не ошиблись, выбрав Р-9А на кислороде, а не Р-9Б на высококипящих компонентах, на чем настаивал Глушко.
Однако в конце 1961 года появилась информация, что та же фирма «Мартин» создала ракету «Титан-2», предназначенную для поражения важнейших стратегических объектов. Автономная система управления «Титана-2» обеспечивала точность стрельбы 1,5 км при дальности 16 000 км! В зависимости от дальности головная часть комплектовалась зарядом мощностью от 10 до 15 мегатонн.
Ракеты «Титан-2» размещались в одиночных шахтных пусковых установках в заправленном состоянии и могли стартовать через минуту после получения команды. Американцы отказались от кислорода и использовали высококипящие компоненты. Одновременно поступили данные о снятии «Титана-1» с вооружения в связи с невозможностью сокращения времени готовности из-за использования жидкого кислорода. Теперь уже злорадствовал Глушко.
Отношения между Королевьм и Глушко никогда не были дружескими. Конфликт по выбору двигателей для Р-9, начавшийся в 1958 году, в последующем привел к обострению и личных, и служебных отношений, от чего страдали как они оба, так и общее дело.
Между тем строительство технической и стартовой позиций для Р-16 заканчивалось. Это были так называемые «сороковые площадки». Подогреваемый Неделиным Янгель стремился выполнить обязательства по началу летных испытаний Р-16 досрочно еще в 1960 году. Но спешка есть спешка.
24 октября 1960 года при подготовке к первому пуску ракеты Р-16 произошла катастрофа, тяжелейшая в истории нашей ракетной техники. Об этом я подробно писал в книге «Ракеты и люди. Фили -Подлипки — Тюратам». Несмотря на моральный удар и людские потери, коллектив ОКБ-586 нашел в себе силы в декабре 1960 года успешно закончить летные испытания Р-14.
Разрушенная после взрыва и пожара стартовая площадка № 41 для ракеты Р-16 была восстановлена за три месяца.
Систему управления доработали и «вылечили» от роковых ошибок уже под руководством нового главного конструктора Владимира Сергеева. До катастрофы он работал начальником отдела у Пилюгина. После гибели Коноплева Сергеев согласился с предложением ЦК занять в харьковском НИИ-692 место погибшего. Пилюгин и специалисты соседних харьковских заводов оказывали коллективу, который принял Сергеев, большую помощь. Это позволило быстро оправиться от потрясения и через три месяца снова начать летные испытания.
В январе 1961 года я с Виктором Кузнецовым поехал на сороковые «янгелевские» площадки. Нас пригласил новый председатель Государственной комиссии по продолжению испытаний Р-16 генерал-лейтенант Андрей Илларионович Соколов. Со времени нашей совместной работы в Пенемюнде в 1945 году мне приходилось с ним встречаться много раз. Я и многие мои знакомые считали его жестким и требовательным генералом, но думающим, умеющим слушать и без признаков начальственного самодурства.
В то время Соколов был начальником НИИ-4 — головного института ракетных войск. Оказавшись председателем Госкомиссии вместо погибшего Главного маршала артиллерии Неделина, он захотел посоветоваться со специалистами «со стороны» перед новым этапом испытаний такой опасной ракеты.
Соколов провел нас на техническую позицию, где шли испытания первой прибывшей из Днепропетровска ракеты Р-16. Он сказал, что, несмотря на круглосуточный режим, им установлена четкая сменность и персональная ответственность при появлении замечаний, все процессы испытаний детально и жестко регламентируются документами и подписями ответственных лиц — военных и представителей промышленности. «Принуждать к жесточайшей дисциплине при испытаниях мне не потребовалось, — говорил Соколов. — После октябрьской катастрофы у людей появилось собственное стремление к порядку и внимание ко всем мелочам».
Несколько часов, проведенных на технической позиции Р-16, убедили меня в том, что по крайней мере организация всех испытательных работ здесь теперь лучше, чем в нашем «первом» управлении. Поясняю, что основными структурными военными подразделениями на полигоне были испытательные управления, каждое из которых ведало тематикой одного из главных конструкторов. Начальником «первого», королевского, управления был Анатолий Кириллов, а новым начальником «второго», янгелевского, был назначен переведенный из Капъяра Александр Курушин.
2 февраля 1961 года был проведен первый после катастрофы пуск доработанной Р-16. Участвовавший в нем Иосифьян рассказывал, что он боялся за самочувствие Янгеля больше, чем за провал пуска. В основном пуск был успешным. Большую ошибку по дальности для первого раза, учитывая, что не все еще доработано по электромагнитной совместимости, можно было простить.
Далее летно-конструкторские испытания проходили настолько уверено, что главком Москаленко с подачи Соколова и Янгеля предложил уже в апреле поставить Р-16 на дежурство в «полном боевом снаряжении», пока, правда, на стартах наземного варианта.
Полностью летные испытания ракеты Р-16 наземного базирования были закончены только в феврале 1962 года. Тогда же на полигоне в Тюратаме было закончено строительство боевых шахт и начались летные испытания Р-16 шахтного старта.
Далекому от ракетной техники читателю считаю нужным объяснить, что одной из эксплуатационных особенностей современных ракет дальнего действия является их значительно большая зависимость от «земли», чем у крылатых летательных аппаратов.
Самолетам для взлета и посадки нужна всего-навсего горизонтальная площадка — аэродром. На заре авиации самолетам вовсе не требовались бетонированные взлетные полосы, вполне годился лужок протяженностью в сотню метров.
Баллистические ракеты дальнего действия (БРДД) всех поколений нуждаются в сложном наземном стартовом оборудовании. Конструктор ракеты в отличие от конструктора самолета с первых дней проектирования и до начала летной эксплуатации или установки ракет на боевое дежурство не может ни защитить свой проект, ни провести летные испытания без совместной работы с конструктором наземных систем. Обязательным является условие совместной разработки ракеты и «земли» как единого комплекса. То же относится и к морским ракетам. В этом случае роль «земли» выполняет подводная лодка.
Проблема ракетной «земли» усложнилась не только с появлением тяжелых межконтинентальных ракет, но и с обострением «холодной войны». Каждая из противостоящих сторон опасалась первой подвергнуться ракетно-ядерному нападению. При этом считалось, что ракетный агрессор нанесет удар не только по важнейшим жизненным центрам страны, но прежде всего постарается уничтожить все разведанные стартовые системы ракет противника, упреждая возможность ответного удара. Ответный удар возмездия предусматривается всеми теоретиками ядерной стратегии. Концепция ответного удара предъявляет конструкторам боевых ракетных комплексов два взаимно противоречащих требования.
Первое. Ракеты для ответного удара должны быть пущены, как только станет известно, что ракеты противника уже стартовали. В этой ситуации возникает острейший дефицит времени. В доракетные времена сторона, подвергнувшаяся нападению, имела для подготовки ответного удара дни, в крайнем случае часы. Сама по себе подготовка нападения с помощью обычных вооружений при современных средствах разведки должна быть обнаружена по крайней мере за несколько часов. Принятие на вооружение БРДД коренным образом меняет стратегию. Если нападающий располагает десятками или сотнями ракет, находящимися на боевом дежурстве в течение месяцев и даже лет, время их пуска нельзя предугадать.
Средства противоракетной обороны на обнаружение, распознавание, передачу достоверной информации затратят основную долю из тех тридцати минут, которые нужны ракетам агрессора, чтобы достигнуть цели. С учетом времени, необходимого на принятие решения об ответном ударе и передачу приказа командованию Ракетными войсками стратегического назначения, самим ракетам на подготовку и покидание своих пусковых установок остается несколько минут. Первое требование сводится к тому, чтобы ракеты нападающей стороны поразили уже опустевшие пусковые установки.
Второе. На случай, если первое требование не выполнено и ракеты противника все же достигли цели раньше, чем сторона, подвергшаяся нападению, выпустила свои, необходимо, чтобы пусковые установки не вышли из строя при ядерных взрывах в непосредственной близости. Пусковые установки должны быть защищены от ударной волны, высокой температуры, электромагнитных, радиационных и всех прочих воздействий ядерных взрывов.
Каждая ракета должна иметь свой «дот». Немцы еще в 1944 году пытались проектировать стартовые установки дли пуска ракет А-4 из бомбозащитных укрытий. Американцы намного опередили нас с разработкой идеи укрытия ракет в вертикальных шахтах, выполняющих одновременно роль ядерного бомбоубежища и пусковой установки. Ракеты «Титан-2», а вслед за ними сотни твердотопливных «Минитменов» начиная с 1960 года принимались на вооружение и устанавливались на дежурство в шахтные пусковые установки (ШПУ).
Советское руководство с опозданием, только после изучения разведывательных данных об американских ракетных шахтах, приняло в 1960 году решение о строительстве ШПУ для Р-12, Р-14, Р-16, Р-9 и последующих модификаций. Сооружение ШПУ потребовало разработки новых подземных систем подготовки и пуска. На полигонах появились совершенно секретные объекты под речными названиями: «Двина», «Чусовая», «Шексна» и «Десна». Каждая река была приписана к «своей» ракете. Из-за требований автоматического пуска и переделки самих ракет под условия длительного хранения и безопасного вылета из шахт проблемы возникали одна за другой. Общие объемы работ и соответственно затраты на сооружение ШПУ намного превосходили соответствующие объемы для открытых наземных стартов. Первые Р-16 в варианте наземного старта были поставлены на дежурство уже в апреле 1961 года. Для сдачи на дежурство в шахтном варианте для этой же ракеты потребовалось еще два года упорной работы.
Нашу Р-9 предстояло вначале научить стартовать с открытой наземной площадки, а потом уже прятать в шахту. Для ускорения этого процесса было принято решение соорудить временную стартовую позицию в непосредственной близости к первой площадке старта «семерки». Временной стартовой позиции Р-9 присвоили номер «пятьдесят первая». Она находилась в низинке, всего в трехстах метрах от холма, на котором высились сооружения площадки № 1. Такая близость давала возможность использовать для подготовки монтажно-испытательный корпус (МИК) второй площадки, заправочное, наземное, электросиловое оборудование, действующие коммуникации связи и прочие удобства первой площадки. А еще было очень удобно, что наиболее квалифицированные специалисты, в том числе и главные конструкторы, занятые подготовкой пилотируемых и межпланетных пусков, никуда не переезжая, могли уделять должное внимание новой ракете.
В марте 1961 года для примерки Р-9 впервые установили на стартовый стол и мы получили возможность любоваться ею. Строгие и совершенные формы еще загадочной «девятки» резко отличались от «семерки», познавшей все тяготы полигонной жизни, опутанной многоэтажными стальными фермами обслуживания, заправочными и кабельными мачтами. Р-9 действительно сильно выигрывала по сравнению со своей старшей сестрой по стартовой массе. При дальности, равной или даже большей, чем у Р-7А, в ее головной части умещался заряд мощностью 1,65 мегатонн. Напомню, что «семерка» несла 3,5 мегатонны. Но такая ли уж большая разница — городу превратиться в пепел от попадания 80 или 175 бомб Хиросимы?
Красота и строгость форм «девятки» дались не даром. Борьба с лишними килограммами сухой массы велась непримиримо. Мы боролись за километры дальности жесткой весовой политикой и совершенствованием параметров всех систем. Глушко, несмотря на страх перед самовозбуждением колебаний «высокой частоты», увеличил давление в камерах по сравнению с «семеркой» и спроектировал двигатель РД-111 для «девятки» очень компактным, по размерам почти таким же, как РД-107 «семерки». Он развивал тягу у земли 140 тс (двигатель РД-107 — 82 тс), давление в камере достигало 80 атмосфер (у РД-107 — 60 атмосфер). Повышение давление и было одной из возможных причин возникновения «высокой частоты». РД-111 имел четыре камеры сгорания при одном, как и у РД-107, общем турбонасосном агрегате (ТНА). Принципиально новым было то, что камеры устанавливались на двигательной раме в подшипниках, оси которых располагались в плоскостях курса и тангажа. Путем поворота камер гидравлическими рулевыми машинами центрального привода на участке траектории первой ступени достигалось полное управление полетом. ТНА очень компактно располагался над камерами и был связан с ними гибкими сильфонными шлангами. В отличие от двигателей «семерки» для привода ТНА не требовалась перекись водорода. Газ для привода турбины вырабатывался в газогенераторе за счет сжигания небольшой части топлива. Первичная раскрутка ТНА производилась пороховьм стартером. Для регулирования двигателя по тяге и соотношению компонентов мы разработали специальные электроприводы.
Чтобы использовать все топливо, не оставляя сотни килограммов в виде «гарантийных запасов», мы разработали ДРОБ — дискретную (по современной терминологии — цифровую) систему регулирования опорожнения баков. Константин Маркс, Павел Кулиш и Владимир Вороскалевский имели все основания гордиться емкостными датчиками в баках и транзисторной логикой. Система оказалась надежнее и проще, чем аналогичная у «семерки». Революционное предложение по центральному приводу для качания камер двигателя кроме всех прочих преимуществ дало возможность снизить емкость и существенно уменьшить массу бортовых батарей. Еще одним революционным предложением был ЖБК — желоб бортовых коммуникаций. В этом желобе, протянувшемся по образующей от второй ступени до стартового стола, были проложены гидравлические и электрические коммуникации, необходимые для связи ракеты с «землей» до самых последних секунд. Обычно для связи с «землей» многочисленные трубки и кабели тянутся к наземному оборудованию по конструкции ракеты и летят затем вместе с ракетой ненужным в полете грузом. «Все, что не требуется в полете, не должно улетать» — под таким лозунгом мы «переселили» с «борта» в ЖБК сотни килограммов всяческих коммуникаций. Сам ЖБК внушительных размеров отстреливался от ракеты и с грохотом стукался о бетон стартовой площадки за секунды до взлета. Ажурная ферма соединяла вторую ступень с первой. После разделения ступеней сбрасывалась конструкция хвостовой части второй ступени. В полете вторая ступень таким образом сразу облегчалась на 800 кг.
Двигателю Косберга тягой 30 тонн второй ступени «девятки» предстояло надолго войти в историю космонавтики. После доработки вторая ступень с этим двигателем заняла место третьей ступени ракеты «Союз», получив наименование блок «И». Косберг создал надежный кислородно-керосиновый двигатель. Отработанный в турбонасосном агрегате двигателя генераторный газ использовался в качестве рабочего тела в рулевых управляющих соплах.
После двух недель наземных тренировок и устранения замечаний первый пуск первой ракеты Р-9 был назначен на 9 апреля 1961 года. Это совпадало с самыми напряженными днями подготовки к пуску Гагарина. Многие испытатели днем были заняты «семеркой» для «Востока», а ночью готовили первую «девятку». Даже плохо разбиравшийся в тонкостях ракетной техники новый Главнокомандующий Ракетными войсками стратегического назначения маршал Москаленко задал вопрос: «'А нельзя ли отложить этот пуск?»
Председатель гагаринской Госкомиссии Руднев тоже удивлялся, зачем нам такая накладка. Но Королев его убеждал, что после пуска первого человека, при любом исходе, нам будет не до «девятки». В этом отношении он был прав. Даже на этом первом пуске Королева не было в новом тесном бункере 51-й площадки. Он был занят переговорами с Москвой, лично с Хрущевым по окончательному решению вопроса о пуске человека. Первый пуск «девятки» было доверено проводить Воскресенскому, Кириллову, Дорофееву, Осташеву и ведущему конструктору по «девятке» Хомякову. Мишину и мне Королев приказал принять участие в пуске «на правах комиссаров». Мне было еще сказано: «Ты головой отвечаешь за этот свой центральный привод. Смотри, чтобы не было никакого масла!»
Королев имел в виду, что силовые цилиндры гидросистемы, управляющие отклонением камер первой ступени двигателей, для проверки системы управления до запуска заполнены жидким маслом. Специальный наземный агрегат создавал в гидросистеме центрального привода необходимое давление. При нарушениях герметичности в стыках масляных трубопроводов и гибких шлангов могли образоваться подтеки, якобы опасные в случае попадания на них жидкого кислорода.
Я терроризировал Калашникова, Вильницкого и Шутенко. Сам осматривал через люки хвостовую часть, пока не убеждался, что все сухо и чисто. Но чем черт не шутит, когда идет заправка жидким кислородом? Масляные магистрали отсекались от наземного агрегата перед запуском двигателя. Керосин из турбонасосного агрегата под высоким давлением поступал в гидросистему и вытеснял масло в керосиновый бак. В полете масло уже не участвовало, но натекание могло произойти перед самым стартом.
Подготовка к первому пуску ракеты проходила с большой задержкой. В наземной автоматике управления заправкой обнаружили ошибки, которые мешали набору готовности. С пятичасовой задержкой наконец вышли на пятнадцатиминутную готовность. Воскресенский, стоявший у перископа, вдруг объявил:
— Дать всем службам пятнадцатиминутную задержку. Повернувшись к нам, он сказал, что есть заметная течь кислорода из фланцевого соединения у стартового стола.
—Я выйду осмотрю. Осташев со мной, остальным из бункера не выходить!
Противные мысли лезут в голову в таких ситуациях. Надо же было Королеву напомнить мне о рулевом масле. Вот кислород потек после того, как все ушли с площадки. Вдруг потечет еще и масло? Я и Мишин наблюдали через перископ. Двое, не торопясь, шли к окутанному белыми парами стартовому столу. Воскресенский, как всегда, в своем традиционном берете.
— Леня и тут своей походочкой бравирует, — не выдержал Мишин.
Воскресенский в чрезвычайных ситуациях не спешил, шагал выпрямившись, не глядя под ноги, своеобразной, только ему свойственной походкой. Не спешил он потому, что в поединке с еще одним неожиданным дефектом сосредотачивался и обдумывал предстоящее решение.
Осмотрев парящее соединение, Воскресенский и Осташев, не спеша, скрылись за ближайшей стенкой стартового сооружения. Минуты через две Воскресенский снова появился в поле зрения, но уже без берета. Теперь он шагал решительно и быстро. На вытянутой руке он нес что-то и, подойдя к столу, приложил это «что-то» к парящему фланцу. Осташев тоже подошел, и, судя по жестикуляции, оба были довольны принятым решением. Постояв у стола, они повернулись и пошли к бункеру. Когда шагающие фигуры отошли от ракеты, стало ясно, что течь прекратилась: клубящихся белых паров больше не было. Вернувшись в бункер без берета, Воскресенский занял свое место у перископа и, ничего не объясняя, повторно объявил пятнадцатиминутную готовность.
В 12 часов 15 минут ракета окуталась пламенем, разбрасывающим стартовый мусор, и, взревев, резко ушла навстречу солнцу. Первая ступень отработала положенные ей 100 секунд. Телеметристы по громкой связи доложили: «Прошло разделение, сброшен переходной отсек».
На 155-й секунде последовал доклад: «Сбои, сбои!… В сбоях видна потеря стабилизации!»
Для первого пуска и это было неплохо. Проверены первая ступень, ее двигатель, система управления, центральный привод, запуск двигателя второй ступени, горячее разделение, сброс хвостового отсека второй ступени. Дальше пришел обычный доклад, что пленки срочно увозят в МИК на проявку.
— Пойду поищу «берет, — как-то неопределенно сказал Воскресенский, направляясь к „нулевой“ отметке.
Кто-то из солдат, присоединившихся к поиску, нашел берет метрах в двадцати от стартового стола, но Воскресенский не стал его надевать, а нес в руке, даже не пытаясь засунуть в карман. На мой немой вопрос он ответил:
— Надо бы простирнуть.
От Осташева мы узнали подробности импровизированного ремонта кислородной магистрали. Укрывшись за ближайшей стенкой от паров кислорода, Воскресенский снял свой берет, бросил его на землю и… помочился. Осташев присоединился и тоже добавил влаги. Затем Воскресенский быстро отнес мокрый берет к подтекающему фланцу и с виртуозностью опытного хирурга точно приложил его к месту течи. За несколько секунд прочная ледяная корка-заплата «заштопала» кислородную подпитку ракеты.
Среди специалистов, слетевшихся на полигон по случаю пилотируемого пуска, были женщины, которым, по мнению Воскресенского, из этических соображений не следовало знать о таком его «гусарском» подвиге.
Вечером, собравшись в «третьем» домике, мы не упустили случая повеселиться и острословили по адресу ремонтеров. Воскресенскому советовали на будущее запасаться анализами мочи для стартовой команды на предмет доказательства ее взрывобезопасности. Берет был выстиран и в дальнейшем использовался по прямому назначению. Подобный метод ремонта кислородных магистралей вошел в ракетную мифологию.
Однако были и трагические случаи, связанные с нарушениями целостности кислородной магистрали. Во время подготовки к пуску модифицированной «семерки» — 11К511У со спутником разведки на плесецком полигоне 18 марта 1980 года после заправки ракеты кислородом на стартовой площадке начался пожар, быстро перекинувшийся на заправленную ракету. В огне погибли десятки людей. Государственную комиссию по расследованию возглавил председатель ВПК. В подобных случаях установить истинные причины катастрофы, произошедшей на земле, труднее, чем при аварии ракеты в далеком полете. Одной из вероятных версий этого трагического чрезвычайного происшествия сочли попытку устранения течи из наземной кислородной магистрали. Говорили, что для ремонта использовали грязную тряпку, окунули ее в воду и попытались обмотать место течи. В обтирочной тряпке соотношение паров кислорода с неведомыми компонентами грязных машинных масел могло оказаться взрывоопасным. Об этой катастрофе, естественно, никаких публикаций не появилось — никто из высоких чинов тогда не погиб. Это была вторая после 24 октября 1960 года крупная наземная ракетно-пусковая катастрофа.