Страница:
«Кто этот парень?» – во второй раз за две минуты задал себе вопрос Пол Самуэльсон. Он сидел в своем офисе на отделении экономики МТИ. Шел 1955-й год или около того. Перед ним лежала диссертация на соискание степени доктора, около полувека назад написанная неким французом, о котором, по твердому убеждению Самуэльсона, он никогда не слышал[19]. Бакалавр Башелье… Что-то вроде этого. Он еще раз посмотрел на заглавную страницу: Луи Башелье. Это имя ни о чем ему не говорило[20].
Работа, лежавшая открытой на столе Самуэльсона, буквально потрясла его. Оказывается, еще пятьдесят пять лет назад Башелье описал математику финансовых рынков. Первой мыслью Самуэльсона было то, что его собственная работа на эту тему, которой он занимался последние семь лет, работа, которая, как предполагалось, ляжет в основу диссертации одного из его студентов, утратила претензию на оригинальность. Но что потрясало еще больше, так это то, что еще в 1900 году этот тип, Башелье, очень хорошо разобрался в той математике, которую Самуэльсон и его ученики только сейчас пытались приспособить к экономике, – в математике, которая, как полагал Самуэльсон, была разработана значительно позднее. Технологии Вейнера, уравнения Холмогорова, мартингалы Дуба… Самуэльсон был убежден, что все это – истинные новации, которым не более двух десятков лет. А выясняется, они все уже были описаны Башелье. Как получилось, что Самуэльсон ни разу о нем не слышал?
Интерес к Башелье возник у Самуэльсона несколько дней назад, когда он получил открытку от своего друга Леонарда «Джимми» Сэвиджа, профессора статистики из Университета Чикаго. Сэвидж только что закончил работу над учебником по теории вероятности и статистике. По ходу работы у него возник интерес к истории. Копаясь в университетской библиотеке в поисках работ по теории вероятности начала ХХ века, Сэвидж случайно натолкнулся на учебник 1914 года[21], который он никогда раньше не встречал. Полистав его, Сэвидж обнаружил, что помимо некоего новаторского взгляда на теорию вероятности книга содержала несколько глав, посвященных явлению, которое автор назвал «биржевой игрой», – буквально, теории вероятности применительно к игре на бирже. Сэвидж догадался (и был прав), что раз он сам никогда раньше ничего не слышал об этой книге, скорее всего, и его друзья-экономисты тоже ее не видели. Он разослал им письма с вопросом, знают ли они что-нибудь о Башелье. Самуэльсон никогда не слышал этой фамилии. Но он интересовался математическими финансами – областью науки, которую, как он считал, в настоящее время изобретает, – и ему было любопытно узнать, что сделал этот француз. В библиотеке МТИ не оказалось ни одного экземпляра никому не известного учебника 1914 года. Но Самуэльсон нашел другой труд Башелье – его диссертацию «Теория игры на бирже». Он взял книгу в библиотеке и принес в свой офис.
Башелье, конечно, был не первым, у кого возник математический интерес к азартным играм. Одним из них был представитель итальянского Ренессанса Джероламо Кардано[22]. Кардано родился в Милане где-то в начале XVI века и считался одним из самых образованных врачей своих дней. За медицинским советом к нему обращались священники и короли. Он был автором сотен эссе на самую разнообразную тематику – от медицины до математики и мистики. Но его настоящей страстью были азартные игры. Он постоянно играл – в кости, карты, шахматы. В своей автобиографии он признает, что прожил годы, каждый день играя в азартные игры. Азартные игры в Средние века и в эпоху Возрождения строились на простом принципе вероятности выигрыша и проигрыша, схожем с тем, на котором строится современный тотализатор на скачках. Если вы были букмекером, предлагавшим кому-либо сделать ставку, вы могли рекламировать вероятность выигрыша в форме пары цифр, например, «10 к 1» или «3 к 2», которые отражали бы, как велика вероятность, того, что то, на что вы ставите, выиграет (если вероятность выигрыша составляла 10 к 1, это означало бы: вы ставите 1 доллар, фунт или гульден, и если выигрываете, ваш выигрыш составит 10 долларов, или фунтов, или гульденов, плюс вашу первоначальную ставку. Если проигрываете, вы теряете свой доллар). Называя эти цифры, букмекер в значительной степени полагался на интуицию. Кардано же считал, что есть какой-то научный способ понять, как делать правильные ставки, по крайней мере в несложных играх. Он хотел поставить математику того времени на службу своему любимому занятию.
В 1526 году, когда Кардано еще не было тридцати лет, он написал книгу[23], в которой попытался систематизировать теорию вероятности. Он сосредоточился на игре в кости. Его главная догадка заключалась в том, что если допустить, что кость с одинаковой вероятностью может упасть как на одну сторону, так и на другую, можно разработать точные вероятности всевозможных комбинаций, в сущности, просчитать их. Так, например, есть шесть возможных вариантов выпадения кости. Соответственно, есть и точный способ получить в результате цифру 5. Математическая вероятность получения пятерки – 1 из 6 (что соответствует коэффициенту 5 к 1). А как насчет получения суммы 10, если бросать две кости? Существует 6 × 6 = 36 возможных результатов, три из которых в сумме соответствуют 10. Таким образом, вероятность получения в сумме десятки составляет 3 из 36 (что соответствует коэффициенту 33 к 3). Эти вычисления кажутся элементарными, даже в XVI веке они не удивили бы – у любого, кто провел достаточно времени за игрой в кости, развилось интуитивное чувство вероятности. Но Кардано был первым, кто объяснил с математической точки зрения, почему вероятность была такой, какой ее все уже знали.
Кардано так и не опубликовал свою книгу – в конце концов, зачем раскрывать свои секреты игры? После его смерти рукопись нашли среди его бумаг и спустя сто с лишним лет, в 1663 году, опубликовали. К тому времени другие авторы уже предприняли самостоятельные попытки разработать полноценную теорию вероятности. Наиболее серьезная из них появилась с подачи другого азартного игрока, французского писателя, известного под псевдонимом Шевалье де Мере[24]. Его интересовало несколько вопросов, наиболее актуальные из которых касались стратегии игры в кости, которую он очень любил. Игра предполагала, что кости кидали несколько раз подряд, и игрок делал ставку на то, как они лягут. Например, вы могли держать пари, что если бросите одну и ту же кость четыре раза подряд, хотя бы один раз выпадет 6. Опыт показывал, что это было пари с равными шансами, игра сводилась к чистой случайности. Но де Мере инстинктивно чувствовал, что если вы заключите пари, что обязательно выпадет 6, и будете делать на это ставку каждый раз, со временем вы станете выигрывать немного чаще, чем проигрывать. Это легло в основу стратегии игры де Мере, и с ее помощью он выиграл немалые деньги. Однако у де Мере была и вторая стратегия, которую он считал не хуже первой, но которая по какой-то причине приносила ему только огорчение. Эта вторая стратегия заключалась в следующем: всегда держать пари, что если бросать две кости двадцать четыре раза, то хотя бы один раз выпадет двойная 6. Но похоже, эта стратегия не срабатывала, и де Мере хотел знать почему.
Де Мере был завсегдатаем парижских салонов, светских встреч французской интеллигенции, которые проводились в промежутках между приемами и научными конференциями. В салонах собирались образованные парижане всех мастей, в том числе математики. Де Мере начал их расспрашивать об этой задаче. Ни у кого не было ответа на его вопрос, никто не проявлял большого интереса к его поиску до тех пор, пока де Мере не задал этот вопрос Блезу Паскалю. Паскаль – вундеркинд, самостоятельно разработавший большую часть классической геометрии, рисуя в детстве картинки. Еще подростком он стал завсегдатаем влиятельного салона священника-иезуита Марена Мерсена. Именно там де Мере встретился с Паскалем. Паскаль тоже не знал ответа на вопрос де Мере, но он его заинтриговал. Паскаль согласился с мнением де Мере, что эта задача должна иметь математическое решение.
Паскаль стал работать над задачей де Мере. Он позвал на помощь другого математика, Пьера де Ферма. Ферма был юристом, всесторонне образованным человеком, свободно владевшим полудюжиной иностранных языков, одним из самых способных математиков тех дней. Ферма жил приблизительно в шестистах километрах к югу от Парижа, в Тулузе. Паскаль не был с ним знаком лично, но слышал о нем от своих знакомых из салона Мерсена. В течение 1654 года в ходе длительной переписки Паскаль и Ферма нашли решение задачи де Мере. А попутно разработали основные положения современной теории вероятности.
Одним из результатов переписки между Паскалем и Ферма был способ точного расчета вероятности выигрышных ставок при игре в кости, который интересовал де Мере (система Кардано тоже учитывалась в такого рода играх в кости, но никто об этом не знал, когда де Мере заинтересовался этими вопросами). Им удалось показать, что первая стратегия де Мере была успешной, поскольку вероятность того, что выпадет 6, если кидать кость четыре раза, была чуть выше 50 % – скорее 51,7747 %. Вторая же стратегия де Мере была не так хороша, поскольку вероятность того, что выпадут две цифры 6, если кидать две кости двадцать четыре раза, составляла всего около 49,14 % – менее 50 %. Это означало, что со второй стратегией победа была немного менее вероятна, чем проигрыш, в то время как первая стратегия имела чуть больше шансов на выигрыш. Де Мере был в восторге от того, что теперь он мог положиться на аналитические наработки двух великих математиков, и стал придерживаться только первой стратегии.
Интерпретация аргументов Паскаля и Ферма была очевидна для де Мере. Но что эти цифры означают на самом деле? Большинство людей интуитивно понимают, что это означает, когда какое-то явление имеет ту или иную вероятность, но на самом деле на кону глубокий философский вопрос[25]. Предположим, я говорю: вероятность, что выпадет орел, когда подбросят монетку, составляет 50 %. То есть если я буду подбрасывать монетку снова и снова, приблизительно в половине случаев она ляжет орлом вверх. Но это не означает, что монетка гарантированно упадет орлом вверх ровно в половине случаев. Если я подброшу монетку 100 раз, она может упасть орлом вверх 51, или 75, или все 100 раз. Может быть любое количество орлов. Почему же де Мере все-таки обратил внимание на расчеты Паскаля и Ферма? Они отнюдь не гарантировали, что его первая стратегия будет успешной в каждом случае. Де Мере мог всю оставшуюся жизнь биться об заклад, что 6 будет выпадать каждый раз, когда кто-либо бросит кость четыре раза подряд, и больше никогда не выиграть, несмотря на расчет вероятности. Это покажется нелепым, но ничто в теории вероятности (или в физике) не исключает такого поворота событий.
Так о чем же говорит нам теория вероятности, если она ничего не гарантирует в отношении того, как часто то или иное событие может иметь место? Если бы де Мере задал этот вопрос, ему долго пришлось ждать на него ответа. Полвека. Первым, кто в 1705 году незадолго до смерти понял, как надо воспринимать зависимость между вероятностью и частотой событий, был швейцарский математик Якоб Бернулли. Бернулли показал, что если вероятность падения монетки орлом составляет 50 %, то вероятность того, что процент «орлов», которые действительно выпадут, будет отличаться от 50 % на какой-то процент, но эта разница будет становиться все меньше и меньше, чем больше раз вы подбросите монетку. Вероятность падения монетки орлом в 50 % случаев будет выше, если вы подбросите монетку 100 раз, чем если вы подбросите ее всего два раза. В рассуждениях Бернулли есть нечто сомнительное, поскольку он использует идеи из теории вероятности, чтобы объяснить, что означает сама вероятность. Бернулли не осознавал (это было полностью обосновано только в ХХ веке), что можно доказать: если вероятность падения монетки орлом составляет 50 % и подбрасывать монетку бесконечное число раз, то (практически) наверняка в половине случаев выпадет орел. Или в случае со стратегией де Мере, если бросать кости бесконечное число раз, в каждой игре ставя на 6, практически гарантирована победа в 51,7477 % игр. Это закон больших чисел, и он подтверждает одно из наиболее важных толкований теории вероятности[26].
Паскаль не был поклонником азартных игр, поэтому даже забавно, что один из главных его вкладов в математику связан именно с этим. Еще более иронично то, что чуть ли не самую большую известность ему принесло… пари, пари Паскаля. В конце 1654 года с Паскалем случилось нечто мистическое, и этот случай изменил его жизнь. Он перестал заниматься математикой, стал адептом индивидуалистических принципов голландского теолога Корнелия Янсения, противоречивого христианского движения в католицизме в XVII веке. И начал активно писать о вопросах теологии. Пари Паскаля, как это теперь называется, впервые появилось в его религиозных работах. Поверить в Бога, писал Паскаль, – это как сделать ставку на то, есть ли Бог или нет. Убеждения же человека сводятся к тому, что он ставит на одно или на другое. Но прежде чем сделать ставку, человек хочет знать, каковы его шансы и что его ожидает, если он выиграет или проиграет. Паскаль рассуждал так: если вы делаете ставку на то, что Бог есть, соответствующим образом проживаете жизнь, и оказывается, что вы были правы, то обретете бессмертие в раю. Если окажется, что вы не правы, то просто умрете и ничего не произойдет. Вы также просто умрете, если поставите на то, что Бога нет, и выиграете. Но если поставите на то, что Бога нет, и проиграете, то будете осуждены на вечные муки. Решение этой дилеммы простое: христианская вера рациональная, а оборотная сторона атеизма слишком пугающая.
Несмотря на увлеченность теорией случая, Луи Башелье не слишком везло в жизни. Своей работой он внес фундаментальный вклад в физику, финансы, математику. Но так и не вышел за рамки академической респектабельности. Всякий раз, когда на пути Башелье начинала маячить удача, она ускользала от него в самый последний момент. Родившись в 1870 году в Гавре, шумном портовом городе на северо-западе Франции, молодой Луи был перспективным студентом. Он блистал знаниями математики в старших классах лицея, в октябре 1888 года получил степень бакалавра естественных наук. У него был достаточно хороший аттестат, с которым он вполне мог рассчитывать на учебу в одном из элитных французских университетов, дипломы которых служили залогом того, что их обладателям уготована судьба стать государственными чиновниками высшего ранга или учеными. Он вырос в купеческой семье, в которой были ученые-любители, художники. Учеба в Гранд-Эколь открывала перед Башелье двери к профессиональному занятию интеллектуальным трудом, двери, которые были плотно закрыты для его предков.
Но не успел Башелье подать заявление в Гранд-Эколь, как его родители скончались. Он остался с незамужней старшей сестрой и трехлетним братом на руках. Два года Башелье занимался семейным винодельческим бизнесом, пока в 1891 году его не призвали на военную службу. Год спустя, уволившись с нее, Башелье смог вернуться к учебе. Ему было чуть больше двадцати лет, у него не было ни дома, ни семьи, которая бы его поддержала. Выбор был ограниченный. По возрасту поступать в Гранд-Эколь было уже невозможно. Башелье выбрал менее престижный Парижский университет.
В аудиториях Сорбонны, конечно, тоже можно было получить превосходное образование. В профессорско-преподавательский состав этого университета входили некоторые из самых замечательных умов Франции того времени. Это был один из немногих университетов во Франции, в котором профессорско-преподавательский состав имел возможность заниматься еще и научно-исследовательской работой, а не только преподавать предметы студентам. Башелье быстро выделился на фоне сверстников, хотя его оценки и были не самыми лучшими. В числе небольшой группы студентов, которая превзошла его, были сокурсники Башелье – Поль Ланжевен и Альфред-Мари Лиенар, известные физикам и математикам так же, как и сам Башелье, если не больше. Находиться в такой компании было очень полезно. Получив диплом бакалавра, Башелье остался в университете в докторантуре и начал работу над диссертацией – той самой, о спекуляциях на финансовых рынках, которую позднее выудил с библиотечных полок Самуэльсон. Курировал его работу Анри Пуанкаре – наверное, самый известный французский математик и физик того времени.
Пуанкаре был идеальным наставником для Башелье[27]. Он обогащал каждую область знаний, с которой ему приходилось иметь дело: математику, астрономию, физику, инженерию. Окончив Гранд-Эколь, научной и исследовательской работой Пуанкаре занимался, как и Башелье, в Парижском университете. Но большую часть своей жизни он проработал профессиональным горным инженером, став в конечном итоге главным инженером Французского шахтерского корпуса. Так что он в полной мере смог оценить важность прикладной математики – даже в такой нетрадиционной (для того времени, разумеется) области, как финансы. Башелье наверняка не написал бы свою диссертацию, не окажись у него научного руководителя, который обладал такими обширными знаниями, как Пуанкаре. Кроме того, Пуанкаре был влиятельной фигурой в научных и политических кругах Франции, а стало быть, его авторитет служил хорошей защитой для студента, чья исследовательская работа могла быть неоднозначно встречена научным сообществом того времени.
Башелье работал над диссертацией вплоть до 1900 года. Основная его идея состояла в том, что теорию вероятности, область математики, которую первыми «вытянули на свет» Кардано, Паскаль и Ферма в XVI–XVII веках, можно использовать для понимания работы финансовых рынков. Другими словами, рынок можно представить как огромную игру случая. Сегодня, конечно, сравнивать фондовые рынки с казино уже не оригинально, но это только подтверждает силу идеи Башелье.
Диссертация Башелье была огромным интеллектуальным достижением, и, похоже, Башелье это осознавал. Но с профессиональной точки зрения это была катастрофа.
Проблемой стала неподготовленность аудитории. Башелье пребывал на волне приближающейся новой эры (в конце концов, он только что изобрел финансовую математику). Но никто из его современников не оценил то, что он совершил. Заслуги Башелье, бесспорно, могли бы по достоинству оценить математики, физики, работающие с математическими моделями. Но в 1900 году европейская математика пребывала в застое. В математических кругах было ощущение, что наука еще только начинает выходить из кризиса, в который она погрузилась в начале 1860-х годов, когда выяснилось, что многие традиционные теоремы ошибочны, и математики начали опасаться, что начинают рушиться основы их научной дисциплины. Нерешенным, в частности, оставался вопрос, можно ли предложить достаточно строгую методологию, которая убедит в том, что результаты новых исследований, наводнившие научные журналы в ту пору, также несовершенны. Резкий крен в формализм настолько отравил кладезь математики, что на прикладную математику и даже на математическую физику математики-конформисты глядели с нескрываемым подозрением. Идея перенесения математики на совершенно новое для нее поле и, хуже того, использования знаний, основанных на интуиции, почерпнутых из сферы финансов в целях стимулирования развития новой математики вызывала у ортодоксов отвращение, пугала их.
Влияние Пуанкаре было достаточно сильным, чтобы помочь Башелье с защитой диссертации, но даже он был вынужден констатировать, что реферат Башелье слишком далеко выходит за рамки господствовавших во французской математике тенденций, и поэтому не заслуживает высшей оценки «с отличием»[28]. Диссертация получила оценку «достойно», даже не «весьма достойно». В заключении диссертационной комиссии, написанном самим Пуанкаре, он выразил Башелье глубокую признательность за его труд – как за новую математику, так и за глубокое проникновение во внутренний механизм финансовых рынков. Но высшую оценку за диссертацию по математике, которая по стандартам того времени не была посвящена какому-то определенному разделу классической математики, поставить было невозможно. А без нее перспективы Башелье как профессионального математика были ничтожными. Благодаря Пуанкаре Башелье остался в Париже, получил несколько небольших грантов от Парижского университета, независимых фондов. Они позволяли ему оплачивать свои скромные повседневные расходы. В 1909 году Башелье разрешили читать лекции в университете, правда, бесплатно.
Самый жестокий сюрприз судьба преподнесла Башелье в 1914 году. В начале года Совет университета поручил декану факультета естественных наук создать постоянную должность для Башелье. Научно-преподавательская карьера, о которой он всегда мечтал, становилась реальностью. Но до того как должность была окончательно утверждена, злой рок снова отбросил Башелье назад. В августе германские войска вторглись во Францию. В стране была объявлена мобилизация. Девятого сентября сорокачетырехлетний математик, совершивший никем не замеченную революцию в области науки о финансах, был призван на службу в армию.
Представьте себе картину: солнце светит в окно пыльного чердака. Если правильно сфокусировать зрение, можно увидеть, как мельчайшие пылинки пляшут в луче света. Кажется, что они висят в воздухе. Но если присмотреться внимательнее, можно увидеть, как они время от времени совершают судорожные движения, меняют направление, перемещаясь то вверх, то вниз. Если бы вам удалось посмотреть на эту картину в достаточном приближении, например через микроскоп, вам удалось бы увидеть, что частицы постоянно вибрируют. Это на первый взгляд беспорядочное движение, по словам римского поэта Тита Лукреция, написанным приблизительно в 60 году до нашей эры, говорит о том, что, должно быть, существуют некие мелкие невидимые частицы – он назвал их «первичными тельцами», – которые с разных сторон наносят удары по пылинкам и толкают их то в одном направлении, то в другом[29].
Работа, лежавшая открытой на столе Самуэльсона, буквально потрясла его. Оказывается, еще пятьдесят пять лет назад Башелье описал математику финансовых рынков. Первой мыслью Самуэльсона было то, что его собственная работа на эту тему, которой он занимался последние семь лет, работа, которая, как предполагалось, ляжет в основу диссертации одного из его студентов, утратила претензию на оригинальность. Но что потрясало еще больше, так это то, что еще в 1900 году этот тип, Башелье, очень хорошо разобрался в той математике, которую Самуэльсон и его ученики только сейчас пытались приспособить к экономике, – в математике, которая, как полагал Самуэльсон, была разработана значительно позднее. Технологии Вейнера, уравнения Холмогорова, мартингалы Дуба… Самуэльсон был убежден, что все это – истинные новации, которым не более двух десятков лет. А выясняется, они все уже были описаны Башелье. Как получилось, что Самуэльсон ни разу о нем не слышал?
Интерес к Башелье возник у Самуэльсона несколько дней назад, когда он получил открытку от своего друга Леонарда «Джимми» Сэвиджа, профессора статистики из Университета Чикаго. Сэвидж только что закончил работу над учебником по теории вероятности и статистике. По ходу работы у него возник интерес к истории. Копаясь в университетской библиотеке в поисках работ по теории вероятности начала ХХ века, Сэвидж случайно натолкнулся на учебник 1914 года[21], который он никогда раньше не встречал. Полистав его, Сэвидж обнаружил, что помимо некоего новаторского взгляда на теорию вероятности книга содержала несколько глав, посвященных явлению, которое автор назвал «биржевой игрой», – буквально, теории вероятности применительно к игре на бирже. Сэвидж догадался (и был прав), что раз он сам никогда раньше ничего не слышал об этой книге, скорее всего, и его друзья-экономисты тоже ее не видели. Он разослал им письма с вопросом, знают ли они что-нибудь о Башелье. Самуэльсон никогда не слышал этой фамилии. Но он интересовался математическими финансами – областью науки, которую, как он считал, в настоящее время изобретает, – и ему было любопытно узнать, что сделал этот француз. В библиотеке МТИ не оказалось ни одного экземпляра никому не известного учебника 1914 года. Но Самуэльсон нашел другой труд Башелье – его диссертацию «Теория игры на бирже». Он взял книгу в библиотеке и принес в свой офис.
Башелье, конечно, был не первым, у кого возник математический интерес к азартным играм. Одним из них был представитель итальянского Ренессанса Джероламо Кардано[22]. Кардано родился в Милане где-то в начале XVI века и считался одним из самых образованных врачей своих дней. За медицинским советом к нему обращались священники и короли. Он был автором сотен эссе на самую разнообразную тематику – от медицины до математики и мистики. Но его настоящей страстью были азартные игры. Он постоянно играл – в кости, карты, шахматы. В своей автобиографии он признает, что прожил годы, каждый день играя в азартные игры. Азартные игры в Средние века и в эпоху Возрождения строились на простом принципе вероятности выигрыша и проигрыша, схожем с тем, на котором строится современный тотализатор на скачках. Если вы были букмекером, предлагавшим кому-либо сделать ставку, вы могли рекламировать вероятность выигрыша в форме пары цифр, например, «10 к 1» или «3 к 2», которые отражали бы, как велика вероятность, того, что то, на что вы ставите, выиграет (если вероятность выигрыша составляла 10 к 1, это означало бы: вы ставите 1 доллар, фунт или гульден, и если выигрываете, ваш выигрыш составит 10 долларов, или фунтов, или гульденов, плюс вашу первоначальную ставку. Если проигрываете, вы теряете свой доллар). Называя эти цифры, букмекер в значительной степени полагался на интуицию. Кардано же считал, что есть какой-то научный способ понять, как делать правильные ставки, по крайней мере в несложных играх. Он хотел поставить математику того времени на службу своему любимому занятию.
В 1526 году, когда Кардано еще не было тридцати лет, он написал книгу[23], в которой попытался систематизировать теорию вероятности. Он сосредоточился на игре в кости. Его главная догадка заключалась в том, что если допустить, что кость с одинаковой вероятностью может упасть как на одну сторону, так и на другую, можно разработать точные вероятности всевозможных комбинаций, в сущности, просчитать их. Так, например, есть шесть возможных вариантов выпадения кости. Соответственно, есть и точный способ получить в результате цифру 5. Математическая вероятность получения пятерки – 1 из 6 (что соответствует коэффициенту 5 к 1). А как насчет получения суммы 10, если бросать две кости? Существует 6 × 6 = 36 возможных результатов, три из которых в сумме соответствуют 10. Таким образом, вероятность получения в сумме десятки составляет 3 из 36 (что соответствует коэффициенту 33 к 3). Эти вычисления кажутся элементарными, даже в XVI веке они не удивили бы – у любого, кто провел достаточно времени за игрой в кости, развилось интуитивное чувство вероятности. Но Кардано был первым, кто объяснил с математической точки зрения, почему вероятность была такой, какой ее все уже знали.
Кардано так и не опубликовал свою книгу – в конце концов, зачем раскрывать свои секреты игры? После его смерти рукопись нашли среди его бумаг и спустя сто с лишним лет, в 1663 году, опубликовали. К тому времени другие авторы уже предприняли самостоятельные попытки разработать полноценную теорию вероятности. Наиболее серьезная из них появилась с подачи другого азартного игрока, французского писателя, известного под псевдонимом Шевалье де Мере[24]. Его интересовало несколько вопросов, наиболее актуальные из которых касались стратегии игры в кости, которую он очень любил. Игра предполагала, что кости кидали несколько раз подряд, и игрок делал ставку на то, как они лягут. Например, вы могли держать пари, что если бросите одну и ту же кость четыре раза подряд, хотя бы один раз выпадет 6. Опыт показывал, что это было пари с равными шансами, игра сводилась к чистой случайности. Но де Мере инстинктивно чувствовал, что если вы заключите пари, что обязательно выпадет 6, и будете делать на это ставку каждый раз, со временем вы станете выигрывать немного чаще, чем проигрывать. Это легло в основу стратегии игры де Мере, и с ее помощью он выиграл немалые деньги. Однако у де Мере была и вторая стратегия, которую он считал не хуже первой, но которая по какой-то причине приносила ему только огорчение. Эта вторая стратегия заключалась в следующем: всегда держать пари, что если бросать две кости двадцать четыре раза, то хотя бы один раз выпадет двойная 6. Но похоже, эта стратегия не срабатывала, и де Мере хотел знать почему.
Де Мере был завсегдатаем парижских салонов, светских встреч французской интеллигенции, которые проводились в промежутках между приемами и научными конференциями. В салонах собирались образованные парижане всех мастей, в том числе математики. Де Мере начал их расспрашивать об этой задаче. Ни у кого не было ответа на его вопрос, никто не проявлял большого интереса к его поиску до тех пор, пока де Мере не задал этот вопрос Блезу Паскалю. Паскаль – вундеркинд, самостоятельно разработавший большую часть классической геометрии, рисуя в детстве картинки. Еще подростком он стал завсегдатаем влиятельного салона священника-иезуита Марена Мерсена. Именно там де Мере встретился с Паскалем. Паскаль тоже не знал ответа на вопрос де Мере, но он его заинтриговал. Паскаль согласился с мнением де Мере, что эта задача должна иметь математическое решение.
Паскаль стал работать над задачей де Мере. Он позвал на помощь другого математика, Пьера де Ферма. Ферма был юристом, всесторонне образованным человеком, свободно владевшим полудюжиной иностранных языков, одним из самых способных математиков тех дней. Ферма жил приблизительно в шестистах километрах к югу от Парижа, в Тулузе. Паскаль не был с ним знаком лично, но слышал о нем от своих знакомых из салона Мерсена. В течение 1654 года в ходе длительной переписки Паскаль и Ферма нашли решение задачи де Мере. А попутно разработали основные положения современной теории вероятности.
Одним из результатов переписки между Паскалем и Ферма был способ точного расчета вероятности выигрышных ставок при игре в кости, который интересовал де Мере (система Кардано тоже учитывалась в такого рода играх в кости, но никто об этом не знал, когда де Мере заинтересовался этими вопросами). Им удалось показать, что первая стратегия де Мере была успешной, поскольку вероятность того, что выпадет 6, если кидать кость четыре раза, была чуть выше 50 % – скорее 51,7747 %. Вторая же стратегия де Мере была не так хороша, поскольку вероятность того, что выпадут две цифры 6, если кидать две кости двадцать четыре раза, составляла всего около 49,14 % – менее 50 %. Это означало, что со второй стратегией победа была немного менее вероятна, чем проигрыш, в то время как первая стратегия имела чуть больше шансов на выигрыш. Де Мере был в восторге от того, что теперь он мог положиться на аналитические наработки двух великих математиков, и стал придерживаться только первой стратегии.
Интерпретация аргументов Паскаля и Ферма была очевидна для де Мере. Но что эти цифры означают на самом деле? Большинство людей интуитивно понимают, что это означает, когда какое-то явление имеет ту или иную вероятность, но на самом деле на кону глубокий философский вопрос[25]. Предположим, я говорю: вероятность, что выпадет орел, когда подбросят монетку, составляет 50 %. То есть если я буду подбрасывать монетку снова и снова, приблизительно в половине случаев она ляжет орлом вверх. Но это не означает, что монетка гарантированно упадет орлом вверх ровно в половине случаев. Если я подброшу монетку 100 раз, она может упасть орлом вверх 51, или 75, или все 100 раз. Может быть любое количество орлов. Почему же де Мере все-таки обратил внимание на расчеты Паскаля и Ферма? Они отнюдь не гарантировали, что его первая стратегия будет успешной в каждом случае. Де Мере мог всю оставшуюся жизнь биться об заклад, что 6 будет выпадать каждый раз, когда кто-либо бросит кость четыре раза подряд, и больше никогда не выиграть, несмотря на расчет вероятности. Это покажется нелепым, но ничто в теории вероятности (или в физике) не исключает такого поворота событий.
Так о чем же говорит нам теория вероятности, если она ничего не гарантирует в отношении того, как часто то или иное событие может иметь место? Если бы де Мере задал этот вопрос, ему долго пришлось ждать на него ответа. Полвека. Первым, кто в 1705 году незадолго до смерти понял, как надо воспринимать зависимость между вероятностью и частотой событий, был швейцарский математик Якоб Бернулли. Бернулли показал, что если вероятность падения монетки орлом составляет 50 %, то вероятность того, что процент «орлов», которые действительно выпадут, будет отличаться от 50 % на какой-то процент, но эта разница будет становиться все меньше и меньше, чем больше раз вы подбросите монетку. Вероятность падения монетки орлом в 50 % случаев будет выше, если вы подбросите монетку 100 раз, чем если вы подбросите ее всего два раза. В рассуждениях Бернулли есть нечто сомнительное, поскольку он использует идеи из теории вероятности, чтобы объяснить, что означает сама вероятность. Бернулли не осознавал (это было полностью обосновано только в ХХ веке), что можно доказать: если вероятность падения монетки орлом составляет 50 % и подбрасывать монетку бесконечное число раз, то (практически) наверняка в половине случаев выпадет орел. Или в случае со стратегией де Мере, если бросать кости бесконечное число раз, в каждой игре ставя на 6, практически гарантирована победа в 51,7477 % игр. Это закон больших чисел, и он подтверждает одно из наиболее важных толкований теории вероятности[26].
Паскаль не был поклонником азартных игр, поэтому даже забавно, что один из главных его вкладов в математику связан именно с этим. Еще более иронично то, что чуть ли не самую большую известность ему принесло… пари, пари Паскаля. В конце 1654 года с Паскалем случилось нечто мистическое, и этот случай изменил его жизнь. Он перестал заниматься математикой, стал адептом индивидуалистических принципов голландского теолога Корнелия Янсения, противоречивого христианского движения в католицизме в XVII веке. И начал активно писать о вопросах теологии. Пари Паскаля, как это теперь называется, впервые появилось в его религиозных работах. Поверить в Бога, писал Паскаль, – это как сделать ставку на то, есть ли Бог или нет. Убеждения же человека сводятся к тому, что он ставит на одно или на другое. Но прежде чем сделать ставку, человек хочет знать, каковы его шансы и что его ожидает, если он выиграет или проиграет. Паскаль рассуждал так: если вы делаете ставку на то, что Бог есть, соответствующим образом проживаете жизнь, и оказывается, что вы были правы, то обретете бессмертие в раю. Если окажется, что вы не правы, то просто умрете и ничего не произойдет. Вы также просто умрете, если поставите на то, что Бога нет, и выиграете. Но если поставите на то, что Бога нет, и проиграете, то будете осуждены на вечные муки. Решение этой дилеммы простое: христианская вера рациональная, а оборотная сторона атеизма слишком пугающая.
Несмотря на увлеченность теорией случая, Луи Башелье не слишком везло в жизни. Своей работой он внес фундаментальный вклад в физику, финансы, математику. Но так и не вышел за рамки академической респектабельности. Всякий раз, когда на пути Башелье начинала маячить удача, она ускользала от него в самый последний момент. Родившись в 1870 году в Гавре, шумном портовом городе на северо-западе Франции, молодой Луи был перспективным студентом. Он блистал знаниями математики в старших классах лицея, в октябре 1888 года получил степень бакалавра естественных наук. У него был достаточно хороший аттестат, с которым он вполне мог рассчитывать на учебу в одном из элитных французских университетов, дипломы которых служили залогом того, что их обладателям уготована судьба стать государственными чиновниками высшего ранга или учеными. Он вырос в купеческой семье, в которой были ученые-любители, художники. Учеба в Гранд-Эколь открывала перед Башелье двери к профессиональному занятию интеллектуальным трудом, двери, которые были плотно закрыты для его предков.
Но не успел Башелье подать заявление в Гранд-Эколь, как его родители скончались. Он остался с незамужней старшей сестрой и трехлетним братом на руках. Два года Башелье занимался семейным винодельческим бизнесом, пока в 1891 году его не призвали на военную службу. Год спустя, уволившись с нее, Башелье смог вернуться к учебе. Ему было чуть больше двадцати лет, у него не было ни дома, ни семьи, которая бы его поддержала. Выбор был ограниченный. По возрасту поступать в Гранд-Эколь было уже невозможно. Башелье выбрал менее престижный Парижский университет.
В аудиториях Сорбонны, конечно, тоже можно было получить превосходное образование. В профессорско-преподавательский состав этого университета входили некоторые из самых замечательных умов Франции того времени. Это был один из немногих университетов во Франции, в котором профессорско-преподавательский состав имел возможность заниматься еще и научно-исследовательской работой, а не только преподавать предметы студентам. Башелье быстро выделился на фоне сверстников, хотя его оценки и были не самыми лучшими. В числе небольшой группы студентов, которая превзошла его, были сокурсники Башелье – Поль Ланжевен и Альфред-Мари Лиенар, известные физикам и математикам так же, как и сам Башелье, если не больше. Находиться в такой компании было очень полезно. Получив диплом бакалавра, Башелье остался в университете в докторантуре и начал работу над диссертацией – той самой, о спекуляциях на финансовых рынках, которую позднее выудил с библиотечных полок Самуэльсон. Курировал его работу Анри Пуанкаре – наверное, самый известный французский математик и физик того времени.
Пуанкаре был идеальным наставником для Башелье[27]. Он обогащал каждую область знаний, с которой ему приходилось иметь дело: математику, астрономию, физику, инженерию. Окончив Гранд-Эколь, научной и исследовательской работой Пуанкаре занимался, как и Башелье, в Парижском университете. Но большую часть своей жизни он проработал профессиональным горным инженером, став в конечном итоге главным инженером Французского шахтерского корпуса. Так что он в полной мере смог оценить важность прикладной математики – даже в такой нетрадиционной (для того времени, разумеется) области, как финансы. Башелье наверняка не написал бы свою диссертацию, не окажись у него научного руководителя, который обладал такими обширными знаниями, как Пуанкаре. Кроме того, Пуанкаре был влиятельной фигурой в научных и политических кругах Франции, а стало быть, его авторитет служил хорошей защитой для студента, чья исследовательская работа могла быть неоднозначно встречена научным сообществом того времени.
Башелье работал над диссертацией вплоть до 1900 года. Основная его идея состояла в том, что теорию вероятности, область математики, которую первыми «вытянули на свет» Кардано, Паскаль и Ферма в XVI–XVII веках, можно использовать для понимания работы финансовых рынков. Другими словами, рынок можно представить как огромную игру случая. Сегодня, конечно, сравнивать фондовые рынки с казино уже не оригинально, но это только подтверждает силу идеи Башелье.
Диссертация Башелье была огромным интеллектуальным достижением, и, похоже, Башелье это осознавал. Но с профессиональной точки зрения это была катастрофа.
Проблемой стала неподготовленность аудитории. Башелье пребывал на волне приближающейся новой эры (в конце концов, он только что изобрел финансовую математику). Но никто из его современников не оценил то, что он совершил. Заслуги Башелье, бесспорно, могли бы по достоинству оценить математики, физики, работающие с математическими моделями. Но в 1900 году европейская математика пребывала в застое. В математических кругах было ощущение, что наука еще только начинает выходить из кризиса, в который она погрузилась в начале 1860-х годов, когда выяснилось, что многие традиционные теоремы ошибочны, и математики начали опасаться, что начинают рушиться основы их научной дисциплины. Нерешенным, в частности, оставался вопрос, можно ли предложить достаточно строгую методологию, которая убедит в том, что результаты новых исследований, наводнившие научные журналы в ту пору, также несовершенны. Резкий крен в формализм настолько отравил кладезь математики, что на прикладную математику и даже на математическую физику математики-конформисты глядели с нескрываемым подозрением. Идея перенесения математики на совершенно новое для нее поле и, хуже того, использования знаний, основанных на интуиции, почерпнутых из сферы финансов в целях стимулирования развития новой математики вызывала у ортодоксов отвращение, пугала их.
Влияние Пуанкаре было достаточно сильным, чтобы помочь Башелье с защитой диссертации, но даже он был вынужден констатировать, что реферат Башелье слишком далеко выходит за рамки господствовавших во французской математике тенденций, и поэтому не заслуживает высшей оценки «с отличием»[28]. Диссертация получила оценку «достойно», даже не «весьма достойно». В заключении диссертационной комиссии, написанном самим Пуанкаре, он выразил Башелье глубокую признательность за его труд – как за новую математику, так и за глубокое проникновение во внутренний механизм финансовых рынков. Но высшую оценку за диссертацию по математике, которая по стандартам того времени не была посвящена какому-то определенному разделу классической математики, поставить было невозможно. А без нее перспективы Башелье как профессионального математика были ничтожными. Благодаря Пуанкаре Башелье остался в Париже, получил несколько небольших грантов от Парижского университета, независимых фондов. Они позволяли ему оплачивать свои скромные повседневные расходы. В 1909 году Башелье разрешили читать лекции в университете, правда, бесплатно.
Самый жестокий сюрприз судьба преподнесла Башелье в 1914 году. В начале года Совет университета поручил декану факультета естественных наук создать постоянную должность для Башелье. Научно-преподавательская карьера, о которой он всегда мечтал, становилась реальностью. Но до того как должность была окончательно утверждена, злой рок снова отбросил Башелье назад. В августе германские войска вторглись во Францию. В стране была объявлена мобилизация. Девятого сентября сорокачетырехлетний математик, совершивший никем не замеченную революцию в области науки о финансах, был призван на службу в армию.
Представьте себе картину: солнце светит в окно пыльного чердака. Если правильно сфокусировать зрение, можно увидеть, как мельчайшие пылинки пляшут в луче света. Кажется, что они висят в воздухе. Но если присмотреться внимательнее, можно увидеть, как они время от времени совершают судорожные движения, меняют направление, перемещаясь то вверх, то вниз. Если бы вам удалось посмотреть на эту картину в достаточном приближении, например через микроскоп, вам удалось бы увидеть, что частицы постоянно вибрируют. Это на первый взгляд беспорядочное движение, по словам римского поэта Тита Лукреция, написанным приблизительно в 60 году до нашей эры, говорит о том, что, должно быть, существуют некие мелкие невидимые частицы – он назвал их «первичными тельцами», – которые с разных сторон наносят удары по пылинкам и толкают их то в одном направлении, то в другом[29].