Приведем реакции с участием наиболее легких ядер – протона (p), дейтрона (d) и тритона (t), соответствующих изотопам водорода протию 1 H, дейтерию 2 H и тритию 3 H, – а также «легкого» изотопа гелия 3 He и двух изотопов лития 6 Li и 7 Li:
   d + d – 3 He + n + 3, 25 МэВ
   d + d – t + p + 4, 0 МэВ
   t + d – 4 He + n + 17, 6 МэВ
   3 He + d – 4 He + p + 18, 3 МэВ
   6 Li + d – 24 He + 22, 4 МэВ
   7 Li + p – 24 He + g + 17, 3 МэВ
   Здесь n – нейтрон, g – гамма-квант. Энергия, выделяющаяся в каждой реакции, дана в миллионах электрон-вольт (МэВ). При кинетической энергии 1 МэВ скорость протона составляет 14 500 км/с.
   «Недостающую» здесь массу, которая соответствует энергии связи атомного ядра (то есть «дефект массы»), можно определить из известного соотношения между энергией и массой, найденного Эйнштейном: w = mc2 .
   Вообще говоря, взаимосвязь энергии с инерциальной массой впервые была открыта английским физиком Дж.Дж.Томсоном (1856–1944) еще за четверть века до Эйнштейна, в 1881 году. Им было установлено, что масса движущегося заряженного шара возрастает на величину, пропорциональную энергии электростатического поля. Однако коэффициент пропорциональности, полученный исследователем, составил 4/3 квадрата скорости света. Позднее, в 1900 году французский ученый Жюль Анри Пуанкаре (1854–1912) пришел к выводу, что для сохранения принципа равенства действия противодействию необходимо предположить существование у электромагнитного поля некоторой плотности массы, которая в с2 раз меньше плотности энергии поля. В 1904 году австрийский физик Ф.Газенёрль (1874–1915) показал, что электромагнитное излучение, заключенное в замкнутой полости с отражающими стенками, увеличивает массу системы на величину, равную произведению энергии излучения на 8/3с2 . Лишь в 1905 молодой Эйнштейн строго вывел сегодня известное всем соотношение e =mc2 для частного случая испускания телом плоских волн в двух противоположных направлениях. Этот же закон он предложил распространить на все виды энергии. Так что в действительности фундаментальный вывод о связи между энергией и массой не был внезапным наитием какого-то одного гения, но венчал долголетние усилия многих ученых.
   И вот благодаря их поиску сегодня обнаруживается, что в результат, казалось бы, частного сложения совершенно незначительных, даже исчезающе малых, величин вовлекаются какие-то могущественные таинственные силы природы, и действие именно этих сил, которые мы отчасти сумели подчинить себе за прошедшие десятилетия, изменило облик всей нашей цивилизации. Мы вновь и вновь убеждаемся, что истина подобна линии горизонта: чем более широкие просторы открываются перед нами, тем дальше отодвигается она. Нам становится ясно, что результат простого математического действия далеко не однозначен и «два плюс два» оказываются равными «четырем» только в какой-то более широкой системе явлений, нежели непосредственное взаимодействие исходных слагаемых. Вне контекста самых фундаментальных физических законов этот результат, как оказывается, вообще не может быть осмыслен.
   Схожую картину, заставляющую нас обращаться к куда более широкой действительности, нежели подлежащие непосредственному сложению величины, наблюдается и в химическом синтезе.
   Так, например, в химии различают эндо – и экзотермические реакции. Эндотермическая (от греческого endon – внутри и therme – тепло) – это химическая реакция, при которой реагирующая система поглощает тепло из окружающей среды. В свою очередь, экзотермическая (от греч. exo – вне, снаружи и therme – тепло) представляет реакцию (например, горение), при которой, напротив, тепло выделяется из реагирующей системы в окружающую среду.
   Существо этих реакций может быть понято из первого начала термодинамики. Первое начало, как известно, по существу выражает закон сохранения энергии. Поэтому для системы, окруженной замкнутой границей, через которую не происходит переноса вещества, справедливо соотношение:
   U2 – U1 = Q – W,
   где U1 и U2 – энергии системы в состояниях 1 и 2; Q – теплота, полученная от внешних источников; W – работа, совершенная системой над внешними телами в процессе, посредством которого система переходит из состояния 1 в состояние 2.
   Если процесс – химическая реакция, то обычно ее проводят в таких условиях, чтобы можно было отделить энергию химического превращения от энергии, связанной с одновременными изменениями температуры или давления. Поэтому энергию (теплоту) химической реакции обычно определяют в условиях, в которых продукты находятся при тех же температуре и давлении, что и реагенты. Энергия химической реакции тогда определяется теплотой Q, полученной от окружающей cреды или переданной ей. Измерение Q может быть проведено с помощью калориметра подходящего типа или проведения в сосуде химической реакции, теплота которой известна.
   Как показывает приведенное нами уравнение, внутренняя энергия реагирующей системы определяется не только количеством высвобожденной или поглощенной теплоты. Она также зависит от того, сколько энергии система затрачивает или приобретает посредством произведенной работы. При этом работа может совершаться как самой системой, так и над системой. (Кстати, о работе, которая производится самой системой, имеет вполне достаточное представление любой, кому доводилось разбавлять спирт до привычной русскому национальному вкусу концентрации: та теплая гадость, которая получается сразу после смешения – это именно ее результат.) Понятно, что термодинамика процессов в этих случаях будет существенно отличаться, и в первую очередь – знаком величин.
   Даже там, где единая реакция распадается на несколько различных стадий, общая энергетика химического процесса обязана сойтись до «последней калории». Этот вывод был сделан Германом Ивановичем Гессом (1802–1850), российским химиком, одним из основоположников термохимии, в 1840 году на основе экспериментальных фактов еще до классических опытов Джоуля, которые продемонстрировали эквивалентность теплоты и других форм энергии. Г.И.Гесс доказал, что теплота химической реакции, протекающей через несколько последовательных стадий, равна алгебраической сумме теплот отдельных промежуточных реакций. Закон Гесса, как отметил Герман Л.Ф.Гельмгольц (1821–1894), великий немецкий ученый, который впервые в 1847 математически обосновал закон сохранения энергии и показал его всеобщий характер, служит прямым экспериментальным подтверждением применимости закона сохранения энергии к энергетике химических реакций.
   Словом, и в рядовом химическом синтезе мы замечаем, что в этом мире взаимосвязано все. Ничто не может существовать само по себе, и если наше исследование ограничивается исключительно тем, что происходит за стеклом пробирки, мы рискуем упустить из виду едва ли не самое главное. Перед нами раскроется лишь то, что лежит на самой поверхности, подлинное же содержание предмета ускользнет, оставив нам лишь одну иллюзию знания. Поэтому абсолютно невозможно достичь полного понимания существа изучаемого нами без обращения к каким-то общим представлениям о строении материи, без учета полной суммы тех сложных взаимодействий, в которые их вплетает всеобщая связь и взаимозависимость явлений. Другими словами, и здесь мы наблюдаем, что подлинное существо самой операции сложения никогда не сводится лишь к непосредственному контакту слагаемых; своеобразное «эхо» этого сложения отдается и в большой отдаленности от них. Отсюда и сам итог – это не просто механический результат контакта, но и полная сумма всех его раскатов. Только с их учетом «два плюс два» и в самом деле оказывается равным «четырем».
   Впрочем, все эти «высонаучные» истины наглядно проявляются и в повседневной обыденной жизни, что говорится, в «кухонных» примерах. Так, например, любая домохозяйка знает, что нельзя к сильно изношенной вещи пришивать заплату, вырезанную из новой ткани: вместо того, чтобы заделать прореху, вещь будет окончательно испорчена. Точно так же нельзя вставлять в швейную машину разные по толщине и эластичности нити, ибо сформированный ими шов сможет испортить любую, даже выкроенную по самым модным и престижным лекалам модель. Любой повар, колдующий у плиты, знает, что никакая приправа отнюдь не механически слагается с тем, что уже замешено в кастрюле. Один и тот же ингредиент, добавляемый в одном и том же количестве, может и придать дополнительную пикантность, и бесповоротно испортить вкус приготовляемого блюда. Таким образом, окончательный результат любого – кулинарного ли, портновского, какого угодно другого – «сложения» может быть понят до конца только при тщательном учете тонкой метафизики всех тех взаимодействий, которые вызывает к жизни этот процесс. Поэтому талант любого мастера сродни таланту научного исследователя, ибо и у кухонной плиты, и у швейной машинки необходимо мыслить куда более широкими категориями, нежели формальная номенклатура вовлекаемых в единый процесс материалов.
   Говорят, что секрет старинных скрипок рождавшихся искусством таких волшебников звука, как Амати, Гварнери, Страдивари, таился в составе лака, которым они покрывались. Именно он составлял их главный секрет, именно он придавал звуку ту колдовскую выразительность, которая и делала сами скрипки подлинными шедеврами музыкального искусства. Можно долго гадать, что именно одухотворяло эти бессмертные инструменты, какой именно нюанс «сложения» так по сию пору и остается неуловимым для нас, – вооруженная самым современным инструментарием химия ответа не дает. Но одно несомненно: великие мастера умели мыслить куда шире, чем все окружавшие их ремесленники, именно поэтому им и открывалось то, что так и осталось недоступным их собратьям по цеху.
   Можно от простой механики, физики, химии восходить и к более высоким уровням строения вещества, но и там мы обнаружим все то же. В результате любого осуществляемого нами синтеза необратимым образом изменяются сами слагаемые. Иначе говоря, по завершении того объединяющего действия, которое может быть описано математической операцией сложения, они оказываются уже совсем не теми, чем были до нее. Но все следствия производимой операции не ограничиваются одним только этим: в конечном счете происходящие изменения затронут самое широкое окружение вещей, вовлекаемых нами в какой-то процесс. Необратимо изменяется гораздо более широкая реальность. В свою очередь, это означает, что и раскрыть подлинное содержание, и расчислить действительно полный результат сложения можно только в том случае, когда будут учтены все – как внутренние, так и внешние, перемены.
   Пусть нас не убаюкивает то обстоятельство, что все эти изменения могут носить настолько микроскопический характер, что ими можно пренебречь. Пренебрегать в исследовании нельзя вообще ничем, здесь уже говорилось о том, что науку интересует только абсолютный результат. Что же касается его микроскопичности, то что в начале двадцатого века могло быть незначительней атомного ядра? Но ведь именно его исчезающе малые размеры, как оказалось, таили в себе те силы, которые перевернули весь наш мир.
   Мы тронули законы сохранения. Но ведь и кроме них существуют влияния, которые сказываются на результатах всех совершаемых нами действий. Поэтому в конечном счете на всех уровнях строения вещества мы рано или поздно обнаружим, что затверженные в детстве истины далеко не столь однозначны и бесспорны, как это когда-то казалось нам. Но вместе с тем мы обнаружим и другое: ограничиться одним только этим наблюдением, значит, не увидеть самого главного во всем том, что окружает нас. А именно того, что все явления этого мира тесно взаимосвязаны между собой, и никакие изменения, происходящие с ними, не могут быть до конца осознаны там, где анализ ограничивается покровом только их собственной вещественной оболочки. Словом, даже самые банальные вещи, мимо которых мы часто проходим, не останавливаясь и не задерживая взгляда, на самом деле скрывают в себе многое из такого, что способно заставить нас пересмотреть привычные представления о мире.
   Неспособность выйти в более широкий контекст – категорически несовместима с методологически выдержанным научным исследованием. Собственно, наука – это в сущности и есть постоянное движение куда-то «вширь» и «вглубь». Там, где это движение останавливается, миру является лишь «труп истины», бессмертная же душа ее ускользает от нас, ибо сама истина, как мы уже имели возможность увидеть, – это вовсе не застывшее умосостояние ученого сообщества, но бесконечный развивающийся по спирали «отрицания отрицаний» процесс.
   Обратимся под конец к совершенно иному, значительно более сложному, чем те, которые описываются физическими или химическими формулами, классу явлений.
   В 1906 году в Англии был спущен на воду новый корабль, имя которого стало нарицательным, дав название новому классу боевых судов. «Дредноут» стал воплощением высшей военно-морской мощи первой морской державы мира. Он учел не только все достижения передовой кораблестроительной мысли, но и все уроки крупнейшего по тем временам Цусимского сражения, в котором погибла русская эскадра.
   Новый линкор превосходил по своей мощи все, что плавало по морям в те годы. Так, например, если «типовой» эскадренный броненосец того времени вооружался четырьмя двенадцатидюймовыми орудиями, расположенными в двух бронированных башнях, то «Дредноут» обладал десятью. Правда, с учетом того, что на одни борт могли стрелять только восемь, общее его превосходство по артиллерии не превышало двух крат. Если лучшие броненосцы того времени могли развить скорость 18–19 узлов, то турбины «Дредноута» сообщали ему 21 узел. Между тем скорость – это тоже оружие, ибо превосходство в ней означало, что он легко мог уклониться от боя с превосходящей его соединенной эскадрой боевых кораблей и, напротив, навязать бой любому, кто не обладал преимуществом над ним. Кроме того, значительно большее водоизмещение нового линкора позволило поставить на нем гораздо более мощную и развитую, чем та, которой защищались жизненно важные центры броненосцев того времени, броню. Словом, это был синтез всего самого передового, что только могла обеспечить и промышленность самой могущественной империи, и кораблестроительная наука. В результате образовавшаяся здесь сумма качеств сформировала собой нечто неслыханное.
   Понятно, что все флоты того времени бросились в погоню за Англией, и после 1906 года военно-морская мощь держав, претендующих на то, чтобы и их голос учитывался при разделе мира, стала исчисляться уже только количеством дредноутов.
   Цусимское сражение отделяет от первой мировой войны менее 10 лет. Но и за эти неполные десять лет военно-морской флот сумел пережить еще одну революцию, ибо появился новый класс суперлинкоров (типа «Королева Елизавета»), который превосходил «Дредноут» в такой же степени, как тот эскадренные броненосцы времен Цусимы. Корабли такого же класса появились и на вооружении основного противника Великобритании – Германии.
   Но вот что поразительно. Результат сложения самых высоких боевых качеств обнаружил, что их концентрация в кораблях такого класса делает флоты не только более могущественными, но и более уязвимыми. Ударная сила флота резко возросла, но и состав его сократился в несколько раз. А значит, контролировать мировой океан стало невообразимо сложнее, чем раньше. Действительно, потеря одного двух кораблей додредноутного типа еще не делала погоды, и та же Англия (если, конечно, не считать морального ущерба) легко пережила гибель старых крейсеров, практически расстрелянных, ибо это был неравный бой, немцами у города Коронель, что расположен на чилийском побережье Южной Америки, 1 ноября 1914 года. Гибель же одного современного линкора становилась эквивалентной гибели целой эскадры, она сразу пробивала заметную брешь в боевых порядках целого флота. Посылка двух линейных крейсеров через Атлантический океан, чтобы отомстить в еще более неравном бою (сражением гигантов с карликами назовут его современники) «Шарнхорсту» и «Гнейзенау» за поражение у Коронеля, обставлялась глубокой тайной не только для того, чтобы не дать тем возможность уклониться от столкновения, но и потому, что нужно было скрыть ту брешь, которая образовалась в оборонительных построениях военно-морских сил Британии.
   И вот первый результат такого сложения мощи: суперсовременные линейные корабли «Гранд Флита» практически всю войну простояли у причальной стенки под защитой вспомогательных сил, препятствовавших проникновению на рейды германских подводных лодок. Но вот что удивительно: линкоры «Флота открытого моря», все это время стояли в точно такой же позиции по другую сторону Ла-манша. Ни одна из великих держав не рисковала подвергнуть случайностям морского боя свои ударные силы. Лишь один раз линейные корабли двух крупнейших флотов мира сошлись в открытом бою у Ютландского полуострова. Но и там, когда германские линкоры вдруг были встречены успевшей развернуться английской эскадрой, они тотчас же отвернули и вышли из-под огня. К слову сказать, и британцы не рискнули преследовать отступающий немецкий флот, опасаясь за свои линкоры. Менее часа за всю мировую войну продолжалось боевое столкновение линкоров, строительство которых стоило фантастических расходов. Ни один из этих левиафанов не был уничтожен артиллерией своего визави.
   Позднее, в годы уже второй мировой войны в Японии, обладавшей двумя самыми огромными линейными кораблями, построенными за всю историю флота, появится даже поговорка о трех никому не нужные вещах: египетских пирамидах, Великой китайской стене и линкоре «Ямато» (имя одного из них). Эта пословица вполне могла бы родиться и в годы первой мировой, ибо именно такими бессмысленно омертвившими в себе огромное количество человеческого труда и представали бронированные чудовища.
   Однако и в политике, точно так же, как в механике, физике, химии, тоже есть скрытый от поверхностного взгляда дилетантов более широкий контекст явлений, здесь так же действуют какие-то свои законы политического сохранения. И вот в контексте их действия история утверждает, что линейный флот Британии выполнил-таки свое предназначение, несмотря даже на формальное поражение в Ютландском бою. Ведь он не просто все годы войны стоял на швартовых, но нависал смертельной угрозой военно-морской блокады над Германией в то самое время, когда сухопутные армии великих держав истекали кровью на континенте, когда один дополнительный батальон мог решить исход великих сражений. Известно ведь, что один линейный корабль стоил вооружения нескольких пехотных дивизий. Как знать, может быть, именно тех, которых так и не хватило Германии для военного разгрома Антанты.
   Поэтому и здесь результат сложения военно-морской мощи отдаленным эхом отозвался в истории по меньшей мере трех десятилетий. И этот результат уже не может быть расчислен без точного учета и капитуляции Германии, и Веймарской системы, и последующих судорожных попыток третьего рейха отомстить за пережитый позор насильственного разоружения.
   Подводя итог, можно сказать, что существо операции сложения никоим образом не сводится к механическому соединению тех вещей, которые находятся в самом фокусе нашего анализа. Всякий раз она приводит в действие какие-то скрытые силы, контролирующие развитие неопределенно широкого круга явлений, и только скрупулезный подсчет полного баланса всех этих сил может дать точное представление о подлинном результате сложения. Поэтому там, где, «два плюс два» оказывается не равным «четырем», мы обязаны видеть прежде всего незавершенность исследования и, может быть, только потом заблуждения наших предшественников. Словом, и здесь, на новом витке «отрицания отрицаний» мы вновь убеждаемся в первую очередь в непреходящей методологической ценности тех истин, которые вошли в самую кровь нашей цивилизации, и только во вторую – в их способности служить готовым ответом на какие-то вопросы.
   Все приведенные нами примеры в конечном счете сходятся к одному: любой, даже самый незначительный факт может быть до конца осознан нами только в свете всей суммы знаний, накопленных человеком. Разумеется, это не значит, что решительно ничто не может стать достоянием нашего знания, пока мы не постигнем все остальное, если бы это было так, никакое познание вообще было бы невозможно. Речь идет о том, что любое открытие вносит какой-то свой, дополнительный, оттенок во все то, что уже ассимилировано нашей культурой.Отсюда знание ключевых достижений общечеловеческой мысли оказывается строго обязательным для любого, кто претендует на самостоятельную роль в научном поиске. Правда, понятно и другое: никакое отдельное сознание, сколь бы эрудированным ни был человек, не в силах вместить в себя все богатство нашей культуры. Поэтому здесь, как кажется, обнаруживается противоречие. Однако противоречие это разрешается тем, что вся наша культура обладает каким-то таинственным свойством концентрироваться в системе общих представлений о мире (а в этой системе общефилософские и – шире – гуманитарные истины занимают одно из ведущих, если не первенствующих, мест). И, значит, свободное ориентирование в первую очередь именно в этой системе не только облегчает постижение прикладных истин, собираемых частными научными дисциплинами, но и формирует качественно более высокий тип свободного от заученных штампов мышления.
 
   Выводы
 
   1. Операция «сложения» (вернее сказать, материализованный аналог математического действия) представляет собой специфический процесс, по завершении которого слагаемые начала уже не могут остаться тождественными самим себе. «Сложение» любых явлений окружающего нас мира обязано сказаться на их качественной определенности, и эта деформация «качества», сколь бы микроскопичной она ни была, является составной частью конечного результата.
   2. Подлинное существо самой операции «сложения» никогда не сводится лишь к непосредственному (механическому, физическому, химическому, биологическому, какому угодно другому) контакту слагаемых. В конечном счете оно вносит определенные изменения во все, включая самое отдаленное, окружение подвергаемых «сложению» образований, поэтому по завершении этого действия меняются не только сами «слагаемые», но и вся окружающая их среда. Это происходит оттого, что все явления материального мира взаимосвязаны между собой, и никакие изменения, происходящие с ними, не могут быть до конца осознаны там, где анализ ограничивается покровом только их собственной вещественной оболочки.
   3. Все изменения, которые вносятся в структуру подвергаемых «сложению» объектов, и во все материальное их окружение, в конечном счете могут быть объяснены только действием фундаментальных законов более широкой действительности. Отсюда никакой частный результат познавательной деятельности человека не может быть понят до конца сам по себе, вне связи с нею. Полное постижение любого предмета любой частнонаучной дисциплины достигается только в единой системе общих представлений о мире.
   4. Формирование подлинной культуры мышления в принципе невозможно без усвоения, с одной стороны, ключевых достижений нашей цивилизации, с другой – полной ассимиляцией нашим сознанием единой системы общих представлений о мире, центральное место в которой занимают вечные гуманитарные начала.

Заключение

   Итак, завершив новый виток анализа мы пришли все к тому же, с чего, собственно, и начинали. Мы лишний раз убедились в том, что «два плюс два» все-таки в точности равняется «четырем». И все же проделанный нами путь вовсе не был бессмысленным и безрезультатным. Полученные нами выводы – это уже отнюдь не та куцая истинка, которую мы затвердили где-то еще в далеком детстве. Поэтому здесь вполне допустимо сформулировать нечто вроде логического парадокса: безусловно верен итог наших размышлений, но вместе с тем абсолютно неверна эта начальная аксиома обыденного сознания.
   Мы нашли, что эта принимаемая на веру истина представляет собой предельно абстрактное убогое порождение, которое практически неприложимо почти ни к чему конкретному. Поверка анализом обнаружила, что в той форме, в какой она существовала в нашем сознании, она могла претендовать только на применение к каким-то отдельным фрагментам окружающей нас реальности – и не более того. Номинально же одинаковый результат, который получился по ходу наших размышлений, отличается от исходной точки исследования не только своей полнотой и конкретностью, но и гораздо большей степенью обобщения. Словом, мы преодолели известную дистанцию на том пути, который в философии называется восхождением от абстрактного к конкретному, вернее сказать, к конкретно всеобщему.
   Мы восходили к этому конкретно общему результату, обнаруживая и разрешая одно противоречие за другим, но именно искусство обнаружения и разрешения противоречий как раз и представляет собой центральный пункт диалектической логики.
   Под напором одних фактов мы последовательно отрицали когда-то усвоенное нами, логика других аргументов заставляла нас отрицать отрицаемое. Но именно такое «отрицание отрицаний» и маркирует собой магистральный путь человеческого познания.