Заметим еще одно обстоятельство. Есть два принципиально отличающихся друг от друга вида изменений. Один из этих видов – это вращение в круге каких-то заранее заданных форм. Другой – развитие. Первый из них представляет собой род процесса, который, как правило, может быть неоднократно повернут вспять и, как правило же, без особых деформаций вернуться к исходному состоянию. Другими словами, это почти всегда обратимый процесс. Конечно, исключения здесь вполне возможны. Так столь же банальный пример с последней соломинкой, которая ломает хребет верблюда, иллюстрирует нам род необратимого движения, но и он относится все к тому же классу процессов. Напротив, развитие на языке философии – это связная цепь переходов в принципиально новое «качество». Этот поток необратим, и любая попытка повернуть его вспять оборачивается отнюдь не возвращением к исходному состоянию, но деградацией, разложением, разрушением. Или, по меньшей мере, необратимой деформацией.
   Последовательная смена агрегатных состояний воды под влиянием постепенного накопления температурных изменений – это вовсе не развитие, но вполне обратимый процесс, от века развивающийся в пределах одних и тех же форм. Философский же закон перехода количественных изменений в качественные описывает именно и только развитие, он в принципе неприменим к обратимым многократно повторяющимся переменам. Именно поэтому иллюстрировать и уж тем более доказывать его действие на этом избитом примере не всегда правильно, Если не сказать более жестко (и точно): совершенно неправильно. Здесь только простое совпадение форм – и не более того.
   Но ведь в отличие от всех специфических законов частных научных дисциплин философские законы носят всеобщий характер. Это значит, что под его действие подпадает решительно все, что существует в нашем мире. Однако мы обнаруживаем, что никакие количественные изменения не в состоянии вывести объект за пределы какого-то определенного качества. Что стоит за этим выводом, ошибка наших построений или неправильность самого философского закона?
   Ни то, ни другое.
   Все дело в том, что (как и в любой науке вообще, а не только в одной философии) поверхность явлений – это еще далеко не их сущность. Мы же, иллюстрируя этот великий закон с помощью таких банальных примеров, как нагревание воды или механическое нагромождение груза на спину верблюда, скользим лишь по самой поверхности вещей. Наглядность примеров и случайное совпадение форм играет с нами очень злую шутку, ибо нам кажется, что мы сумели понять действительное содержание закона. На самом же деле перед нами только иллюзия, фантом нашего сознания.
   Но где же тогда те самые количественные изменения, которые и переводят в иное «качество» все то, что окружает нас, словом, те количественные изменения, которые и составляют подлинное содержание этого философского закона?
   Ответ заключается все в том же, что мы уже неоднократно видели здесь: все эти изменения носят куда более фундаментальный характер, нежели те, что раскрываются в простеньких образах, которыми оперируют «кухонные» примеры, и происходят они в куда более глубокой сфере, нежели та, которой касается поверхностный взгляд дилетанта. Как «на коленке» нельзя собрать космическую ракету или термоядерный реактор, так и на этих убогих иллюстрациях невозможно уяснить себе существо одного из сложнейших законов диалектической логики. И в том и в другом случае результатом будет только «эрзац»: либо «эрзац-конструкция», либо «эрзац-мышление». Аутентичность недостижима в принципе.
   Для того, чтобы в полной мере понять это, необходимо обращаться к примерам совсем иного ряда: не к тем, где переход в иное качественное состояние уже когда-то был совершен, но к таким, где его еще только предстоит сделать. Или, быть может, предстоит обнаружить, что никакой переход здесь вообще невозможен. Кстати сказать, это совершенно естественное для любого «качества» состояние: мы в сущности никогда не знаем заранее, есть ли за пределом или за этой бесконечностью вообще что-нибудь, или они и в самом деле образуют собой некоторые абсолютные границы, на преодоление которых сама природа накладывает свое нерушимое вето. Так, например, мы в принципе не знаем, есть ли что-нибудь за «краем Вселенной», за пределами абсолютного температурного нуля или «за» скоростью света.
   Вот и обратимся именно к ним, ибо именно они и являются точной моделью соотношения качественных и количественных изменений.
   Теория относительности утверждает, что движение со скоростью, которая превышает световую, невозможно, ибо приближение к ней влечет за собой неограниченное возрастание массы движущегося объекта, а значит, и экспоненциальное возрастание энергетических затрат, связанных с его ускорением. Другими словами, сообщение скорости света любому материальному объекту, сколь бы ничтожной (но вместе с тем отличной от нуля) ни была его исходная масса, потребовало бы энергетических ресурсов всей Вселенной.
   Некоторую трудность может вызвать лишь вопрос о том, что именно является энергетическим «донором» ускорения. Понятно, что основных вариантов – два. В одном случае донором выступает потенциал внешнего объекта, в другом расходуется собственный потенциал тела. (Впрочем, возможны и промежуточные решения, когда в придании ускорения участвуют оба объекта.) Сообщение ускорения предполагает затрату определенного количества энергии, или – при известных допущениях – мы можем «конвертировать» в энергию собственную массу системы и обратить ее на ускорение того, что остается после подобной «конвертации». Если донор внешний, конвертируется внешняя масса, если внутренний – своя собственная.
   В принципе, общая энергетика единой системы «энергетический донор – движущееся тело» должна быть независимой от того, что именно является донором. Поэтому на сообщение заранее заданного ускорения должна расходоваться одна и та же энергия или конвертироваться одна и та же масса как в случае внешнего источника энергии, так и в случае расхода своего собственного потенциала.
   Выразим энергетические соотношения с помощью простого графика, одной координатной осью которого является скорость (от нуля до скорости света), другой масса (от нуля до единицы). Таким образом, зависимость между достигаемой скоростью и расходуемой массой предстанет в виде некоторой кривой, исходящей из центра координат (0, 0) и оканчивающейся в точке, проекция которой на ось скоростей совпадает со скоростью света, на ось масс – с единицей.
   Легко понять, что любая промежуточная проекция на любую из координатных осей этого графика даст представление о второй величине. Иначе говоря, если мы заранее определим ту скорость, которую собираемся сообщить нашему объекту, то перпендикуляр, отброшенный на другую ось координат, покажет нам, какую долю начальной массы энергетического «донора» необходимо конвертировать в энергию для того, чтобы сообщить ему нужное ускорение. И наоборот: если мы заранее определим ту долю начальной массы, которую готовы конвертировать в энергию, проекция на другую ось покажет нам ту (максимальную) скорость, которую (на минуту забыв о неизбежных энергетических потерях) в принципе можно сообщить телу.
   График будет одним и тем же как для внешнего источника энергии, так и для внутреннего. Разница лишь в следующем. В первом случае под единицей должна пониматься масса того внешнего объекта, или той совокупности объектов, которому (которой) отпускается роль энергетического «донора». В логическом пределе – это может составить полную массу всей Вселенной. Во втором – собственная начальная масса именно того тела, которому и нужно сообщить ускорение.
   В соответствии с известными положениями теории относительности сообщение максимальной скорости (с ) может быть достигнуто в случае расходования собственного потенциала тела – за счет обращения всей его массы, в случае внешнего энергетического источника – за счет конвертирования всей массы Вселенной. Другими словами, скорость света может быть достигнута только тогда, когда в нуль обращается либо собственная масса тела, либо полная масса всей Вселенной. Ясно, что ни тот, ни другой вариант физически невозможны, но как некий математический предел они вправе учитываться.
   В любом случае предельная скорость, которую практически можно сообщить телу, будет далека от скорости света даже там, где его масса составляет бесконечно малую, но все же отличную от нуля величину. Поэтому здесь речь может идти лишь о всем спектре промежуточных значений между нулем и этой по сегодняшним понятиям предельной физической величиной. Но именно потому, что наш график описывается математической кривой , мы обязаны заключить: полное равенство одноименных отрезков каждой из осевых шкал не достигается ни в одном – даже сколь угодно узком – интервале значений. В том же случае, когда сопоставляются отрезки, тяготеющие к противоположным полюсам координатных осей, они могут отличаться друг от друга на много порядков.
   Кстати, здесь-то со всей наглядностью и обнаруживается существо нашего вопроса: «два с какого края?» Анализируя получаемые здесь кривые, мы обязаны сделать вывод: «два плюс два» может только неограниченно стремиться к «четырем», да и то лишь в том случае, когда суммируются смежные отрезки измерительных шкал. При этом длины этих смежных отрезков, в свою очередь, должны неограниченно стремиться к нулю. Полный же спектр значений всех результатов будет простираться от «четырех» до бесконечности. Иными словами, с абсолютной точностью измеренный результат составит сколько угодно, только не «четыре» !
   Выход за пределы скорости света может быть осуществлен (если, разумеется, физическое решение вообще существует) только за счет действия сил, управляющих развитием какой-то более широкой – сегодня еще неизвестной науке – реальности. Но, как уже говорилось выше, этой более широкой реальности будет присуща совершенно иная размерность, совершенно иное «количество». Так, уже не только фантастическая литература говорит сегодня о возможности выхода в некоторое гипотетическое «подпространство», это понятие является не вполне чуждым и современной физике. Но «подпространство» должно измеряться уже совсем не километрами и не световыми годами, ибо вовсе не исключено, что и свету туда дорога «заказана», – там обязано действовать совершенно иное «количество». Впрочем, и в этом гипотетическом континууме рано или поздно должны обнаружиться какие-то свои количественные аномалии, которые, в свою очередь, со временем смогут стать и стимулом, и ориентиром дальнейшего научного поиска.
   Другим примером могло бы служить преодоление абсолютного температурного нуля. Ведь снижение скорости теплового движения молекул до нуля является именно абсолютным непреодолимым пределом для любых микроэволюционных изменений любого материального тела. Даже самое буйное сознание отказывается вообразить действительность, в которой действовали бы какие-то отрицательные значения скоростей. Но как знать, может, вовсе не исключено, что выход в какие-то иные измерения физической реальности способен в будущем обнаружить возможность перехода из сферы теплового движения молекул в закритический «подтемпературный» диапазон.
   Таким образом, и здесь решение (если, разумеется, оно существует) может быть достигнуто только в сфере действия каких-то иных, более фундаментальных, чем известные ныне, механизмов. Но и там, в новых измерениях объективной реальности, объединяющим оба диапазона «количеством» будет уже не температурная, но какая-то иная шкала градации природных явлений.
   Однако пока эти рубежи не только не преодолены, но даже неизвестно, можно ли вообще преодолеть их. Поэтому сегодня, на том уровне развития средств нашего познания, который сложился, мы вынуждены мириться с тем, что в области этих критических точек даже микроскопические продвижения к расчисленному теоретическому пределу потребуют от нас неограниченно возрастающих энергетических расходов.
   Таким образом, привлекая на помощь современные нам примеры, «качество» можно уподобить некоторой «черной дыре», откуда никакими (чисто «количественными») усилиями не может вырваться абсолютно ничто. Мы знаем, что любое тяготение может быть преодолено увеличением скорости удаления материального тела от его центра; но здесь даже свет не в состоянии вырваться наружу. Собственно, поэтому-то «дыра» и называется «черной».
   Так что и в этом случае «два плюс два» может только неограниченно стремиться к «четырем», да и то лишь при сложении смежных отрезков измерительных шкал бесконечно малой длины. Отклонение же от этого результата может достигать сколь угодно больших величин. Словом, и здесь с предельной точностью измеренный результат может составить сколько угодно, только не «четыре» .
   Таким образом, в понимании существа великого закона перехода количественных изменений в качественные обнаруживается все то же, что увиделось нам и в анализе нашей арифметической задачи. Сначала охотное согласие, подкрепляемое стандартным набором расхожих штампов, затем – едва ли не полное отрицание того, во что так легко уверовалось вначале, и лишь потом – бездна, в которую еще только предстоит по-настоящему погружаться.
   Дело в том, что центральное место в контексте этого философского закона занимает такое понятие, как «качественный скачок». Однако в этом «скачке» никоим образом нельзя видеть некое подобие мгновенной перемены сцены: занавес упал, занавес поднялся – и вот перед нами уже совсем иная картина. Ничуть не бывало, как за опущенным занавесом совершается какая-то своя стремительная осмысленная работа по перемене костюмов и декораций, так и во время качественного скачка совершается какое-то свое действие. Это вовсе не мгновенная трансмутация качественных состояний из одного в другое, но процесс , в основе которого действуют какие-то свои скрытые механизмы. Просто имеющиеся в нашем распоряжении средства познания, включая нашу логику (и формальную, и диалектическую), пока не в состоянии эти механизмы раскрыть (может быть, именно поэтому процесс и предстает перед нами в виде внезапного скачка). Отсюда и вся та таинственность, которая окружает их действие.
   Заметим: сегодня в целостной системе наших знаний есть два больших пробела, в которые могут провалиться многие современные научные теории. Один из них скрывает тайну так называемого «переходного звена». Поясним: нам ведь до сих пор неизвестен механизм возникновения не только таких глобальных начал, как Жизнь, Разум, но и механизм биологического видообразования. А это значит, что нам до сих пор неизвестен действительный механизм всеобщего развития. Другой скрывает от нас тайну творчества.
   Оба эти пробела образуют собой, может быть, самое концентрированное выражение качественного скачка, логика же и того и другого образует собой его внутренний механизм. Просто и эта логика, и этот механизм пока еще сокрыты от нас. Проникновение же в их тайну может стать куда более революционным, нежели ставшее возможным с изобретение микроскопа открытие микромира или установление тех релятивистских эффектов, которые описываются теорией относительности. Логика и механизм качественного скачка могут обнаружить совершенно новые, о которых сегодня мы не можем и помыслить, измерения всей окружающей нас действительности.
   Так что можно суммировать: никакие количественные изменения сами по себе никогда и ничто не переводят в иное качественное состояние, они лишь подводят к тому рубежу, с которого начинается действие принципиально иных, пока еще неведомых нам, механизмов изменения и природы, и нашего собственного сознания. В сущности обе эти тайны до некоторой степени представляют собой зеркальное отражение друг друга. В самом деле, ведь все наши знания – это отражение объективной реальности, поэтому и логика получения нового знания, логика творчества в свою очередь должна отражать алгоритм становления нового качества, иными словами всеобщего развития.
   Нам здесь не дано раскрыть ни скрытые пружины всеобщего развития природы, ни мета-логику человеческого творчества. Но уже увиденное нами здесь дает право утверждать, что тектонические сдвиги, которые каждый раз обеспечивают прорыв человеческого сознания на новый уровень, как кажется, происходят в формах мышления, которые сокрыты от нас именно той бездной, которая обнаруживается за этими пробелами в общей системе знаний. Только развитие этих потаенных процессов со временем приводит к перевороту в сознании. Но мы вправе утверждать и другое: движение тех глубинных «мета-логических» процессов, которые скрываются под организующим потоком формальной и диалектической логик (и уж тем более под поверхностью так называемого «здравого смысла»), должно подчиняться каким-то своим правилам. Усвоение же основных принципов организации исследовательской мысли – это уверенный шаг также и в их постижении.
   По существу первым, кто указал на принципиальную невозможность выхода в иное измерение физических явлений за счет каких-то чисто количественных модификаций был древнегреческий философ Зенон из Элеи.
   Из всех его трудов не осталось практически ничего, кроме четырех апорий. Но эти знаменитые апории более двух тысяч лет не давали покоя ни математикам, ни физикам. И, разумеется, философам, ибо доказывали и продолжают доказывать категорическую невозможность качественного развития за счет поступательного накопления мелких количественных изменений.
   Вот одна из них, пожалуй, самая знаменитая и парадоксальная, которая называется «Ахиллес». Из пункта А в пункт В выбегает черепаха. Через некоторое время вслед за ней устремляется быстроногий Ахиллес. Утверждается, что Ахиллес никогда не обгонит черепаху. Между тем здесь уместно напомнить, что, сын богини Фетиды, Ахиллес для греков был не только одним из храбрейших героев, но еще и символом скорости. Словом, чем-то вроде современного реактивного истребителя. Поэтому отстаиваемый апорией тезис для древних был куда более парадоксален, чем это сегодня представляется нам. Но логика Зенона безупречна и неуязвима: к тому времени, когда он достигнет пункта, в котором находилась черепаха в момент его старта, та успеет отбежать еще на некоторое расстояние; когда Ахиллес преодолеет и его, она сумеет уйти еще дальше… И так далее до бесконечности. Таким образом, быстроногий Ахиллес все время будет находиться позади черепахи и никогда не сможет обогнать ее.
   Словом, аргументы древнегреческого мыслителя еще более двух тысячелетий тому назад доказывали необходимость введения в процесс количественных изменений какой-то принципиально вне-количественной силы, другими словами, доказывали то, что этот процесс может быть разорван только обращением к совершенно иному кругу явлений, которым присуща какая-то своя, новая, шкала градации.
   Кстати, и наиболее известной в истории попыткой опровержения доказательств Зенона было принципиально вне-логическое действие. Еще древние оставили связанный с этим анекдот: будучи не в состоянии возразить аргументам Зенона, его оппонент просто встал и начал молча ходить перед ним. Известные пушкинские стихи («Движенья нет, – сказал мудрец брадатый, другой смолчал и стал пред ним ходить…») созданы именно на этот классический античный сюжет. По мнению же Зенона опровержение физическим действием на самом деле не доказывало ничего, ведь он и сам прекрасно знал, что и стрела долетит к цели, и Ахиллес догонит и даже обгонит черепаху. Но этот парадокс формулировался чисто логическими средствами, следовательно, и опровергать его нужно было только средствами логики. У Пушкина все кончается мирно («Но, господа, забавный случай сей другой пример на память мне приводит: ведь каждый день над нами солнце всходит, однако ж прав упрямый Галилей»), древние же составили и приложение к этому анекдоту: когда возражавший так и не смог найти никаких аргументов, кроме как встать и начать ходить, учитель просто побил его палкой.
   Побить-то побил, но вот заслуженно ли? Ведь по большому счету оба утверждали одно и то же. Действительно. И тот, и другой прекрасно знали, что на практике черепахе никогда не сравниться не то что с Ахиллесом, но даже и с каждым из них. Но если учитель утверждал, что логика не позволяет доказать это, то ученик своим действием демонстрировал, что для решения проблемы нужно выйти во вне-логическую сферу. Есть ли здесь противоречие?
   В сущности уже эти зеноновские апории являлись строгой формулировкой того непреложного факта, что поступательным накоплением чисто количественных изменений можно объяснить только процесс таких перемен, которые по-прежнему остаются в строго определенных качественных рамках, любые же макроэволюционные, иначе говоря, революционные, качественные преобразования могут быть объяснены только действием каких-то иных механизмов.
   Так что в действительности (забудем на минуту о временных смещениях) ни Гегель, ни Зенон, ни его оппонент нисколько не противоречат друг другу, все они – только разными словами – говорят об одном и том же: механизм «качественного скачка» решительно не поддается сегодня имеющейся в нашем распоряжении логике. Для его постижения нужен прежде всего прорыв нашего собственного сознания в какое-то иное измерение человеческого разума.
   Подготовка же этого прорыва и составляет собой, может быть, главное назначение любого, кто вступает в науку.
 
   Выводы
 
   1. Многие количественные шкалы, с помощью которых мы градуируем изучаемые явления, в действительности являются средством лишь косвенного анализа. В силу того, что мы так и не располагаем средствами непосредственного прямого измерения, у нас нет никакой уверенности в том, что одноименные количества даже однородных, то есть уже приведенных к единому основанию, вещей равны друг другу. Все это свидетельствует о том, что подлинное существо явлений все еще ускользает от нас. Поэтому анализ любого из них – во всяком случае сегодня – не может считаться законченным.
   2. Постижение сущности любого явления не имеет предела. Поэтому нет ничего более ошибочного в науке, чем видеть в тех результатах, которые содержатся в различного рода справочниках и энциклопедиях, конечную навсегда застывшую истину. Сама истина – это постоянно развивающееся начало, поэтому все эти результаты – не более чем опора для дальнейшего восхождения, и куда более важным чем результат в науке является методология.
   3. Любой анализ, как впрочем, и познание вообще, развивается по некоторому подобию спирали через отрицание каких-то исходных принимаемых на веру истин и последующее опровержение самих отрицаний. Но философское отрицание – это вовсе не отбрасывание того, что стало привычным, и не механическая замена его чем-то противоположным. Все то, что отрицается, в каком-то преобразованном, переосмысленном виде сохраняется во всех дальнейших построениях. Однако на новом уровне познания все старые истины понимаются нами уже не как всеобщие и абсолютные, но как положения, сохраняющие справедливость лишь в жестко ограниченном круге условий.
   4. Целью любого познания является открытие новых измерений истины. Задача состоит в том, чтобы преодолеть пределы того жесткого круга условий, которые ограничивают справедливость уже известного нам. Но путь в новые измерения – лежит вовсе не через накопление и накопление каких-то дополнительных сведений об уже установленных вещах. Как механическое нагромождение чисто количественных изменений в принципе не в состоянии вывести за пределы старого «качества», так и бесконечное собирание и систематизация фактов оставляют нас в плену старых представлений. Все это может лишь подвести нас к тому моменту, когда включается действие каких-то иных, пока недоступных нашей логике, механизмов.
   5. Разумно все же предположить, что и действие этих механизмов тоже подчинено каким-то своим правилам, своим законам. Эти правила, как представляется, и должны составлять собой некий единый метод творчества. Просто сегодня тайна творчества пока еще сокрыта от нас за семью печатями. И, может быть, единственный путь к ней – это поступательное овладение основополагающими принципами общей организации нашего собственного мышления. Культура и дисциплина мысли – вот единственный залог успеха. И еще – постоянная тренировка собственного сознания. Без этого любой исследователь навсегда обречен остаться простым ремесленником от науки.

Глава 4. Что такое «плюс»?

   А в самом деле, что такое «плюс»?
   Можно, конечно, видеть в нем абстрактный символ чисто математической операции, которая вообще не имеет никакого аналога в окружающем нас материальном мире. Уж если сам математический объект, над которым совершаются все математические действия, может быть совершенно отвлеченным от всякой физической реальности, то почему бы и этим действиям не иметь подобную же природу?
   Никаких возражений против такого подхода нет, и в сфере «чистой» математики так, наверное, и должно обстоять дело. Но ведь мы исследуем отнюдь не «чистое», не замутненное никакой вещественностью математическое правило, а его применимость именно к нашему миру, в котором мы живем, к миру вполне «осязаемой» физической реальности. Оглянемся назад на пройденный нами путь. Мы задавались вопросом о том, «два чего и два чего»? Мы ставили своей задачей уяснить, «что» именно «будет» в результате сложения? Мы исследовали, справедливо или нет приравнивать друг другу одноименные «доли» или, иными словами, одноименные формы проявления тех или иных «качеств»? Словом, на всем протяжении анализа нас интересовала вовсе не абстрактно-логическая чистота некоторой трансцендентной сущности, но именно реальное физическое содержание этого математического уравнения. Поэтому и сам анализ выполнялся нами как последовательное восхождение ко все большей и большей конкретности. А если так, то и вопрос о том, «что такое плюс?» в рассматриваемом нами контексте вполне закономерен.