Обратимся к другой шкале.
   В 1770 году французский геодезист и путешественник Ш. Де ла Кондамин (1701-1774) приказал замуровать в церковной стене своего родного городка собственноручно изготовленный им бронзовый стержень и установить в этом месте мраморную плиту с надписью, гласящей о том, что здесь хранится экземпляр одной из возможных естественных единиц измерения, которая способна стать универсальной.
   Ученый предлагал заменить десятки произвольно выбранных и не всегда поддающихся согласованию между собой единиц измерения – фунтов, локтей, дюймов и так далее, которые использовались в тогдашней Европе, одной универсальной и естественной мерой. В качестве такой вполне отвечающей духу Просвещения меры им предлагалась длина экваториального маятника, то есть маятника, который, будучи установлен на экваторе, совершает ровно одно качание за секунду.
   Горячую приверженность Кондамина к такому средству измерения легко понять, если представить себе, какой уникальный прибор представляет собой сам маятник. Действительно, подвешенный в том месте, где сила тяжести может считаться строго неизменной, он способен сформировать точный эталон времени. После этого, если его доставить в любой другой район планеты, он по времени своего качания, позволит с точностью определить силу тяжести в нем. А если сила тяжести известна нам заранее, и одновременно удостоверено точное время качания, то отсюда нетрудно определить и длину маятника. Словом, один и тот же прибор годится для точного измерения и времени, и пространства, и силы.
   Кстати, применение универсальных мер, служащих для измерения одновременно разных и, казалось бы, несопоставимых друг с другом величин, известно давно. Еще в древнем Китае один и тот же инструмент служил для измерения и длины, и объема, и высоты музыкального тона. В качестве такого инструмента выступало «стандартное» колено бамбука. Конечно, точность оставляла желать лучшего, но все же изящность физического решения по праву заслуживает очень высокой оценки, к тому же нужно сделать и какую-то скидку на историческую эпоху.
   Поэтому и идея измерения времени, пространства и силы тяжести с помощью маятника принадлежит, разумеется, не одной только Франции: о ней заговорили и в Лондонском королевском обществе, практически сразу же после того, как знаменитый голландский механик и математик Х.Гюйгенс (1629-1695) изобрел свои знаменитые часы и написал фундаментальный доклад о маятнике.
   Тогда же французский математик Г.Мутон (1618-1694) предложил сохранить за маятником значение контрольного аппарата, но в основу универсальной системы мер все же положить другое – уже принятую единой для ведущих морских держав, Англии, Голландии и Франции, морскую милю – часть дуги меридиана.
   В конечном счете возобладала чисто пространственная величина. Сыграли, конечно, свою роль и политические разногласия (против революционной Франции к тому времени ополчилась практически вся Европа) и чисто технические трудности, помноженные на другие, политические же, обстоятельства. Ведь для принятия эталонной меры всеми государствами нужен свободный доступ и для ее проверки, и для калибровки национальных эталонов, создаваемых по ее результатам. Но проверить длину дуги без согласия правительств тех стран, на территории которых он проходила (речь идет о Франции и Испании), не всегда возможно.
   Однако идея использования колебательного процесса для создания естественного эталона длины все же не умерла. В 1827 году французский физик Ж.Бабине предложил использовать для этого несколько иной колебательный процесс – длину световой волны. Спустя 75 лет А.Майкельсон видоизменил идею Бабине, предложив определять эталонный метр числом укладывающихся в него длин волн монохроматического света. Совершенствование этой идеи привело к новому определению последнего. Если до того под метром понималась одна сорокамиллионная часть дуги меридиана, проходящего через Барселону и Дюнкерк, то в 1960 году метром стали называть длину, равную 1 650 763, 73 длины волны в вакууме излучения, соответствующего переходу между уровнями 2р10 и 5d5 атома криптона-86.
   Таким образом, если в 1889 году два метровых эталона могли быть сравнены с точностью до 1-2 десятимиллионных долей, то теперь эта точность была повышена в 10 раз. Колебания микроскопического атома оказались значительно более точным эталоном, чем размер нашей планеты.
   Но метр хорош для измерения лишь сравнительно небольших дистанций. А вот, к примеру, межзвездные расстояния измеряются совсем иными величинами. И вновь вопрос: каждый ли метр тех бесконечных парсеков, которыми измеряются космические расстояния, включает в себя ровно 1 650 763, 73 «длины волны в вакууме излучения, соответствующего переходу между уровнями 2р10 и 5d5 атома криптона-86»?
   Ответа нет.
   А если так, есть ли у нас уверенность в том, что расстояния между космическими объектами определяются нами с достаточной точностью?
   Свои шкалы существуют и для измерения других явлений материального мира: времени, скоростей, масс и так далее. Вообще говоря, всякого рода шкал существует бесконечное множество. Присмотримся пристальней еще к одной из, может быть, самых известных, во всяком случае одной из тех, к которой мы обращаемся чуть ли не ежеминутно, – к временной шкале.
   Для измерения времени в качестве основной единицы сегодня принимается секунда.
   Когда-то она определялась как 1/86400 доля средних солнечных суток. Но со временем обнаружилось, что период вращения нашей планеты вокруг своей оси далеко не постоянен. Поэтому течение времени, отсчет которого ведется на основе вращения Земли, иногда бывает ускоренным, а иногда – замедленным по сравнению с тем, которое определяется по орбитальному движению Земли, Луны и других планет. Подсчитано, что за последние 200 лет ошибка в отсчете времени на основе суточного вращения Земли по сравнению с некоторыми умозрительными часами, свободными от любой нерегулярности хода, достигла около 30 секунд.
   Различают три типа изменения скорости вращения нашей планеты. Вековые, которые являются следствием приливов под воздействием лунного притяжения и приводят к увеличению продолжительности суток примерно на 0, 001 секунд в столетие. Наряду с ними существуют малые скачкообразные изменения продолжительности суток, причины которых точно не установлены. Они удлиняют или укорачивают земные сутки на несколько тысячных долей секунды, причем такая аномальная продолжительность может сохраняться на протяжении нескольких лет подряд. Наконец, отмечаются периодические изменения, главным образом с периодом в один год.
   Развитие техники, повышение требований к научным экспериментам привели к необходимости введения более жестких стандартов времени. Поэтому в 1956 году Международное бюро мер и весов дает новое определение секунды: «Секунда – это 1/31556925, 9747 доля тропического года для 1900 г . январь 0, в 12 часов эфемеридного времени».
   Изобретение атомных стандартов времени и частоты позволило получить еще более точную шкалу времени, уже независящую от вращения Земли и имеющую значительно большую стабильность. В качестве единицы атомного времени принята атомная секунда, определяемая как «время, равное 9192631770 периодам излучения соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия 133». Это определение было принято на XIII Генеральной конференции по мерам и весам.
   Относительная погрешность атомных часов колеблется от 10–13 до 10–14 .
   И все же, несмотря на такую точность, полной уверенности в абсолютной точности временной шкалы нет.
   Вдумаемся. Все длительные события, которыми оперирует наше знание, измеряются годами, веками, тысячами и миллионами лет. Подсчитано, что наша Вселенная, начало которой полагает гипотетический «Большой взрыв», существует около 15 миллиардов лет. В основе этих величин лежит все тот же астрономический год – один оборот Земли вокруг Солнца. Но ведь за длительный срок само Солнце проходит большой путь и вокруг центра Галактики, и по контуру галактической орбиты, и повинуясь каким-то метагалактическим законам, и так далее. Оно пересекает, возможно, неоднородные области мирового пространства с совершенно различной концентрацией масс, а значит, с неоднородной метрикой. Отсюда вовсе не исключено, что в пути могут произойти довольно существенные деформации того временного потока, который мы пытаемся градуировать и измерить сегодняшним стандартом земной секунды. Поэтому утверждать, что один год всегда в точности равен другому, мы не можем. Иначе говоря, мы не можем утверждать, что количество «атомных» секунд, в сумме составляющих, скажем, тот астрономический год, в котором было принято приведенное выше определение, в точности равно количеству секунд, которые составят, предположим, 25000 астрономический год, или составляли – астрономический же – 25000 год до н.э.
   Правда, здесь можно возразить тем, что погрешность будет очень незначительна. Но, во-первых, цена такому (сегодня практически ничем не доказуемому) возражению не так уж и велика. Во-вторых, мы говорим не о степени физической точности, но о точности логической. Физическая погрешность всегда относительна и в известных пределах, там, где она, перефразируя Эйнштейна, не выходит за пределы шестого знака после запятой, ею можно пренебречь. Погрешность логическая – всегда абсолютна, и сколь бы микроскопичной она ни была, пренебрегать ею совершенно недопустимо. Здесь же логическая погрешность состоит в том, что используются градационные шкалы, призванные дифференцировать принципиально разные «качества». А мы уже хорошо знаем, что они не вправе подменять друг друга. Мы знаем также и то, что там, где подмена все-таки происходит, результаты измерений содержат в себе не только относительную погрешность, обусловленную особенностями инструмента и процедуры измерения, но и гораздо более фундаментальные эффекты, которые связаны с действием какой-то «дельты качества».
   Но пойдем дальше.
   В контексте времени, легче говорить о прошлом, чем о будущем. Истекшее время еще поддается какому-то измерению, о будущем же можно только строить гипотезы. Однако факты показывают, что и при таком ограничении мы не достигаем точности.
   При обращении в прошлое нашей планеты у нас есть несколько различных оснований датировки: письменные исторические свидетельства, годовые кольца деревьев, пыльца растений.
   Ни одно из этих средств не дает абсолютной датировки событий. Несмотря на обилие письменных свидетельств, не всегда возможно установить даже точные даты ключевых для мировой истории событий. Это может видеть каждый: справочники различного рода пестрят вопросительными знаками, проставляемыми рядом с датами тех или иных событий. Древесные кольца так же не могут служить надежным средством датировки, ибо вполне достоверно установлено, что многие вечнозеленые лиственные растения способны формировать не одно а целых два кольца за один год. Что же касается пыльцы, то палеонтологии известны случаи обнаружения пыльцы растений, подобных клену и дубу, еще в докембрийских породах, то есть именно в то время, когда существование этих пород было просто исключено.
   Правда, перечисленные примеры, скорее образуют собой исключения из некоего общего правила, нежели само правило, поэтому принято считать, что датировка, основанная на них, обладает вполне удовлетворительной строгостью и поддается перекрестной проверке с помощью других методов измерения. Но все же подчеркнем: связать датировку событий, получаемую с помощью этих методов измерения, с основной единицей времени (секундой) никак невозможно. Поэтому в действительности они представляют собой лишь ту или иную форму приближения, а вовсе не точную оценку.
   Но даже эти приблизительные средства эффективны только в пределах нескольких (5–6) тысячелетий.
   Для больших сроков используются другие средства измерения, которые в еще большей степени расходятся с основной единицей времени.
   В 1896 году Беккерелем был открыт радиоактивный распад, и уже в 1905 Резерфорд предложил использовать это явление для точных датировок в геологии. Однако технически возможным это стало только в 1937 г .
   Сегодня существует несколько разновидностей «часов», использующих радиоактивный распад, которые работают в разных интервалах времени.
   «Уран – свинцовые»:
   238U SYMBOL 174 \f "Symbol" \s 11® 206Pb; Т = 4, 470 * 109 лет;
   235U SYMBOL 174 \f "Symbol" \s 11® 207Pb; Т = 0, 704 * 109 лет;
   232U SYMBOL 174 \f "Symbol" \s 11® 208Pb; Т = 14, 01 * 109 лет.
   «Калиево – аргоновые»:
   40K SYMBOL 174 \f "Symbol" \s 11® 40Ar; Т = 1, 31 * 109 лет.
   «Рубидиево – стронциевые»:
   87Ru SYMBOL 174 \f "Symbol" \s 11® 87Sr; Т = 48, 8 * 109 лет.
   «Радиоуглеродные», в отличие от приведенных, рассчитаны на более короткий срок:
   14C SYMBOL 174 \f "Symbol" \s 11® 14N; Т = 5730 лет.
   Но всем этим «часам» присущ один и тот же недостаток – результат, который получается с их помощью, предполагает, что измеряемый процесс протекает как бы в полной изоляции от всего внешнего окружения. Другими словами, предполагается стечение совершенно фантастических условий, согласно которым за все эти миллионы и миллиарды лет не существовало никакого движения вещества ни внутрь измеряемой породы, ни наружу. А ведь стоит только допустить возможность миграции атомов, как ставится под сомнение любой получаемый в результате подобных измерений вывод. Между тем уже предположение того, что на протяжении сотен миллионов лет система оставалась абсолютно замкнутой и никакого дрейфа атомов не происходило, никакой критики не выдерживает.
   Впрочем, не в этом самый главный источник погрешности. Здесь неявно предполагается, что все вторичное вещество – это исключительно результат реакции распада. Но если в момент формирования породы уже присутствовало какое-то количество свинца, аргона или стронция (а молодые вулканические породы, образующиеся в результате застывания лавы на наших глазах, во всех случаях обнаруживают довольно значительное их содержание), расчетная величина может весьма существенно расходиться с действительностью. Между тем исходное распределение элементов нам совершенно неизвестно. Но если неизвестно исходное содержание, действительный результат измерения может с равным успехом говорить и о пасажировместимости трамвайного парка города Екатеринбурга, и о количестве лука, съеденного за время строительства египетских пирамид, о чем угодно…
   Поэтому совсем неудивительно, что эти методы способны давать – и часто дают – совершенно неправдоподобные результаты. Так, геологический возраст проб, взятых из вулканической лавы на одном из Гавайских островов, датируется калиево-аргоновым методом в интервале значений от 160 миллионов до 2 миллиардов лет, в то время как их истинный (установленный прямым наблюдением) возраст составляет менее двухсот.
   Словом и в этом случае мы можем, конечно, построить какую-то умозрительную шкалу времени. Ее начало будет лежать в так называемой точке сингулярности, завершение – в точке настоящего момента. Повторим, между этими крайними пунктами современная теория насчитывает около 15 миллиардов лет. Однако никакой уверенности в том, что секунда, измеренная в непосредственной «близости» от «большого взрыва», и секунда, принимаемая в качестве стандарта сегодня, равны друг другу, нет.
   Но если такого равенства нет, то любые построения, основанные на расчетах времени, будут верными только в относительной близости к точке настоящего момента. Чем дальше мы удаляемся от нее, тем в большей мере наша секунда способна отклоняться от «времени, равного 9192631770 периодам излучения соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия 133». И вовсе не исключено, что около точки сингулярности она может вмещать в себя целые миллионолетия, или наоборот: истекшие когда-то миллионы лет эквивалентны сегодняшней секунде.
   Добавим к этим сомнениям еще один довод. Теоретически реконструируя события далекого прошлого, мы можем опираться только на сегодня протекающие процессы, которые к тому же ограничены пределами сравнительно небольшой «лаборатории» по имени Земля. Но ведь это еще вопрос, действовали ли известные нам сегодня физические законы вблизи временной точки «большого взрыва», или они «формировались» лишь постепенно, параллельно формированию самой Вселенной?
   Таким образом, мы видим, что собственно время от нас ускользает, в действительности все те «количества» которыми мы пользуемся для его измерения, являются характеристиками совершенно иных «качеств». Единая шкала времени, способная объять и дробные доли секунды, и миллиардолетия, сегодня предстает чем-то вроде сборной солянки. Поэтому никакой уверенности в том, что разные периоды истории нашего мира могут быть измерены одной и той же единицей, нет и в помине. Да и не может быть, ибо аутентичное «количество», свойственное самому времени , все еще сокрыто от нас. К этому можно добавить и то заключение, которое прямо вытекает из сказанного: если у нас до сих пор нет непротиворечивого представления о «полном количестве» этого фундаментальнейшего начала мира, у нас до сих пор нет и адекватного представления о его «качестве». Словом, самое существо времени по сию пору ускользает от нас, и единственное, что доступно нам сегодня, – это ловить его исчезающую тень.
   Таким образом, мы вновь и вновь видим, что истина – это вовсе не застывшее умосостояние сообщества ученых, но какой-то бесконечный развивающийся по спирали «отрицания отрицаний» процесс. Постижение сущности любого явления не имеет предела. Поэтому нет ничего более ошибочного в науке, чем видеть в тех результатах, которые застывают в различного рода справочниках, конечную истину. Все эти результаты – не более чем опора для дальнейшего восхождения, и куда более важным чем результат в науке является методология.
   Но так обстоит отнюдь не только с теплотой, не только с пространством и не только со временем. Примеров, подобных тем, которые приведены здесь, можно найти великое множество. Поэтому мы вправе обобщить упрямо напрашивающийся вывод: никакой уверенности в том, что одноименные «отрезки» тех количественных шкал, с помощью которых мы градуируем разные явления окружающего нас мира, во всех случаях равны друг другу, сегодня не существует.
   Между тем сейчас мы говорим совсем не о тех разнородных сущностях, к которым обращались в самом начале рассуждений, но о вещах, уже приведенных к какому-то единому качественному основанию. Однако, если одноименные доли тех интегральных «количеств», которые призваны измерять их, не равны друг другу, мы вновь приходим к выводу: даже там, где измеряются однородные вещи, «два плюс два» не равно «четырем»!
   Поэтому необходимость нового круга рассуждений напрашивается сам собой.
 
   Итак, мы установили, что строгость всех количественных сравнений в конечном счете базируется на каких-то большей частью скрытых от обыденного сознания операциях по предварительной обработке информации. Только их безупречность способна гарантировать искомую точность.
   Но обратим внимание на следующее. Если бы все то, что предшествует собственно количественному анализу, и в самом деле осуществлялось с помощью каких-то нехитрых интеллектуальных построений, способность к которым формируется у нас еще во младенчестве, никаких проблем с познанием окружающей действительности, наверное, не было бы. Для того, чтобы проникать в самую суть явлений, не требовалось бы никакой специальной подготовки и собственная интуиция человека могла бы быть выразителем абсолютной истины в последней инстанции. (Правда, вопрос о необходимости какой-то единой методологии стоял бы, наверное, и тогда, но в любом случае это была бы какая-то другая наука.) Но в том то и дело, что все эти операции, которые, собственно, и обусловливают организованную и подчиненную строгим правилам как формальной логики, так и диалектики, деятельность нашего сознания, оказываются возможными только благодаря завоеваниям нашего же познания. Без них они сами неисполнимы. Поэтому здесь существует что-то вроде замкнутого круга, может быть, и недопустимого формальной логикой, но вполне уживающегося с реальной жизнью.
   Действительно, полурефлекторное стихийное восхождение от разнородных единичных вещей к некоторому обобщающему их началу легко осуществимо только потому, что само это начало уже заранее известно нам. Мы видели это, когда пытались суммировать лошадей и коров, египетские пирамиды и пароходы. Ведь если бы у нас, как и у наших далеких предков, не было никаких представлений ни об обобщающей категории «домашнего скота», ни о «материальных объектах», ни каких бы то ни было других общих категорий, объединяющих большие классы разнородных явлений, та предварительная обработка данных, которая делает возможным количественное их сравнение, была бы решительно невозможна. Мы же справляемся с эти только потому, что благодаря завоеваниям человеческой мысли в круг уже обыденного сознания вошло очень многое из той единой методологии познавательной деятельности, которую нам предстоит формировать, может быть, еще не одно тысячелетие, и полюсами которой сегодня предстают формальная логика и диалектика.
   Но все это в обыденной жизни. Научная же мысль отличается от «кухонного» мышления в первую очередь тем, что ею усваивается отнюдь не ограниченная потребностями обихода совокупность отдельных разрозненных фрагментов того, что уже вошло в состав этих великих инструментов человеческого познания, но целостная система методов. Кроме того, ее интересует только то, перед чем отступает обыденное сознание, а именно – неизвестное. В сущности только это неизвестное и является ее подлинным и единственным предметом, ибо все уже познанное нами со временем становится чем-то самим собою разумеющимся. Иначе говоря, простой банальностью, как «дваплюсдваравночетыре».
   Именно поэтому, несмотря на вооруженность куда более развитым инструментарием, и современной науке доступно далеко не все. И для нее до поры невозможны никакие операции сравнительного анализа там, где для поиска единой количественной шкалы необходимо выйти в какое-то новое еще неизвестное нам измерение реальной действительности. В самом деле: сначала ведь нужно еще постичь, что падением яблока управляет действие пронизывающих всю Вселенную (до сего дня так и не поддающихся идентификации) сил тяготения, и уж только потом можно искать какие-то количественные соотношения этих сил; прежде необходимо понять, что нерегулярность распределения химических веществ может быть обусловлена их атомарной структурой, и уж затем искать пропорции между элементами этой структуры; для того, чтобы проникнуть в законы атомного ядра, нужно еще обнаружить и доказать само его существование. Сначала нужно понять, что может объединять «красное» и «бессовестное», и только потом проводить какие-то количественные сопоставления между ними. И так далее, и так далее, и так далее.
   Но как открыть действие неизвестной «дельты» никому неведомого «качества»?
   Вопрос отнюдь не праздный. Ведь именно такие открытия, как верстовые столбы, и размечают собой весь ход истории научного познания, именно они являются самой заветной мечтой, наверное, любого исследователя. Уже одно это говорит о том, что выход в новое измерение физической реальности – вещь крайне редкая и доступная лишь немногим.
   Да это так, здесь и в самом деле присутствует замкнутый логический круг: ведь для того, чтобы обнаружить любое новое «качество», нужно выйти в какое-то новое измерение нашего мира, в свою очередь, последнее требует предварительного овладения ранее неведомым «качеством». Простая логика этот круг разорвать не в силах. Более того, формально-логические законы говорят о том, что уже само существование такого круга свидетельствует о наличии скрытой ошибки в рассуждениях. Однако в действительности никакой ошибки здесь нет, сама же формальная логика – мы еще постараемся это показать – вообще не вправе судить о механизмах восхождения на новые уровни строения вещества.
   Диалектика до некоторой степени является альтернативой формальной логике. Говорят, что овладение ею открывает многое из того, что недоступно последней. Это и в самом деле так. Но повторимся: видеть в формальной что-то элементарное, род базиса, а в диалектике – какое-то более высокое начало, не всегда правильно. Вполне допустимо видеть в ней и просто другую логику, назначением которой является исследование совершенно иного круга вещей. В самом простом виде различие между формальной логикой и логикой диалектической можно обозначить так. Назначением формальной является регулировать суждение о предметах, которые остаются строго неизменными и тождественными самим себе на протяжении всего того времени, которое входит в общий контекст нашего анализа. В свою очередь назначением диалектической – направлять ход мысли о вещах, способных изменять свое существо даже в самом ходе исследования. Заметим, что в реальной действительности такие предметы – это вовсе не исключение из некоторого всеобщего правила, но, скорее, само правило. Исключение – это абсолютно неподвижный, не подверженный никаким изменениям предмет. Строже сказать, это просто абстракция, как и абстрактный математический объект, не имеющая решительно никакого аналога в мире физической реальности. Именно поэтому-то «в жизни» формальная логика и срабатывает далеко не всегда.