А теперь давайте опять вернёмся к живому организму. Скажем, к человеку. Мы с вами, по-видимому, очень плохо вычисляем.
   А.Г. Хуже компьютера, очевидно, да.
   Л.Г. Не просто хуже. Я буду говорить про себя, про вас я не буду говорить, вполне реально, что вы это все умеете делать, но если трехзначное число умно-жить на трехзначное, я могу это сделать на бумажке, а в уме не могу.
   А.Г. Я тоже.
   Л.Г. Вы, скорее всего, тоже. Но возьмите любого дикаря – у него есть только десять пальцев, но он различит след животного, куда оно пошло, ответит вам на вопрос самец это или самка, вес определит и многое другое. А ведь следы – следы все разные, он работает в условиях нечёткой информации и решает очень сложную задачу распознавания. Я однажды прочитал слова, которые мне очень понравилась, и я их очень часто цитирую: любой ребёнок на расстоянии 10 мет-ров легко отличит кошку от собаки, но попробуйте научить это сделать компью-тёр… Во всяком случае, сейчас пока нет таких устройств, и думаю, что вряд ли появятся, тем более если ставить задачу распознавания в любом ракурсе и тому подобное.
   Мне кажется, что здесь есть какой-то момент, связанный с молекулярным миром, потому что молекулы, может быть, гораздо лучше будут приспособлены для создания компьютеров, решающих логические задачи – причём, в условиях нечёткой информации – чем кристаллический компьютер.
   Возьмём воздействие света на молекулу. Спектральный состав может быть очень разный, сильно различающийся по интенсивности, пусть даже будут одина-ковые длины волн, но очень сильно различающиеся по интенсивности. Можно показать, что такое устройство будет давать один и тот же ответ (типа распозна-вания некоего образа) в условиях гигантского изменения интенсивности отдель-ных спектральных полос.
   А.Г. То есть, мы имеем нечёткую информацию на входе и…
   Л.Г. Да. Причём заранее можно не задавать этой информации, вы можете действовать разнообразным образом, результат будет один и тот же. Время, кото-рое будет потребно на создание этого сигнала, окажется разным, но результат бу-дет один и тот же.
   Если вы возьмёте кристаллический компьютер и начнёте менять напряжение от 220 до 100 вольт – думаю, он просто работать не будет. А вот молекулярное устройство работать будет.
   Мне кажется, повторяю, это моё мнение, что интерес к молекулярному ми-ру и построению молекулярных компьютеров должен быть направлен именно на это. То есть на попытки реализовать те специфические возможности, которые, в принципе, заключены в молекулярных системах. Я уже не говорю о том, что можно построить не только двоичный код, но и более серьёзный, потому что вы можете в одном и том же месте, переводя молекулу из одного изомера в другой, записать ноль, один, два, три – можно и больше сделать.
   Конечно, сейчас не совсем ясно, во-первых, как это сделать технически. На простых примерах это понятно, но как это сделать технически? Как извлекать эту информацию, что должно быть действующим фактором? Может быть, свет?
   А.Г. Напрашивается свет, да.
   Л.Г. Напрашивается свет, да. Но как создать конкретный чип, когда у вас будет много молекул и когда будет много мест, где будет излучаться и погло-щаться энергия – сегодня я не берусь обсуждать этот вопрос, я не знаю. Но те ра-боты, которые мы ведём и я веду, они связаны с тем, что мы пытаемся как-то по-нять, как молекулярные системы могут срабатывать как действительно очень сложные логические элементы и каким образом можно построить какую-то слож-ную систему, опираясь на отдельные свойства отдельных частей в сложной моле-куле.
   Сейчас очень большой интерес проявляется именно к сложным молекулам. Есть целая область химии, которая носит название супрамолекулярная химия, где изучаются как раз сложные системы, связанные, например, эквивалентными водородными связями – сложные вещи. В своё время за создание основ такой химии была выдана Нобелевская премия. Сейчас всё больше и больше интереса проявляется к этим молекулярным системам. Думаю, что они могут служить и хорошей основой, во всяком случае, для изучения и, может быть, создания специфических устройств, которые рассчитаны на такую работу.
   Иногда пользуются термином «молекулярная машина», сейчас появился такой термин. Это может быть и компьютерное устройство, это может быть хи-мическое устройство, то есть воспринимающее световую информации и выдаю-щее результат в виде другой молекулы, в виде реакции. Это тоже крайне интерес-но, потому что компьютер может воспринять и выдать только электрическую ин-формацию.
   А.Г. Я подумал о том, что, может быть, инженерные решения будут заключаться в том, чтобы не отказываться от существующих кристаллических компьютеров, а попытаться сделать гибрид?
   Л.Г. Может быть, гибрид, а, может быть, совсем другие устройства. Я как раз считаю, что кристаллические компьютеры и их развитие безусловно полезно. Но в целом ряде случаев они работать не будут, но они будут именно хорошо считать.
   А.Г. Почему я и говорю о гибридизации, скорость реакции молекулы всё-таки уступает быстродействию кристаллических машин. Поэтому, если бы можно было сделать так, что какая-то часть функций ложится на обычную вычислитель-ную машину, а там, где она не способна справиться с задачей, где используются неполные, недостаточные данные, включается вот этот модуль.
   Л.Г. Вполне реальная вещь. Я просто хотел сказать, что, насколько я знаю эту область (хотя, конечно, я не могу знать всё), сейчас к этому проявляется очень большой интерес. Здесь очень много идей носится в воздухе, их пытаются реализовать теми или другими способами, либо подражая кристаллическому компьютеру, либо думают о том, чтобы создать нечто принципиально новое. Это передовой фронт науки…

Критическая солёность

13.08.03
(хр.00:49:04)
 
   Участники:
   Вадим Дмитриевич Фёдоров – доктор биологических наук
   Владислав Вильгельмович Хлебович – доктор биологических наук
 
   Вадим Фёдоров: Несколько десятилетий тому назад возникла проблема Арала. Оказалось, что почему-то вода в Арале стала убывать, причём довольно стремительно. И Арал стал как бы исчезать с карты. И произошли всякие события, которые биологи и экологи должны были объяснить. Неясно было – что же случилось, связано ли это с нашей наукой гидробиологией, связано ли это с гидрогеологией? Во всяком случае, проблема беспокоила всех.
   Известно всем, что в Арал впадает две крупных реки: Амударья и Сырдарья. Известно, что эти реки становятся всё мелководнее и мелководнее, потому что их воды разбирают на поливы, во-первых, сельскохозяйственных угодий, во-вторых, происходит рост населения в этом районе, в области дельты. Всё это приводит к тому, что воды всё меньше и меньше впадает в Арал. И в итоге вдруг оказалось, что Арал предстал высыхающим водоёмом. Оказалось так, что в общем-то воды в нём осталось примерно одна треть от того, что было раньше. Поэтому Арал сразу разбился как бы на три части: одна западная, глубоководная, которая существует на протоке, вторая на севере, эту часть питает, в основном, Амударья. Третья на севере, куда впадает Сырдарья, это значительно меньшая часть.
   И, собственно, вода всё время испаряется с огромной восточной территории, потому что она мелководна, у неё большая площадь, и отсюда вода естественно уходит вверх, становится недоступной для дальнейшего её использования. И всё было бы хорошо, если бы за эти годы всё время мы не теряли, теряли, теряли эту воду. И в итоге оказалось, что Арал стал очень быстро мелеть. И за эти годы уровень его упал на 15 метров – это очень значительно. Если учесть, что самая глубоководная западная часть, которая соседствует с республикой Узбекистан, сохраняет глубины до 40 метров.
   Но что происходит обычно с водой там? Дело в том, что вода-то уходит, а соль остаётся. Мало того, что Арал стал мелеть, ещё соль стала накапливаться там. И среднее содержание соли, я об этом скажу, стало стремительно возрастать. И уже 15 лет назад были созданы различные комиссии. Тогда Арал был в ведомстве нашего Союза, который потом стал распадаться на части. И очень солидные учёные, ведущие учёные Академии Наук стали думать – что делать? И пока они думали, пока собирали комиссии, процесс всё время продолжал идти. Потому что все предлагали разнообразные варианты, как спасти Арал, но ни один из них не проходил на «ура» и встречал оппозицию в той или иной части учёного сообщества.
   На этом, может быть, краткое вступление я закончу. Дело в том, что я как эколог могу сказать, что все экологические системы совместно обитающих организмов, которые объединены друг с другом, находятся под влиянием и под воздействием различных экологических факторов – абиотических, не биологических. И если мы будем сравнивать системы, то тут оказывается странная такая вещь. Вы посмотрите наземные системы. Главные факторы тут какие? Приоритетные, решающие, императивные факторы. Это свет, это ясно, температура и – для наземных систем – это влажность. Отсюда, вы понимаете, в наземных система начиналась проблема огородов, хозяйства и прочее. Свет, температура и самый главный фактор в данном случае – влажность.
   Если посмотреть любые водные системы, то мы увидим глубокую аналогию в императивных определяющих состояниях системы факторов. Это опять свет, потому что фотосинтез идёт везде, и в наземных системах, и в водных системах. Это опять ведомый фактор – температура. Но понятно, что в водных системах ни о какой влажности говорить не приходится. И здесь выступает самый главный фактор – солёность. И отсюда проблема Арала неразрывно связана с изменением солёности, падением уровня воды, её объёма. Осталась третья часть по объёму воды в Арале. И произошло повышение солёности до такого уровня и концентрации, где уже почти невозможна жизнь.
   Я сейчас передам Владиславу Вильгельмовичу слово для продолжения. Но мы должны понять, что, потеряв две трети воды, концентрация соли возросла во много раз. И поэтому если солёность обычной нормальной воды для существования исходной фауны и флоры составляет где-то порядка 10-12 промилле, то сейчас это примерно 60 промилле. 60! А в испаряющейся части она ещё больше. Потому что там маленький слой воды и огромная площадь испарения.
   И поэтому все последующие проекты, которые сталкивались друг с другом (некоторые из них казались безумными, а некоторые имели рациональное зерно), сводились к тому, что надо искать решение глобальное, стратегию восстановления Арала. И закончу своё короткое вступление тем, что ко мне приехал на день рождения мой друг, очень известный исследователь, исследователь мирового класса, выпускник биофака МГУ, который защищал тут и кандидатскую и докторскую, Бек Бекович Ташмагомедов. Он приехал ко мне на день рождения и поднял вопрос – давайте что-то делать, объединять усилия. И тогда возникла такая идея.
   Я пригласил своего друга Владислава Вильгельмовича, крупнейшего специалиста мирового уровня именно по солёности, как определяющему фактору. Я пригласил для обсуждения Израэля Юрия Антоновича, который когда-то во времена обсуждения этой темы возглавил комиссию от Академии Наук по Аралу. Там были проекты, которые требовали безумного финансирования, порядка 30 министров и их заместителей подписали эти проекты. И говорят, что даже деньги были выделены. Но они исчезли, потому что стал распадаться Союз. Это тоже вполне объяснимо. Я пригласил академика Павлова Дмитрия Сергеевича, директора института, потому что он главный ихтиолог, который фактически должен контролировать в проекте ту часть, которая связана с исчезновением исходной фауны, ихтиофауны на Арале. Я пригласил заведующего кафедрой экологии Московского университета профессора Максимова. Поскольку помимо того, что стало мало воды, всё равно с полей ещё сливались пестициды и прочее, я пригласил профессора Худолея из Петербурга.
   И вот когда мы все собрались, то стали думать о единой концепции. Но всем стало ясно, что дело обстоит так: можем ли мы спасти весь Арал и восстановить его исходное состояние, или надо искать какие-то другие выходы? И все сошлись на том, что единственный путь – это сохранение хотя бы не во всём Арале, а в его отдельных частях такой солёности, при которой возможно его восстановление. Пусть даже не исходных форм, но таких форм, при которых в оставшихся частях могла существовать жизнь. Надо чтобы вообще появилась ихтиофауна, потому что в тех солёных частях её уже просто нет. Надо, чтобы появилась высшая растительность, потому что засоляется восточная часть, исчезает камыши и другие высшие растения. И надо подумать, что делать, чтобы сохранить Арал хоть бы частями.
   Но общее мнение было решительно: стратегия изменения солёности или сохранения её хотя бы в части акватории (потому что во всей акватории сейчас это невозможно сделать) – возможно, это и есть путь для решения проблем Арала. Не общая глобальная стратегия, а стратегия, которая предполагает частичное сохранение жизни или восстановление её в пределах всей акватории Арала.
   Но все мы согласились, что решающее слово здесь именно за специалистом в области солёности, который занимается адаптацией, акклиматизацией. Второго такого специалиста у нас в стране нет, это профессор Хлебович, который присутствует здесь. И я был бы рад передать сейчас ему слово, чтобы он сказал об этом факторе, о его важности для биологических, экологических систем, и высказал своё мнение по стратегическому направлению, которое мы обсудили перед тем, как мы выработали такую стратегию.
   Владислав Хлебович: Начать надо с самого общего. Жизнь существует на Земле (и наверное, существует миллионы, миллиарды даже лет) в широчайшем диапазоне соленостей – от очень слабо минерализованных вод, подобно водам озёр нашего севера, которые заполняются талой водой снегов, до водоёмов с самосадочной соли, такие как Сиваш в Крыму, Мёртвое море или – наверное хорошо вам известный, поскольку вы одессит – лиман Куяльник, на берегах которого выпадают самосадочные соли в виде узкой полоски.
   И если в карельских, мурманских озёрах солёность измеряется несколькими миллиграммами, то в водоёмах с самосадочной солью, хотя таких немного, концентрация солей превышает 200 грамм и доходит почти до 300. А в промежутках располагается широкий диапазон других соленостей. В нашей Волге около 200 миллиграмм, на Балтике это уже промилле, о которых Вадим Дмитриевич говорил, то есть граммы в литре. Средняя солёность в Балтике – 7 промилле, Чёрного моря – 17-18, Белого – 25, наши окраинные моря, дальневосточные моря или Баренцево море – около 30, а больше 95, можно сказать, 98 процентов всей массы воды на земле – это океан с его солёностью 34,5 промилле. 34,5 промилле – это одна из констант Земли.
   И очень интересно было бы представить себе, как же распространяется жизнь в этом градиенте соленостей. Первый шаг на пути такого анализа сделал немецкий исследователь Адольф Ремане, который исследовал для Балтики число видов в фауне в зависимости от соленостей, построив соответствующий график. И оказалось, что по мере нарастания соленостей от пресной воды в сторону моря количество видов постепенно падает, падает, падает, достигает минимума, который он назвал Artenminimum или зона минимума видов, и начинает подниматься, подниматься, подниматься.
   Вот эта ямка минимума видов приходится на солёность около 5-8 промилле. Это узкий соленостный диапазон по сравнению с тем огромным диапазоном, в котором существует жизнь. И оказалось, что эта ямка определена не просто числом видов, но и качественно. До 5 промилле в сторону моря доходит минимум пресноводных видов. Большая часть их не переходит за эти пределы. А со стороны моря в сторону пресных вод не заходят типично морские виды.
   В Балтике, в Эстонии, есть удивительно характерные места, куда возил меня мой друг Арве Ярвекюльг. Есть заповедник Маацулу, и там есть залив с плавным градиентом солёности. И известно, что до того-то дуба, который виден вдали, до него доходит морской червь такой-то. Дальше причал, который виден с одной точки, до этого места доходят мидии, и дальше они уже не пойдут. А вот у этой мельницы – последние морские звёзды. Это всё около 5-8 промилле, и это всё постулировалось для Балтики. И ограничивалось морской солёностью, около 20-30 промилле, потому что в Балтике больших соленостей нет. Я предпринял очень большую, трудоёмкую работу по анализу литературы. Это каждый раз были частные заключения, которые мне удалось обобщить. Оказалось, что вообще во всех морях с плавным градиентом соленостей именно солёность 5-8 промилле делит два главных типа морской фауны: пресноводную и морскую. С этой идеей долго не соглашались московские академики, например, Лев Александрович Зенкевич, и мои статьи были арестованы. Потом в нашу страну, мы принимали его на Белом море, приехал замечательный морской биолог Отто Кинне из Германии. И когда я ему всё рассказал, показал соответствующие графики, он сказал – где это можно прочитать? Я говорю – нигде. Почему? Я говорю – потому что мои оппоненты сказали, что до этого сам Кинне не додумался. И после этого мои статьи публиковались в Германии со страшной скоростью, от посылки статьи до публикации проходило 2 недели, и оппоненты растворились, как сахар…
   Александр Гордон: Как соль в воде.
   В.Х. Как сахар в кофе. Кинне потом предложил называть эту зону, разделяющую продвижение морских в сторону пресных и пресных в сторону морских – хорохалинной зоной. По-гречески «хоре» – разделяю. То есть, она разделяет отдельные фауны.
   Но ведь есть, и вы прекрасно это знаете, много форм, которые легко проходят эту зону. Лосось живёт в открытом море, а на размножение идёт в пресную воду, молодь тоже идёт из пресной воды в море. Наверное, ей надо будет адаптироваться некоторое время в промежуточном состоянии. Я даже такой термин придумал, пока ещё не опубликованный, «физиологическое шлюзование». Это действительно постепенное шлюзование. Сейчас вызывает тревогу продвижение китайского краба, который живёт уже в пресных реках. В Чехословакии он живёт даже в Праге. Но и тем и другим нужно обязательно вернуться в родную среду, чтобы размножаться. Китайскому крабу обязательно для этого нужна солёность выше 7 промилле, а лосось никогда не размножается при солёности выше 7 промилле, это оказывается пределом размножения.
   Есть ещё и другие физиологические показатели, например, интенсивность дыхания, которые показывают, что те, которые легко проходят из зоны в зону, у них здесь меняется обмен, и 5-8 промилле оказываются пределом каких-то функций. Естественно, я задумался о причине происходящего. И тут опять мне помогло знакомство с немецкой литературой.
   В 40-м году немецкий гидрохимик Виттиг заинтересовался таким вопросом: как меняется ионный состав в этом градиенте солёности? А надо сказать, что и морские, и пресные воды чрезвычайно резко различаются, принципиально. Каждая река имеет свой состав солей. Этот состав солей может меняться по сезонам, в зависимости от водности, по годам, безусловно, по районам, по регионам, в зависимости оттого, что дренируется в реки.
   А в море господствует правило Кнудсена. Правило, говорящее о том, что соотношение ионов в морской воде необычайно жёстко определено. То есть, если мы уясним концентрацию какого-то одного иона, мы точно можем сказать, сколько других ионов здесь сохраняется. И наш великий человек Владимир Иванович Вернадский даже предложил считать постоянство ионов морской воды константой планеты Земля. Именно константой планеты Земля, потому что по его прикидкам, это соотношение ионов сохраняется на Земле, по крайней мере, миллиард лет. И это даёт возможность определять солёность по хлору. Он легко титруется, и потом хлор – 55% суммы всех ионов морской воды.
   Так вот, получается так, что градиент – это смешение морской воды с пресной, смешение величайшего гидрохимического разнообразия с константой. Вопрос стоит так – где меняется правило Кнудсена? И вот об этом-то как раз и сказал анализ табличных данных Виттига, который определял отношение самого пресноводного иона кальция к самому морскому, который несёт константу хлору на расстояние от середины Норвежского моря через Осло… То есть, бралась конкретная станция, конкретная проба на расстоянии около полутора тысяч километров до Балтики в устье рек. И там был цифровой материал. Когда этот цифровой материал я перевёл в график, график оказался необычайно показательным. Оказалось, что от 35 океанической солёности вплоть до 7-8 промилле линия идёт горизонтально к оси абсцисс. И дальше резко ломается и поднимается соответственно разбавлению.
   А.Г. Тот же самый барьер, да?
   В.Х. Тот же самый барьер – гидрохимический уже барьер, не биологический, падающий на эти зоны. Дальше оказалось, что даже растворы чистого хлористого натрия в эксперименте ведут себя так же. А хлористый натрий – это 85% ионного состава морской воды. И, наконец, ряд других косвенных данных говорил о том, что здесь меняются физико-химические характеристики воды. В частности, реки несут огромное количество глинистых частиц: перлит, каолинит, и прочее. А в американском журнале «Клей», «Глина» я вычитал, что оказывается, почти вся глина быстро флоккулирует и оседает при солёности около 5 единиц. Конечно же, это граница слегка размазана.
   И, наконец, ещё один показатель. Сейчас физическими методами определяют воду по электропроводности. И просто практика показывает, что определять воду солёностью меньше 6-7 промилле по электропроводности нельзя. Дальше шумы забивают точность прибора. То есть, это предел работы физического метода определения солёности. Вот так обстоит дело с внешней средой. Это величайший экологический фактор.
   Должен сказать, что есть и более высокие границы. Например, при 42 промилле, а это что-то близкое Аральским значениям, уже меняется валентность железа. Некоторые гидрохимические показатели, это в своё время показал грек Хацкакидис, меняются при солёности выше 42 промилле. Ну, и наконец, уже при самых высоких значениях – это и Куяльник и Мёртвое море – пересоленные воды заселены такими видами животных и растений (это парадокс), которые явно не морского, а пресноводного происхождения. Там другое качество: видимо, есть механизм адаптации к пресной воде, и легче переключить эти выработанные в пресной воде механизмы на работу в противоположном направлении, чем выработать из морских новые. Вот такое общее соображение.
   А дальше – я вернусь к потрясению школьника. 14-летним мальчиком я попал на берег Финского залива и первым делом попробовал воду. Она действительно оказалась солёная. Эта банальность, известная всем, но мне она показалась очень похожей по вкусу на кровь. Все мы в своё время резали пальцы и высасывали кровь. Величина солёности нашей крови, если её выразить не в физиологических и медицинских терминах, а в привычных для нас единицах промилле… Солёность воды на берегу Рижского залива в Балтике примерно 6-7 промилле. Это близко к солёности нашей крови. Случайно это или нет?
   Просто уверен, что не случайно, и вместо цитирования научных данных, я просто скажу, что в Ленинграде был накоплен запас так называемой эталонной морской воды, той самой – 34,5, которой кафедра снабжала океанографические учреждения. Так вот эта морская вода разбавлялась до солёности около 10 промилле и использовалась во время блокады, как кровезаменитель в госпиталях. А на Западе эта отфильтрованная морская вода, соответствующим образом разбавленная, во Второй мировой войне широко использовалась под названием раствор Квинтона. И наконец, те растворы, в которых мы сохраняем органы – раствор Рингера (он бывает человечий, лягушачий), он тоже по соотношению ионов очень близок морской воде. И поэтому можно говорить о внутренней солёности.
   Это я вычитал, но мне удалось из вычитанного построить собственную конструкцию. Потому что то, что я вычитал, я представляю себе, как только одну жердь чума. Даже если одна она упадёт, то другие жерди – гидрохимическая, физиологическая, экологическая – вместе создают эту жёсткую конструкцию внутренней критической солёности.
   Я обнаружил правило, которое я предложил назвать правилом Бидля: при продвижении от моря в пресные воды, нет животных, внутренняя солёность которых была бы меньше 5 промилле. Сейчас найдены исключения, некоторые доходят до 3 промилле. Но в целом в пресной воде должны быть выработаны механизмы накачивания солей, и солей в том самом качестве, как в пресной воде.
   Физиологи не любят выражать в промилле концентрацию солей, но у лягушки это около 8 промилле, кровь человека и прочих млекопитающих – это между 9 и 10 промилле. Рекордсмен здесь, пожалуй, речной рак, у него этот показатель доходит до 15 промилле. Но обратите внимание: если речного рака бросить в дистиллированную воду, где он теряет соли и не может их получить, то он очень быстро с 15 дойдёт до 8, и будет…
   А.Г. И останется жив.
   В.Х. И останется жив. И будет изо всех сил долго держать около 8 и только как только снизится ниже – погибнет. То есть, смысл нашей внутренней солёности – обеспечение наших клеток и тканей условиями жизни, захваченными из моря.
   А.Г. У млекопитающих это уже атавизм, по сути дела.