Страница:
Второе отличие несколько иного свойства. Микроэлектроника, микроэлектронная технология, она работает в области информационной техники. То есть, это технология для информационной техники – компьютеры, например, и так далее. А нанотехнология ставит более грандиозные задачи. Она стремиться внедриться и преобразовать фактически все сферы человеческой жизнедеятельности.
А.Г. Это универсальный инструмент, который мы можем получить.
А.З. Именно так. То есть новые материалы, созданные искусственно, атом за атомом. Каковы области применения нанотехнологии? Конечно, это информационная технология, медицина и фармакология.
А.Г. Биомедицина.
А.З. Конечно, транспорт, госбезопасность и так далее.
А.Г. Криптографию вы имеете в виду.
А.З. Да, это всё под, можно сказать, сферой влияния нанотехнологии. Лозунг нанотехнологии: почти всё, что может быть сделано человеческими руками, должно быть или может быть сделано методами нанотехнологии. Потому что всё состоит из атомов, и всё поэтому можно сделать искусственно из атомов. Это лозунг смелый, но таков лозунг нанотехнологии. Вот поэтому это – революция.
Несколько слов или точнее, несколько исторических замечаний, как она всё ж таки возникала. Точкой отсчёта нанотехнологии считается знаменитый доклад американского физика Ричарда Фейнмана – хорошо известного всем Нобелевского лауреата. В 1959 году он прочитал доклад, который назывался так «There is Plenty of Room at the Bottom», если перевести вольно на русский язык, это примерно звучит так: имеется огромное поле деятельности на атомном уровне. Но вы знаете Ричарда Фейнмана.
А.Г. Зная его, можно было перевести почти дословно: «внизу места навалом» или «внутри места полно».
А.З. Так оно и есть, да. Фейнман – это блестящая личность. На мой взгляд, это личность калибра гигантов Возрождения. У него удивительный и разносторонний ум. Это и колоссальное провидение. Вы знаете его учебник, фейнманские лекции по физике, у него удивительный тотальный взгляд на природу. Он сложнейшие вещи студентам мог объяснить очень просто, сложнейшие вещи, которым посвящена громадная литература. А после этого профессионалы подхватывали его находки и до сих пор этим пользуются. И со всем этим сочетается его колоссальный и мощный талант аналитика. И за это он Нобеля получил. Вот таков Фейнман.
Так вот он в своём докладе сказал такие слова, и это был его главный тезис, что все приборы (это был 1959-й год), которые сейчас есть, эти вот лампы, триоды, диоды, пентоды, транзисторы, триггеры – всё это, друзья мои, можно и нужно делать из атомов и молекул, собирая их из атомов, и так далее. И это первое.
И второе – он призвал научную общественность: давайте делать такие приборы в наших лабораториях, которые позволили бы нам измерять свойства отдельных атомов и манипулировать ими. Это был 59 год и, конечно, я могу себе представить реакцию публики на это дело, потому что в то время господствовали в электронике огромные лампы или – я ещё застал их – триггеры – основа электронно-вычислительной машины – в то время компьютера, это была коробочка объёмом пол-литра, не менее. А тут такие фантастические идеи.
Это была первая точка отсчёта. После этого в 60-е, 70-е годы развивалась микроэлектроника. А доклад Фейнмана был сделан как раз на заре этой микроэлектроники. Как сейчас мы говорим о нанотехнологии, в то время говорили о микротехнологии. И доклад Фейнмана долгое время был где-то на обочине общего процесса, а процесс продолжался, шло развитие микротехнологии и микроэлектроники. Причём, стартовали, начинали с размеров порядка сотни или десяти микрометров – это начало шестидесятых годов. А к концу 70-х годов пришли к размерам меньше микрона, вышли на субмикронный уровень. И так была создана планарная микротехнология – та, которая сейчас развивается и вовсю работает. Я, кстати, тогда работал в Зеленограде много лет, можно сказать, варился в этом котле. Но могу сказать, что уровень наш, нашей микроэлектроники был вполне приличный.
А.Г. То есть шутка, что «советские микросхемы – самые большие микросхемы в мире» не соответствует действительности?
А.З. По этому поводу я вам могу даже пример привести. То есть уровень был приличный. Я вот уже поездил довольно много после этого по миру и могу сказать, что он определённо был выше тогдашнего европейского уровня. И не ниже среднего американского и японского – это и американцы признавали. Вот такова была картина. Потом всё это, конечно, рухнуло – очень сильный удар был нанесён перестройкой.
Конкретно, я и мои коллеги, мы занимались сверхбольшими интегральными схемами на магнитных доменах – «магнитных пузырях» – так это называлось. Ну, сделали эти схемы, внедрили. Они довольно хорошо пошли в то время: у нас, и в Штатах, и в Японии такие схемы делали – но они не выдержали конкуренции с дисками. Это был, конечно, проигрыш, но это не было поражением. Поскольку диски получили в результате этой конкурентной борьбы такой колоссальный импульс, которым они до сих пор пользуются. И удваивают через каждые полтора года свою плотность записи и быстродействие. Это я считаю результатом той самой конкурентной борьбы.
А кроме того, мы получили колоссальное количество научного знания о магнетизме. Это был колоссальный прорыв для магнетизма. До сих пор мы этим пользуемся.
Вот это были 60-70-е годы. Ну и результат этой технологической деятельности – это кремниевая технология. Пентиумы, сотовая телефонная связь – всё это результат этой деятельности 60-70-х годов. До сих пор это всё продолжает развиваться и приносить плоды.
Следующий шаг – 80-е годы принесли новый колоссальный прорыв, но уже в нанонаправлении. Бининг и Рорер – швейцарские физики из Цюриха, из лаборатории фирмы IBM, сделали так называемый сканирующий туннельный микроскоп. Это Костя знает хорошо, вы тоже знаете это, конечно.
Этот микроскоп даёт возможность прямо наблюдать атомы и электронную плотность на поверхности. Это довольно простая, в принципе, штука. Представьте себе платформу, которая может ползать по поверхности кристалла с нанометровым разрешением. Она управляется пьезо-приводом, к этой платформе крепится игла с атомным разрешением. Она плавает над поверхностью на расстоянии примерно от одной десятой нанометра до нанометра. Измеряя туннельный ток, мы измеряем электронную плотность. Просто. Но это колоссальный шаг вперёд. И потом уже позднее, на базе этого открытия, этого прибора, целая плеяда новых приборов появилась.
Это атомный силовой микроскоп, который измеряет рельеф поверхности с атомным разрешением.
Атомный магнитный микроскоп, который даёт опять же с нанометровым разрешением направление магнитных моментов на поверхности. Потом были сделаны такие же устройства, которые локально могут измерять ядерный магнитный резонанс, электронный спиновый резонанс.
И наконец были сделаны на этой же базе приборы, которые могут манипулировать атомами, т.е. могут их передвигать с места на место – наноманипуляторы. Это был ответ на вызов Ричарда Фейнмана. Это было сделано где-то уже к 90-му году. И как демонстрация этих достижений, мне нравится вот такая картинка – исследователи из фирмы Ай-Би-Эм написали на металлической поверхности три буквы – IBM. Но написали это атомами ксенона! Это был 90-й год.
Константин Звездин: Сколько атомов в букве?
А.З. Ну, в букве, я не знаю, всего было порядка 35-ти атомов использовано. Но я видел эти картинки. После этого, конечно, продвинулись очень сильно. Но это была веха. Вот такой примерно исторический фон, на котором развивалась нанотехнология. Сейчас мы на пороге фактически нового века – века нанотехнологии.
Я бы показал несколько основных элементов наиболее популярных в настоящее время в наномире, они на картинке нарисованы. Это элементы – квантовые ямы, сверхрешётки, квантовые проволоки или квантовые нити, как ещё их называют. Квантовые точки, магнитные точки. Это всё элементы нанофизики, нанотехнологии, они особенно интересны, конечно, для наноэлектроники. Они показаны там на рисунках. Здесь, в этих названиях, термины – проволоки, точки, ямы – очевидно связаны с геометрическим фактором, характерным для этих объектов. А прилагательное «квантовый» – отражает тот факт, что движение электрона в этих объектах подчиняется не классическим закономерностям, а квантовым. Поскольку размеры их как раз находятся в нанообласти.
Среди такого типа объектов особенно интересны кластеры. Эти объекты такие же, как квантовые точки, но они называются кластерами. Вот видите, такие элементы показаны на рисунке, в которых порядка тысячи атомов. И, конечно, движение электронов в них тоже является квантовым, т.е. это тоже чисто квантовые объекты. Их чёртова гибель, этих кластеров, поэтому это богатейшая область для создания новых материалов и новых приборов.
А.Г. Простите, сам кластер ведёт себя как макрообъект, а электроны внутри кластера ведут себя уже как квантовые объекты?
А.З. Электроны как квантовые, и сам кластер ведёт себя тоже так же, я буду по этому поводу позже говорить. То есть сам кластер в некотором смысле ведёт себя тоже как квантовый объект. У него есть некая коллективная, как её называют, переменная, которая подчиняется законам квантовой механики. Я об этом расскажу попозже.
Мы работаем с магнитными кластерами. Они интересны тем, что у них появляется дополнительная степень свободы – магнитная. Ею можно управлять, поэтому свойства у них более разнообразные. Интересно, что именно магнитные нанообъекты пришли на финиш практического применения раньше других. Но об этом расскажет Константин.
К.З. Раздел электроники, который занимается магнитными наноструктурами называется «спинтроника». В отличие от классической микроэлектроники, которая использует только заряд электрона, спинтроника ещё использует его магнитный момент, т.е. появляется дополнительная степень свободы.
Рождением этого направления можно считать открытие эффекта гигантского магнитосопротивления в 88 году. Что это за эффект? Берётся трехслойная структура из двух магнитных слоёв и немагнитной проводящей прослойки. Вот нечто подобное показано на рисунке. Электрическое сопротивление такой структуры зависит от взаимной ориентации намагниченностей в магнитных слоях. В первых структурах, в которых этот эффект был обнаружен, величина эффекта – так называемое GMR-соотношение – составляло 6%, сейчас получены такие материалы, в которых оно доходит до 20% и более при комнатной температуре.
Что такое GMR-соотношение? Это разница между сопротивлением структуры при параллельном направлении намагниченности в слоях и при антипараллельном, т.е. антиферромагнитном. Первое практическое применение таких структур – это головки жёстких дисков. Не все заметили этот факт, но буквально за несколько лет информационная плотность жёстких дисков увеличилась в 20 раз – благодаря использованию этого эффекта.
А.З. Простите, я перебью. GMR-эффект – это как раз наноэффект. Размеры элементов здесь должны быть много меньше длины свободного пробега.
К.З. Да, в больших структурах это всё не работает.
Я здесь остановлюсь на том, как устроен жёсткий диск. Фактически этот диск покрыт магнитным материалом, и информация хранится в форме доменной структуры, которая создана на поверхности этого диска. И если нам нужно считать какую-то информацию с какой-то области диска, эта область подводится под GMR-считывающую головку, в которой один магнитный слой, в нём намагниченность фиксированная, а другая меняется благодаря магнитостатическому взаимодействию с поверхностью доменной структуры. И в зависимости от того, единица или ноль записана в этом бите, т.е. в этой области диска, меняется (или не меняется) ориентация нижнего слоя, и мы получаем сигнал или не получаем его. То есть в бинарном виде это работает.
И, естественно, огромная задача для индустрии, которая занимается этими дисками, как можно меньше сделать размер, который занимает один бит информации. То есть, как можно плотнее записать. Но на этом пути существует так называемый суперпарамагнитный барьер, предел. Что это такое? Существует такой критический размер домена, при котором из-за термофлуктуаций он спонтанно перемагничивается. То есть без действия каких-либо внешних полей информация теряется. То есть ниже, мельче, чем позволяет это ограничение, не получается сделать величину бита.
А.Г. Технологически не получается или теоретически? Потому что если флуктуация температурная, то можно придумать какую-то систему защиты, стабилизации.
А.З. Ну, например, понизить температуру устройства – правда, это усложняет систему колоссально.
А.Г. Да-да-да, то есть теоретически это возможно, технологически это невыгодно.
К.З. Это абсолютно правильно. То есть размер зависит от многих факторов, в том числе и от материала. Есть такая величина – константа магнитной анизотропии. Она описывает, насколько жёстко держится намагниченность, насколько велика коэрцитивная сила. Но с другой стороны, мы не можем сильно увеличивать эту константу, потому что тогда усложняется запись. То есть нам большее поле надо приложить локально для того, чтобы изменить битовое состояние. И опять же это усложнение системы. Сейчас один из путей решения этой проблемы – создание так называемой пространственно неоднородной магнитной среды. В отличие от современных дисков, которые представляют собой сплошную магнитную поверхность, на немагнитную поверхность в этом случае нанесены магнитные частицы с каким-то определённым периодом.
А.З. Магнитные точки даже.
К.З. И фактически бит хранится в форме ориентации намагниченности одной частицы. Это вот позволяет несколько отодвинуть суперпарамагнитный предел. И отодвинуть, то есть уменьшить размер бита, т.е. увеличить плотность записи. Сейчас цель индустрии жёстких дисков – достичь плотности 100 гигабит на квадратный дюйм. Считается, что это будет достигнуто в этом или в следующем году.
А.Г. Но это будет предел для этой технологии?
К.З. Ну, это некий шаг, который нужно сделать.
А.Г. 100 гигабит на квадратный дюйм? Потрясающе.
К.З. Следующее коммерческое применение нанотехнологии, которое будет через несколько лет на рынке, это магнитная оперативная память. В настоящее время используется полупроводниковая магнитная память, но главная её слабая сторона состоит в том, что при отключении питания информация теряется. То есть, как мы все знаем, надо тратить некоторое время на перезагрузку компьютера. И если вдруг выключается питание, то мы теряем наши несохраненные документы.
С магнитной памятью дело обстоит совершенно по-другому. Как устроена ячейка магнитной памяти? Это такая же трехслойная структура, и в простейшем случае, единица или ноль хранится в форме взаимной ориентации векторов намагниченности. То есть при отключении питания битовое состояние, естественно, сохраняется. И потом, если мы представим, что из таких элементов мы строим матрицу, то есть, таким образом мы можем считывать информацию с каждого элемента.
А.Г. А вот эта кластерная структура записи информации, насколько важно её сохранить при новых технологиях или есть другие пути записи?
К.З. То есть вы имеете в виду жёсткие диски?
А.Г. Да.
К.З. Нет, то, что я говорю, это просто уменьшение битового размера. То есть технология записи остаётся в нашем случае та же самая.
А.Г. Понятно.
К.З. Но буквально в последние годы открыты некоторые новые эффекты, которые оставляют далеко позади эффект гигантского магнитного сопротивления. В том числе магнитное сопротивление в нано-проволоках и нано-мостиках. Что такое нано-мостик? В 2000-м, если я не ошибаюсь году, в Испании были проведены эксперименты, состыковывались две нано-проволоки с атомарной толщины наконечниками, до тех пор пока не получали электрический контакт. А затем перемагничивали одну из нано-проволок. И величина магнитосопротивления получалась фантастическая – сотни и тысячи процентов.
А.З. Даже недавно получено 100 тысяч.
К.З. 100 тысяч процентов – то есть это фактически бесконечность.
А.З. Здесь квантовые эффекты проявляются…
А.Г. По теории вы сейчас нас подтянете. Я хочу дослушать, что у нас по технологии.
К.З. С некоторой точки зрения, это может стать началом новой революции в спинтронике.
И ещё я хотел бы остановиться на методах изучения таких объектов. Спинтронные структуры обладают огромным количеством параметров. То есть экспериментальное их изучение – это очень трудоёмкий процесс, дорогостоящий, занимает много времени и так далее. И здесь на помощь приходит, как обычно сейчас, компьютерное моделирование. И очень активно используется в настоящее время так называемый микромагнитный подход.
Магнитный слой разбивается, грубо говоря, на кирпичики, на маленькие прямоугольники. И каждый из них обладает своим собственным магнитным моментом. И причём каждый из этих кирпичиков магнитостатически взаимодействует со всеми кирпичиками, которые формирует система. И модель позволяет варьировать и физические параметры, и геометрию. То есть из таких кирпичиков можем составлять любую магнитную структуру с необходимыми физическими свойствами. И мы можем моделировать реально процесс перемагничивания. Фактически мы строим виртуальный прототип элемента, подбираем оптимальные параметры. И только после этого образец подаётся уже в лабораторию.
А.Г. С неё начинают строительство непосредственно…
К.З. Да, то есть строится виртуальный прототип, изучается его поведение. Причём, что интересно, часто обнаруживаются некие новые эффекты, которые трудно предсказать теоретически. И их экспериментально было бы достаточно сложно обнаружить. И они вот таким образом обнаруживаются, и потом можно уже это экспериментально их получить.
Где ещё используются магнитные нано-структуры? Очень широко они используются в сенсорах всевозможных. Сейчас очень быстро развивается технология так называемая MEMS, то есть микромеханические системы, микроэлектромеханические системы. Это то, что мы видели в фантастических фильмах, это маленькие жучки, паучки, маленькие роботы каких-то миллиметровых размеров, которые используются во всех областях человеческой деятельности. И для управления точной механикой этих систем активно используются также магнитные сенсоры. Также такие сенсоры используются в автомобильной промышленности, очень активно, как датчики скорости, в медицине, в аэрокосмической области, то есть поле применения их очень широкое.
А.Г. Теперь подтяните нас по теории. Почему эти нано-мостики обладают таким потрясающим эффектом?
А.З. Вообще-то вопрос в стадии исследования. Но один из ответов, один из возможных ответов, может быть основан на эффекте квантового сопротивления нано-мостиков. Известно, что сопротивление нано-контакта квантуется, имеется квант сопротивления. И вот тогда, когда диаметр мостика меньше некоторого критического, то мостик практически закрыт. И мы можем его закрыть, скажем, сделав так, что спины в берегах мостика направлены навстречу друг другу. Тогда он закрыт. Полностью закрыт. Это квантовый эффект. Это, если хотите, бесконечное сопротивление. Когда мы делаем их параллельными, он открывается. То есть фактически он то закрыт, то открыт – это реальный факт. Значит, вопрос заключается в том, действительно ли он реализуется в тех экспериментах, которые сейчас сделаны. Здесь пока вопрос открыт.
К.З. Но сотни тысяч процентов наблюдались.
А.З. Это наблюдалось, да.
Мне хотелось бы сейчас действительно вернуться к физике. Вот в области магнитных нано-структур, в области суперпарамагнетизма имеется много интересных квантовых эффектов, где встречаются квантовые и классические закономерности, как мы сказали. И я, по ограниченности времени, конечно, могу говорить только об одном эффекте. Таким интересным эффектом является явление магнитной релаксации магнитных материалов. Давайте начнём с классики. Если мы возьмём обычный постоянный магнит, который мы в нашей обыденной жизни привыкли видеть, и намагнитим его вдоль определённого направления, например, вдоль лёгкой оси, то он практически постоянно будет находиться в этом состоянии равновесия. Хотя имеется другое состояние равновесия, противоположное ему.
Но ситуация меняется, когда мы уменьшаем размер элемента, объём элемента. Первым обратил на это внимание Луи Неель, знаменитый французский физик. Он изучал магнетизм земных пород и обратил внимание, что действительно, когда частички становятся маленькими, то они могут спонтанно размагничиваться, благодаря тепловым флуктуациям, как Костя нам об этом уже рассказал. И он вывел формулу для скорости спонтанного размагничивания, она выглядит как некая экспонента знаменитой формулы Аррениуса и показывает, что скорость спонтанного размагничивания, т.е. скорость релаксации, уменьшается, когда температура стремится к нулю, и она обращается в нуль, когда температура идёт в ноль. Но это с точки зрения здравого смысла это естественно. Тепловые флуктуации идут в ноль, и, значит, естественно, никакого перемагничивания спонтанного нет.
Когда начали делать эксперименты, обнаружили, что, в общем-то, всё укладывается хорошо в теорию Луи Нееля. Но когда начали экспериментировать с ещё более мелкими, нанометровыми частицами, обнаружили интересный факт. Оказалось, что действительно, она идёт по Неелю, но когда мы приходим к низким температурам, порядка Кельвина, оказывается, что скорость становится постоянной и при дальнейшем понижении температуры не меняется. Это удивительный факт. Довольно быстро была выдвинута идея, что здесь мы имеем дело с макроскопическим квантовым туннелированием намагниченности частицы.
А.Г. Макроскопическим?
А.З. Да, магнитный момент всей частицы, макроскопический, он туннелирует как целое. Это напоминает, помните, кота Шрёдингера. Так вот эта частица, этот магнитный момент как целое, он переходит в другое состояние. Удивительный факт.
А.Г. То есть этот туннельный эффект, по сути дела – макроскопический?
А.З. Макроскопический, да. Конечно, это колоссально интересная штука, но не все физики согласились с этой идеей. Возражали, что частицы очень различны по размерам, дисперсия размеров есть. Поэтому скорости, размагничивая в разных частицах, тоже будут сильно различаться. И тут, в общем, можно всё что угодно получить. То есть возник тупик некий.
Но оказалось так, что параллельно с этим экспериментом появился новый интересный объект в суперпарамагнетизме. Это магнитные молекулы. Вот они здесь показаны. Магнитные молекулы – это органические молекулы, в которых имеются магнитные ионы. То есть это тоже, можно сказать, магнит, но на молекулярном уровне. И в отличие от магнитных частиц, тут они все калиброваны, так сказать, от Бога размер задан. И поэтому, если работать с такими объектами, уже никаких проблем с размером не возникает.
Итальянцы из Флоренции под руководством профессора Гаттески, они такие материалы синтезировали, ну, и конечно, физики их сразу подхватили, Mn-12, вот это нижняя левая молекула. И её взяли как основную и модельную, и на ней провели эксперименты. Эти эксперименты буквально несколько лет тому назад были сделаны. Сделаны они были в Гренобле и Нью-Йорке. И они, эти эксперименты, полностью доказали, что, действительно, здесь мы имеем дело с макроскопическим тунеллированием намагниченности. Вот это ответ на ваш вопрос. Электроны там только квантовыми свойствами обладают или в целом весь кластер? Вот здесь оказывается, что весь кластер проявляет квантовые свойства.
А.Г. А какими свойствами в данном случае обладает барьер?
А.З. Это хороший вопрос. Барьер, это фактически магнитная анизотропия, но в молекуле. И вот, молекула марганец-12, это действительно молекулярный магнит, она обладает петлёй гистерезиса, то есть у неё имеется анизотропия. То есть это магнит на молекулярном уровне. И вот это интересно и с практической точки зрения. Поскольку это магнит на молекулярном уровне, то мы можем использовать его для записи информации, т.е. одну молекулу. Конечно, эта идея очень простая, она появилась совсем недавно в «Нью-Йорк таймс», американские физики, её запустили. Сумасшедшая плотность, конечно. Она на четыре порядка больше, чем плотности современных магнитных дисков и так далее. Но идея, честно говоря, слишком сырая, слишком много трудностей, проблем на этом пути.
К.З. То есть управление.
А.З. Не только управление. Это хранение информации, низкая температура нужна и так далее. Но в целом идея здравая и она, конечно, не только у американцев, она и во всех лабораториях обсуждалась. Только американцы её смело подали в газету.
Но понятно сейчас, что нужно делать крупные молекулы для того, чтобы организовать эту систему. А для того чтобы сделать крупную молекулу, надо знать, как устроены молекулы внутри, какие там взаимодействия и так далее.
А.Г. То есть речь идёт уже не о синтезе органических молекул, которые обладают этими свойствами, а о создании некой молекулы.
А.З. О создании новых молекул, да. То есть надо разобраться с этими взаимодействиями. И вот я вам сейчас могу рассказать про эксперименты, которые мы провели сравнительно недавно с этими молекулами. Основная идея их была – полностью намагнитить эту молекулу. Она так сложно устроена, что для этого нужны поля порядка миллионов гаусс. Это большая проблема. Но оказалось, в России такие поля есть. И они есть в Арзамасе-16, в Сарове – это федеральный ядерный центр. Они были созданы тогда, когда Сахаров ещё там работал. Он был создателем этих полей. Потом академик Павловский подхватил это дело, и сейчас они сохранились.
А.Г. Это универсальный инструмент, который мы можем получить.
А.З. Именно так. То есть новые материалы, созданные искусственно, атом за атомом. Каковы области применения нанотехнологии? Конечно, это информационная технология, медицина и фармакология.
А.Г. Биомедицина.
А.З. Конечно, транспорт, госбезопасность и так далее.
А.Г. Криптографию вы имеете в виду.
А.З. Да, это всё под, можно сказать, сферой влияния нанотехнологии. Лозунг нанотехнологии: почти всё, что может быть сделано человеческими руками, должно быть или может быть сделано методами нанотехнологии. Потому что всё состоит из атомов, и всё поэтому можно сделать искусственно из атомов. Это лозунг смелый, но таков лозунг нанотехнологии. Вот поэтому это – революция.
Несколько слов или точнее, несколько исторических замечаний, как она всё ж таки возникала. Точкой отсчёта нанотехнологии считается знаменитый доклад американского физика Ричарда Фейнмана – хорошо известного всем Нобелевского лауреата. В 1959 году он прочитал доклад, который назывался так «There is Plenty of Room at the Bottom», если перевести вольно на русский язык, это примерно звучит так: имеется огромное поле деятельности на атомном уровне. Но вы знаете Ричарда Фейнмана.
А.Г. Зная его, можно было перевести почти дословно: «внизу места навалом» или «внутри места полно».
А.З. Так оно и есть, да. Фейнман – это блестящая личность. На мой взгляд, это личность калибра гигантов Возрождения. У него удивительный и разносторонний ум. Это и колоссальное провидение. Вы знаете его учебник, фейнманские лекции по физике, у него удивительный тотальный взгляд на природу. Он сложнейшие вещи студентам мог объяснить очень просто, сложнейшие вещи, которым посвящена громадная литература. А после этого профессионалы подхватывали его находки и до сих пор этим пользуются. И со всем этим сочетается его колоссальный и мощный талант аналитика. И за это он Нобеля получил. Вот таков Фейнман.
Так вот он в своём докладе сказал такие слова, и это был его главный тезис, что все приборы (это был 1959-й год), которые сейчас есть, эти вот лампы, триоды, диоды, пентоды, транзисторы, триггеры – всё это, друзья мои, можно и нужно делать из атомов и молекул, собирая их из атомов, и так далее. И это первое.
И второе – он призвал научную общественность: давайте делать такие приборы в наших лабораториях, которые позволили бы нам измерять свойства отдельных атомов и манипулировать ими. Это был 59 год и, конечно, я могу себе представить реакцию публики на это дело, потому что в то время господствовали в электронике огромные лампы или – я ещё застал их – триггеры – основа электронно-вычислительной машины – в то время компьютера, это была коробочка объёмом пол-литра, не менее. А тут такие фантастические идеи.
Это была первая точка отсчёта. После этого в 60-е, 70-е годы развивалась микроэлектроника. А доклад Фейнмана был сделан как раз на заре этой микроэлектроники. Как сейчас мы говорим о нанотехнологии, в то время говорили о микротехнологии. И доклад Фейнмана долгое время был где-то на обочине общего процесса, а процесс продолжался, шло развитие микротехнологии и микроэлектроники. Причём, стартовали, начинали с размеров порядка сотни или десяти микрометров – это начало шестидесятых годов. А к концу 70-х годов пришли к размерам меньше микрона, вышли на субмикронный уровень. И так была создана планарная микротехнология – та, которая сейчас развивается и вовсю работает. Я, кстати, тогда работал в Зеленограде много лет, можно сказать, варился в этом котле. Но могу сказать, что уровень наш, нашей микроэлектроники был вполне приличный.
А.Г. То есть шутка, что «советские микросхемы – самые большие микросхемы в мире» не соответствует действительности?
А.З. По этому поводу я вам могу даже пример привести. То есть уровень был приличный. Я вот уже поездил довольно много после этого по миру и могу сказать, что он определённо был выше тогдашнего европейского уровня. И не ниже среднего американского и японского – это и американцы признавали. Вот такова была картина. Потом всё это, конечно, рухнуло – очень сильный удар был нанесён перестройкой.
Конкретно, я и мои коллеги, мы занимались сверхбольшими интегральными схемами на магнитных доменах – «магнитных пузырях» – так это называлось. Ну, сделали эти схемы, внедрили. Они довольно хорошо пошли в то время: у нас, и в Штатах, и в Японии такие схемы делали – но они не выдержали конкуренции с дисками. Это был, конечно, проигрыш, но это не было поражением. Поскольку диски получили в результате этой конкурентной борьбы такой колоссальный импульс, которым они до сих пор пользуются. И удваивают через каждые полтора года свою плотность записи и быстродействие. Это я считаю результатом той самой конкурентной борьбы.
А кроме того, мы получили колоссальное количество научного знания о магнетизме. Это был колоссальный прорыв для магнетизма. До сих пор мы этим пользуемся.
Вот это были 60-70-е годы. Ну и результат этой технологической деятельности – это кремниевая технология. Пентиумы, сотовая телефонная связь – всё это результат этой деятельности 60-70-х годов. До сих пор это всё продолжает развиваться и приносить плоды.
Следующий шаг – 80-е годы принесли новый колоссальный прорыв, но уже в нанонаправлении. Бининг и Рорер – швейцарские физики из Цюриха, из лаборатории фирмы IBM, сделали так называемый сканирующий туннельный микроскоп. Это Костя знает хорошо, вы тоже знаете это, конечно.
Этот микроскоп даёт возможность прямо наблюдать атомы и электронную плотность на поверхности. Это довольно простая, в принципе, штука. Представьте себе платформу, которая может ползать по поверхности кристалла с нанометровым разрешением. Она управляется пьезо-приводом, к этой платформе крепится игла с атомным разрешением. Она плавает над поверхностью на расстоянии примерно от одной десятой нанометра до нанометра. Измеряя туннельный ток, мы измеряем электронную плотность. Просто. Но это колоссальный шаг вперёд. И потом уже позднее, на базе этого открытия, этого прибора, целая плеяда новых приборов появилась.
Это атомный силовой микроскоп, который измеряет рельеф поверхности с атомным разрешением.
Атомный магнитный микроскоп, который даёт опять же с нанометровым разрешением направление магнитных моментов на поверхности. Потом были сделаны такие же устройства, которые локально могут измерять ядерный магнитный резонанс, электронный спиновый резонанс.
И наконец были сделаны на этой же базе приборы, которые могут манипулировать атомами, т.е. могут их передвигать с места на место – наноманипуляторы. Это был ответ на вызов Ричарда Фейнмана. Это было сделано где-то уже к 90-му году. И как демонстрация этих достижений, мне нравится вот такая картинка – исследователи из фирмы Ай-Би-Эм написали на металлической поверхности три буквы – IBM. Но написали это атомами ксенона! Это был 90-й год.
Константин Звездин: Сколько атомов в букве?
А.З. Ну, в букве, я не знаю, всего было порядка 35-ти атомов использовано. Но я видел эти картинки. После этого, конечно, продвинулись очень сильно. Но это была веха. Вот такой примерно исторический фон, на котором развивалась нанотехнология. Сейчас мы на пороге фактически нового века – века нанотехнологии.
Я бы показал несколько основных элементов наиболее популярных в настоящее время в наномире, они на картинке нарисованы. Это элементы – квантовые ямы, сверхрешётки, квантовые проволоки или квантовые нити, как ещё их называют. Квантовые точки, магнитные точки. Это всё элементы нанофизики, нанотехнологии, они особенно интересны, конечно, для наноэлектроники. Они показаны там на рисунках. Здесь, в этих названиях, термины – проволоки, точки, ямы – очевидно связаны с геометрическим фактором, характерным для этих объектов. А прилагательное «квантовый» – отражает тот факт, что движение электрона в этих объектах подчиняется не классическим закономерностям, а квантовым. Поскольку размеры их как раз находятся в нанообласти.
Среди такого типа объектов особенно интересны кластеры. Эти объекты такие же, как квантовые точки, но они называются кластерами. Вот видите, такие элементы показаны на рисунке, в которых порядка тысячи атомов. И, конечно, движение электронов в них тоже является квантовым, т.е. это тоже чисто квантовые объекты. Их чёртова гибель, этих кластеров, поэтому это богатейшая область для создания новых материалов и новых приборов.
А.Г. Простите, сам кластер ведёт себя как макрообъект, а электроны внутри кластера ведут себя уже как квантовые объекты?
А.З. Электроны как квантовые, и сам кластер ведёт себя тоже так же, я буду по этому поводу позже говорить. То есть сам кластер в некотором смысле ведёт себя тоже как квантовый объект. У него есть некая коллективная, как её называют, переменная, которая подчиняется законам квантовой механики. Я об этом расскажу попозже.
Мы работаем с магнитными кластерами. Они интересны тем, что у них появляется дополнительная степень свободы – магнитная. Ею можно управлять, поэтому свойства у них более разнообразные. Интересно, что именно магнитные нанообъекты пришли на финиш практического применения раньше других. Но об этом расскажет Константин.
К.З. Раздел электроники, который занимается магнитными наноструктурами называется «спинтроника». В отличие от классической микроэлектроники, которая использует только заряд электрона, спинтроника ещё использует его магнитный момент, т.е. появляется дополнительная степень свободы.
Рождением этого направления можно считать открытие эффекта гигантского магнитосопротивления в 88 году. Что это за эффект? Берётся трехслойная структура из двух магнитных слоёв и немагнитной проводящей прослойки. Вот нечто подобное показано на рисунке. Электрическое сопротивление такой структуры зависит от взаимной ориентации намагниченностей в магнитных слоях. В первых структурах, в которых этот эффект был обнаружен, величина эффекта – так называемое GMR-соотношение – составляло 6%, сейчас получены такие материалы, в которых оно доходит до 20% и более при комнатной температуре.
Что такое GMR-соотношение? Это разница между сопротивлением структуры при параллельном направлении намагниченности в слоях и при антипараллельном, т.е. антиферромагнитном. Первое практическое применение таких структур – это головки жёстких дисков. Не все заметили этот факт, но буквально за несколько лет информационная плотность жёстких дисков увеличилась в 20 раз – благодаря использованию этого эффекта.
А.З. Простите, я перебью. GMR-эффект – это как раз наноэффект. Размеры элементов здесь должны быть много меньше длины свободного пробега.
К.З. Да, в больших структурах это всё не работает.
Я здесь остановлюсь на том, как устроен жёсткий диск. Фактически этот диск покрыт магнитным материалом, и информация хранится в форме доменной структуры, которая создана на поверхности этого диска. И если нам нужно считать какую-то информацию с какой-то области диска, эта область подводится под GMR-считывающую головку, в которой один магнитный слой, в нём намагниченность фиксированная, а другая меняется благодаря магнитостатическому взаимодействию с поверхностью доменной структуры. И в зависимости от того, единица или ноль записана в этом бите, т.е. в этой области диска, меняется (или не меняется) ориентация нижнего слоя, и мы получаем сигнал или не получаем его. То есть в бинарном виде это работает.
И, естественно, огромная задача для индустрии, которая занимается этими дисками, как можно меньше сделать размер, который занимает один бит информации. То есть, как можно плотнее записать. Но на этом пути существует так называемый суперпарамагнитный барьер, предел. Что это такое? Существует такой критический размер домена, при котором из-за термофлуктуаций он спонтанно перемагничивается. То есть без действия каких-либо внешних полей информация теряется. То есть ниже, мельче, чем позволяет это ограничение, не получается сделать величину бита.
А.Г. Технологически не получается или теоретически? Потому что если флуктуация температурная, то можно придумать какую-то систему защиты, стабилизации.
А.З. Ну, например, понизить температуру устройства – правда, это усложняет систему колоссально.
А.Г. Да-да-да, то есть теоретически это возможно, технологически это невыгодно.
К.З. Это абсолютно правильно. То есть размер зависит от многих факторов, в том числе и от материала. Есть такая величина – константа магнитной анизотропии. Она описывает, насколько жёстко держится намагниченность, насколько велика коэрцитивная сила. Но с другой стороны, мы не можем сильно увеличивать эту константу, потому что тогда усложняется запись. То есть нам большее поле надо приложить локально для того, чтобы изменить битовое состояние. И опять же это усложнение системы. Сейчас один из путей решения этой проблемы – создание так называемой пространственно неоднородной магнитной среды. В отличие от современных дисков, которые представляют собой сплошную магнитную поверхность, на немагнитную поверхность в этом случае нанесены магнитные частицы с каким-то определённым периодом.
А.З. Магнитные точки даже.
К.З. И фактически бит хранится в форме ориентации намагниченности одной частицы. Это вот позволяет несколько отодвинуть суперпарамагнитный предел. И отодвинуть, то есть уменьшить размер бита, т.е. увеличить плотность записи. Сейчас цель индустрии жёстких дисков – достичь плотности 100 гигабит на квадратный дюйм. Считается, что это будет достигнуто в этом или в следующем году.
А.Г. Но это будет предел для этой технологии?
К.З. Ну, это некий шаг, который нужно сделать.
А.Г. 100 гигабит на квадратный дюйм? Потрясающе.
К.З. Следующее коммерческое применение нанотехнологии, которое будет через несколько лет на рынке, это магнитная оперативная память. В настоящее время используется полупроводниковая магнитная память, но главная её слабая сторона состоит в том, что при отключении питания информация теряется. То есть, как мы все знаем, надо тратить некоторое время на перезагрузку компьютера. И если вдруг выключается питание, то мы теряем наши несохраненные документы.
С магнитной памятью дело обстоит совершенно по-другому. Как устроена ячейка магнитной памяти? Это такая же трехслойная структура, и в простейшем случае, единица или ноль хранится в форме взаимной ориентации векторов намагниченности. То есть при отключении питания битовое состояние, естественно, сохраняется. И потом, если мы представим, что из таких элементов мы строим матрицу, то есть, таким образом мы можем считывать информацию с каждого элемента.
А.Г. А вот эта кластерная структура записи информации, насколько важно её сохранить при новых технологиях или есть другие пути записи?
К.З. То есть вы имеете в виду жёсткие диски?
А.Г. Да.
К.З. Нет, то, что я говорю, это просто уменьшение битового размера. То есть технология записи остаётся в нашем случае та же самая.
А.Г. Понятно.
К.З. Но буквально в последние годы открыты некоторые новые эффекты, которые оставляют далеко позади эффект гигантского магнитного сопротивления. В том числе магнитное сопротивление в нано-проволоках и нано-мостиках. Что такое нано-мостик? В 2000-м, если я не ошибаюсь году, в Испании были проведены эксперименты, состыковывались две нано-проволоки с атомарной толщины наконечниками, до тех пор пока не получали электрический контакт. А затем перемагничивали одну из нано-проволок. И величина магнитосопротивления получалась фантастическая – сотни и тысячи процентов.
А.З. Даже недавно получено 100 тысяч.
К.З. 100 тысяч процентов – то есть это фактически бесконечность.
А.З. Здесь квантовые эффекты проявляются…
А.Г. По теории вы сейчас нас подтянете. Я хочу дослушать, что у нас по технологии.
К.З. С некоторой точки зрения, это может стать началом новой революции в спинтронике.
И ещё я хотел бы остановиться на методах изучения таких объектов. Спинтронные структуры обладают огромным количеством параметров. То есть экспериментальное их изучение – это очень трудоёмкий процесс, дорогостоящий, занимает много времени и так далее. И здесь на помощь приходит, как обычно сейчас, компьютерное моделирование. И очень активно используется в настоящее время так называемый микромагнитный подход.
Магнитный слой разбивается, грубо говоря, на кирпичики, на маленькие прямоугольники. И каждый из них обладает своим собственным магнитным моментом. И причём каждый из этих кирпичиков магнитостатически взаимодействует со всеми кирпичиками, которые формирует система. И модель позволяет варьировать и физические параметры, и геометрию. То есть из таких кирпичиков можем составлять любую магнитную структуру с необходимыми физическими свойствами. И мы можем моделировать реально процесс перемагничивания. Фактически мы строим виртуальный прототип элемента, подбираем оптимальные параметры. И только после этого образец подаётся уже в лабораторию.
А.Г. С неё начинают строительство непосредственно…
К.З. Да, то есть строится виртуальный прототип, изучается его поведение. Причём, что интересно, часто обнаруживаются некие новые эффекты, которые трудно предсказать теоретически. И их экспериментально было бы достаточно сложно обнаружить. И они вот таким образом обнаруживаются, и потом можно уже это экспериментально их получить.
Где ещё используются магнитные нано-структуры? Очень широко они используются в сенсорах всевозможных. Сейчас очень быстро развивается технология так называемая MEMS, то есть микромеханические системы, микроэлектромеханические системы. Это то, что мы видели в фантастических фильмах, это маленькие жучки, паучки, маленькие роботы каких-то миллиметровых размеров, которые используются во всех областях человеческой деятельности. И для управления точной механикой этих систем активно используются также магнитные сенсоры. Также такие сенсоры используются в автомобильной промышленности, очень активно, как датчики скорости, в медицине, в аэрокосмической области, то есть поле применения их очень широкое.
А.Г. Теперь подтяните нас по теории. Почему эти нано-мостики обладают таким потрясающим эффектом?
А.З. Вообще-то вопрос в стадии исследования. Но один из ответов, один из возможных ответов, может быть основан на эффекте квантового сопротивления нано-мостиков. Известно, что сопротивление нано-контакта квантуется, имеется квант сопротивления. И вот тогда, когда диаметр мостика меньше некоторого критического, то мостик практически закрыт. И мы можем его закрыть, скажем, сделав так, что спины в берегах мостика направлены навстречу друг другу. Тогда он закрыт. Полностью закрыт. Это квантовый эффект. Это, если хотите, бесконечное сопротивление. Когда мы делаем их параллельными, он открывается. То есть фактически он то закрыт, то открыт – это реальный факт. Значит, вопрос заключается в том, действительно ли он реализуется в тех экспериментах, которые сейчас сделаны. Здесь пока вопрос открыт.
К.З. Но сотни тысяч процентов наблюдались.
А.З. Это наблюдалось, да.
Мне хотелось бы сейчас действительно вернуться к физике. Вот в области магнитных нано-структур, в области суперпарамагнетизма имеется много интересных квантовых эффектов, где встречаются квантовые и классические закономерности, как мы сказали. И я, по ограниченности времени, конечно, могу говорить только об одном эффекте. Таким интересным эффектом является явление магнитной релаксации магнитных материалов. Давайте начнём с классики. Если мы возьмём обычный постоянный магнит, который мы в нашей обыденной жизни привыкли видеть, и намагнитим его вдоль определённого направления, например, вдоль лёгкой оси, то он практически постоянно будет находиться в этом состоянии равновесия. Хотя имеется другое состояние равновесия, противоположное ему.
Но ситуация меняется, когда мы уменьшаем размер элемента, объём элемента. Первым обратил на это внимание Луи Неель, знаменитый французский физик. Он изучал магнетизм земных пород и обратил внимание, что действительно, когда частички становятся маленькими, то они могут спонтанно размагничиваться, благодаря тепловым флуктуациям, как Костя нам об этом уже рассказал. И он вывел формулу для скорости спонтанного размагничивания, она выглядит как некая экспонента знаменитой формулы Аррениуса и показывает, что скорость спонтанного размагничивания, т.е. скорость релаксации, уменьшается, когда температура стремится к нулю, и она обращается в нуль, когда температура идёт в ноль. Но это с точки зрения здравого смысла это естественно. Тепловые флуктуации идут в ноль, и, значит, естественно, никакого перемагничивания спонтанного нет.
Когда начали делать эксперименты, обнаружили, что, в общем-то, всё укладывается хорошо в теорию Луи Нееля. Но когда начали экспериментировать с ещё более мелкими, нанометровыми частицами, обнаружили интересный факт. Оказалось, что действительно, она идёт по Неелю, но когда мы приходим к низким температурам, порядка Кельвина, оказывается, что скорость становится постоянной и при дальнейшем понижении температуры не меняется. Это удивительный факт. Довольно быстро была выдвинута идея, что здесь мы имеем дело с макроскопическим квантовым туннелированием намагниченности частицы.
А.Г. Макроскопическим?
А.З. Да, магнитный момент всей частицы, макроскопический, он туннелирует как целое. Это напоминает, помните, кота Шрёдингера. Так вот эта частица, этот магнитный момент как целое, он переходит в другое состояние. Удивительный факт.
А.Г. То есть этот туннельный эффект, по сути дела – макроскопический?
А.З. Макроскопический, да. Конечно, это колоссально интересная штука, но не все физики согласились с этой идеей. Возражали, что частицы очень различны по размерам, дисперсия размеров есть. Поэтому скорости, размагничивая в разных частицах, тоже будут сильно различаться. И тут, в общем, можно всё что угодно получить. То есть возник тупик некий.
Но оказалось так, что параллельно с этим экспериментом появился новый интересный объект в суперпарамагнетизме. Это магнитные молекулы. Вот они здесь показаны. Магнитные молекулы – это органические молекулы, в которых имеются магнитные ионы. То есть это тоже, можно сказать, магнит, но на молекулярном уровне. И в отличие от магнитных частиц, тут они все калиброваны, так сказать, от Бога размер задан. И поэтому, если работать с такими объектами, уже никаких проблем с размером не возникает.
Итальянцы из Флоренции под руководством профессора Гаттески, они такие материалы синтезировали, ну, и конечно, физики их сразу подхватили, Mn-12, вот это нижняя левая молекула. И её взяли как основную и модельную, и на ней провели эксперименты. Эти эксперименты буквально несколько лет тому назад были сделаны. Сделаны они были в Гренобле и Нью-Йорке. И они, эти эксперименты, полностью доказали, что, действительно, здесь мы имеем дело с макроскопическим тунеллированием намагниченности. Вот это ответ на ваш вопрос. Электроны там только квантовыми свойствами обладают или в целом весь кластер? Вот здесь оказывается, что весь кластер проявляет квантовые свойства.
А.Г. А какими свойствами в данном случае обладает барьер?
А.З. Это хороший вопрос. Барьер, это фактически магнитная анизотропия, но в молекуле. И вот, молекула марганец-12, это действительно молекулярный магнит, она обладает петлёй гистерезиса, то есть у неё имеется анизотропия. То есть это магнит на молекулярном уровне. И вот это интересно и с практической точки зрения. Поскольку это магнит на молекулярном уровне, то мы можем использовать его для записи информации, т.е. одну молекулу. Конечно, эта идея очень простая, она появилась совсем недавно в «Нью-Йорк таймс», американские физики, её запустили. Сумасшедшая плотность, конечно. Она на четыре порядка больше, чем плотности современных магнитных дисков и так далее. Но идея, честно говоря, слишком сырая, слишком много трудностей, проблем на этом пути.
К.З. То есть управление.
А.З. Не только управление. Это хранение информации, низкая температура нужна и так далее. Но в целом идея здравая и она, конечно, не только у американцев, она и во всех лабораториях обсуждалась. Только американцы её смело подали в газету.
Но понятно сейчас, что нужно делать крупные молекулы для того, чтобы организовать эту систему. А для того чтобы сделать крупную молекулу, надо знать, как устроены молекулы внутри, какие там взаимодействия и так далее.
А.Г. То есть речь идёт уже не о синтезе органических молекул, которые обладают этими свойствами, а о создании некой молекулы.
А.З. О создании новых молекул, да. То есть надо разобраться с этими взаимодействиями. И вот я вам сейчас могу рассказать про эксперименты, которые мы провели сравнительно недавно с этими молекулами. Основная идея их была – полностью намагнитить эту молекулу. Она так сложно устроена, что для этого нужны поля порядка миллионов гаусс. Это большая проблема. Но оказалось, в России такие поля есть. И они есть в Арзамасе-16, в Сарове – это федеральный ядерный центр. Они были созданы тогда, когда Сахаров ещё там работал. Он был создателем этих полей. Потом академик Павловский подхватил это дело, и сейчас они сохранились.