Я ещё хочу одну вещь сказать. Космос позволяет делать ещё одно, но, правда, с помощью автоматов, – избавляться от радиоактивных отходов. Американцы в своё время экспериментировали в этом отношении с «Вояджером». Раз в 200 с чем-то лет повторяется такая возможность, когда все планеты так устанавливаются, что одним полётом можно пролететь мимо всех их. Мы не захотели это делать, а они это сделали – молодцы. Но главное – они на этом полёте должны были сделать то, что позволит потом реализовывать освобождение от ядерных отходов.
   Если пролететь около Юпитера на небольшом расстоянии, то он разгоняет и выбрасывает из Солнечной системы то, что мимо него прошло. Значит, вот есть способ, но его надо тоже делать: а) надёжным; б) автоматическим, и это тоже перспектива.
   Не знаю, покорили мы космос или нет. Мы его покорили около Земли. А в дальнейшем всё-таки его надо открыть.
   Г.Г. Циолковский сказал, что человечество не будет вечно жить в колыбели. Я считаю, что мы просто пока выглянули из колыбели, мы из неё даже не вылезли.
   А.П. Безусловно. От того, что сейчас, до того, что на самом деле надо – огромная дистанция.
   Есть ещё одна задача интересная – всё-таки проверить теорию Эйнштейна. Ведь можно разогнать солнечным парусом или другим каким-то двигателем, без людей, разогнать что-то до скорости света и потом попытаться вернуть назад – это тоже грандиозная задача. Она не сегодняшнего дня, это задача далёкого будущего, но при этом можно будет всё-таки проверить: правильна теория Эйнштейна или нет, как там идут часы, что в этом случае с атомами и молекулами происходит. Пока это только математические расчёты и некоторый опыт, который доказывает правильность этой теории в макромире и в микромире.
   А.Г. А какие технологии, кроме солнечного паруса, могут разогнать космический корабль любого размера до больших скоростей?
   А.П. Хороший вопрос. Представим себе, что у нас есть свет обычного фонарика, мощность карманного фонарика или намного большего прожектора, энергия, которая добывается, конечно, из солнечной энергии, с помощью солнечных батарей – а дальше уже, возможно, ядерными реакторами.
   Но, так или иначе, этот свет создаёт малую тягу, но оказывается, что если малая тяга – в граммы – действует безгранично долго, то создаются гигантские скорости. Это фотонный двигатель.
   Г.Г. Ещё электрореактивный двигатель.
   А.П. Да, они уже испытаны как двигатели ориентации на наших…
   А.Г. Электрореактивный двигатель? А что это, каков принцип его действия?
   Г.Г. Вот в 2007-м году на нём собираются лететь?
   А.П. Да, но, тут есть хороший слайд, может, стоит отвлечься на минуточку. Есть альтернативные варианты освоения околоземного пространства. Вот скажем, американцы недавно запустили этот воздушный шар. Это две тонны веса на высоте 40 км, и он за 100 суток собирает данные о 90% земной поверхности. Вот такие вот шары. И есть самолёты, которые летают на высоте 30 км на солнечных батареях.
   Г.Г. Без топлива.
   А.П. Это ещё опытные образцы, конечно. То есть, околоземное пространство можно наблюдать не только из космоса. Но космос – он тоже позволяет много. И, в общем, вот эти альтернативные варианты нельзя забывать.
   А если говорить про электродвигатели, то у нас, в нашей стране, сейчас разрабатывается очень хороший проект, на 2007-й год он нацелен. Его разрабатывают 4 организации, это МПО имени Лавочкина, ИКИ, Геохим, институт имени Виноградова бывший, и, наконец, наш Институт прикладной математики – вот как раз показывают нужный слайд.
   Это очень интересный проект – полёт за реликтовым веществом к Фобосу. И вы можете увидеть на слайде эти большие солнечные батареи. Они создают энергию, которая разгоняет рабочее тело, нейтральный газ, ионизирует его за счёт электрических сил, разгоняет до больших скоростей. Потом для того, чтобы этот объект не зарядился (если вылетит заряженная частица, останется заряд в самом корабле), он отбирает, сажает назад эти отобранные электроны в ионы, и уже эти атомы, превратившись снова в нейтральные, улетают с большой скоростью.
   И вот эта тяга позволяет долететь до Марса, сесть на Фобос, затем взять там грунт и вернуть его на Землю. Причём полёт к Марсу с возвратом к Земле для человека крайне неприятен тем, что для того чтобы лететь назад на Землю, на Марсе около года надо ждать, пока Марс и Земля займут такую позицию, когда можно лететь с Марса на Землю. А вот на малых тягах не надо ждать, потому что аппарат медленно разгоняется, и время уходит как раз на разгон, и аппарат возвращается к Земле, когда надо, причём с вопросами точности всё получается хорошо. Вот так работают электрореактивные двигатели.
   А.Г. Вопрос к вам как к баллистику, а к вам как практику. Скажите, пожалуйста, вот даже когда американцы в автоматическом режиме сажали «Аполлон» на Луну, и то задержка в 2 секунды создавала достаточно большие проблемы. Сигнал идёт секунду туда, секунду обратно, за это время картина уже меняется. Какова задержка при полёте на Марс или на Фобос? Как сажать в автоматическом режиме?
   А.П. Да, мы этим подробно занимаемся. Во-первых, американцы сажали не в автоматическом режиме. Сажал Армстронг, и это намного проще, чем сажать так, как мы сажали.
   Г.Г. Начали посадку автономно. Не с Земли сажали, а автономно.
   А.Г. Это одиннадцатый…
   А.П. Там сидел лётчик, профессионал, и он сажал как надо. А вот наши системы сажались автоматически. Но они, опять же, сажались по той информации о дальности и скорости, которая поступала к ним от трех лучей радиолокатора.
   Г.Г. Земля не участвовала, поэтому задержек минутных не было. Это всё автономно на корабле происходило.
   А.П. Но тем не менее, Марс – это задержка сигнала от 4 до 40 минут. И всё-таки эти системы, хоть они автоматические, но Земля их подробно поддерживает. Без поддержки Земли ничего невозможно. Вообще-то говоря, все марсоходы имеют всего лишь 5 команд: вперёд, назад, направо, налево и вызов Земли. Вот вызов Земли – это на случай, когда что-то неизвестно.
   И это замечательная задача для науки, для теории управления – как управлять автоматическим объектом, но в то же время дистанционно управляемым, с большими задержками в канале связи. Он должен быть настолько автоматическим, чтобы решать свою задачу сам, и в то же время человек должен иметь возможность вмешаться.
   Наши сотрудники замечательно управляют роботами через Интернет, с задержками передачи информации, соизмеримыми, в общем, с теми, что на Марсе. И там как раз отрабатываются эти двухуровневые системы: внизу автоматическая и человечья где-то на другом конце.
   Г.Г. Практически мы выходим на задачу создания искусственного интеллекта – уровни, подуровни…
   А.П. Да, искусственный интеллект – это серьёзная вещь, конечно.
   Вот Марс, посмотрите. Набор камней. Пустыня такая же, как на том полигоне, с которого мы делали запуски на Марс.
   Г.Г. Да, или как на Камчатке…
   А.П. Да, когда мы услышали, что американцы сфотографировали Марс, мы были на том полигоне в районе Байконура, и я спросил: «Ну, и что же там?» А мне говорят: «Такая же пустыня, как и здесь».
   Вот, видите, условия жизни на Марсе – ноль градусов в самом хорошем случае, и, говорят, что иногда бывает 10, где-то в районе экватора. А так минус 60, минус 100, и атмосфера, как на высоте много десятков километров, 5 миллибар. Плюс – пыльные бури.
   А.Г. Вот я и спрашиваю: что же должно произойти на Земле такого, чтобы мы спасались на Венере, где 500 градусов, на Марсе, где минус 100 или на Луне, где нет атмосферы?
   А.П. На Венере мы не будем спасаться. Венера нам должна показать, на самом деле, как избавиться от того, что на ней – парниковый эффект и так далее.
   Г.Г. Венера – это такая страшилка, чтобы человечество поняло, что к чему.
   А.П. А спасаться можно на Луне, поэтому говорят о лунной базе. Может быть, на Луне человечеству надо спасаться… А потом ведь есть ещё одно обстоятельство. Народонаселение растёт – сейчас уже 6 миллиардов. И не похоже, чтобы тут что-то менялось. Правда, Римский клуб и некоторые другие модели предсказывают где-то в 2017-м году, плюс-минус 2 года, полный коллапс, потому что не будет хватать ресурсов, загрязнение среды и так далее, и народонаселение должно уменьшаться. Но в конце концов, из-за того, что человечество растёт, ему надо будет расширяться. И будет освоена, в конце концов, может быть, и Луна. Если человечеству придётся где-то когда-то искать убежище, то к этому надо быть готовым, хотя бы на уровне бумажных проектов и каких-то их первых реализаций.
   Г.Г. Есть ещё одна интересная идея, которую я не сразу понял. Оказывается, если на орбите вокруг Земли находится завод и его надо снабжать сырьём – то с Луны снабжать сырьём его проще и дешевле, чем с Земли. Потому что Луна меньше, и разгонять надо меньше.
   А.П. Это проект российского специалиста, он опубликован в журнале «Земля и Вселенная».
   Г.Г. Очень так неожиданно.
   А.Г. Но всё-таки, в ближайшие годы чего вы реально ждёте от космоса, особенно учитывая ситуацию с шаттлом, с МКС, с тем, что у нас появилась некая перспектива монополии по доставке космонавтов и грузов на орбиту?
   Г.Г. Ну, это не серьёзно. Это продлится полгода, год, а потом всё вернётся на свои места. Это просто некая аварийная ситуация, и мы будем доставлять туда не трех космонавтов, а двух, они будут только обслуживать станцию, наука пока остановится, а потом всё вернётся. Европа делает спасательный корабль. Никакой монополии не будет. Так что это временные трудности.
   Но эти трудности показывают, что как ни старались доказать, что многоразовые корабли лучше, а в этом практическом споре победили одноразовые. Потому что одноразовый корабль каждый раз новый, свежий. А «Колумбия» летала 20 лет. Вот я трижды спускался из космоса на Землю – это тряска, это бешеные перепады температур. И как можно было 20 лет эксплуатировать этот корабль, забывая, что он каждый раз проходит через ад? И не зря специалисты говорили, что их пора уже остановить, в частности, «Колумбию», и чуть ли не до президента пытались добраться, чтобы остановить их эксплуатацию.
   Так что многоразовые корабли хотели сделать дешевле, а получилось дороже, а сама многоразовость сейчас повернулась своей обратной стороной.
   А.П. Так или иначе, я думаю, будет развиваться околоземной космос, будет развиваться станция, с её посещением и жизнью на ней. И, конечно, будут развиваться полностью автоматические системы дальнего космоса. И они принесут, они и сейчас уже приносят очень много интересного. Сейчас ищут жизнь на спутнике Юпитера Ио, потому что он покрыт льдом, и за несколько пролётов обнаружили, что это действительно лёд, он ломается притяжением Юпитера, и видно, что это под ним океан, а значит вода, значит, жизнь.
   Г.Г. А жизнь там ищут, потому что на Земле жизни нет. Разве это жизнь?
   А.П. Это верно. Но с другой стороны, найти жизнь где-то ещё, хоть какую-то, это значит сильно продвинуть науку. И конечно, будет развиваться именно космическая робототехника, я в этом глубоко убеждён. Она, с одной стороны, а) интересна; б) нужна. И мысль работает, и будут результаты. Я не знаю, будет ли это лунная база или будут это более умелые космические аппараты. Потому что есть задачи, которые только автомат может решить. Когда человек не может работать? Когда он слишком быстро должен действовать или когда слишком долго и это одно из обстоятельств, почему человек, так сказать, должен меняться с автоматом.
   Есть и ещё одна задача – космический мусор. Мы ведь можем закрыть открытую дверь. Сейчас вокруг Земли в космосе растёт количество остатков всех пусков, которые там были. И если частота пусков не будет уменьшена, а она не уменьшается, то космос загрязнится настолько, что опасность столкновения с этим мусором возрастёт необычайно.
   Г.Г. Одна из гипотез гибели «Колумбии» – столкновение с мусором.
   А.П. Я знаю, что однажды Георгий Михайлович видел, как мимо него пролетел метеорит. Это так?
   Г.Г. Было дело. Я вёл связь с Землёй, мимо пронёсся метеорит, вспыхнул и сгорел. Но поскольку пробить станцию вместе с человеком может и крошка, а этот был довольно приличный, то я невольно сказал что-то вроде «ой», а Земля услышала и говорит: «Чего ой?» Я говорю: «Метеорит вот рядом пролетел и сгорел подо мной». «Ну и чего ой?». Я говорю: «Ну как чего? Во-первых, говорю, красиво. Во-вторых, мимо».
   А.П. В общем, мусор – это проблема. Потому что есть высоты, это как раз средние высоты между геостационарами и теми околоземными, на которых все летают, где он не исчезает. На низких орбитах он постепенно падает на Землю, и есть скорость его падения и возобновления. А на геостационарных орбитах, за счёт притяжения, за счёт сжатия Земли и действия Луны, орбиты меняют наклонение и уходят из плоскости экватора. И тогда только иногда они пересекают плоскость экватора, но не сидят всё время там. А вот на средних высотах, там количество мусора только растёт. А через него летают. Люди боялись лететь через пояс астероидов, который находится между Марсом и Юпитером, и американцы очень гордились, что они первыми через него пролетели. А теперь мы будем бояться, возможно, лететь и около Земли.
   Г.Г. Надо открыть людям тайну. Всё-таки пояс астероидов – это планета, которая разрушилась или это несформировавшаяся планета?
   А.П. Есть и то, и то. Есть несколько групп астероидов. Вот Фобос, он на фоне Марса здесь показан, это явно какой-то осколок несформировавшейся планеты. А вот, скажем, околоземная группа, тот же самый Эрос, к которому летели, – считается, что это осколок большого, крупного тела. Он был развален в результате…
   Г.Г. То есть он не сформировался, но потом разрушился.
   А.П. А сам пояс астероидов (потому что астероиды не только в поясе находятся) – в основном считается, что это несформировавшаяся планета.
   Г.Г. Хотя многие думали, что Фаэтон, который, согласно легенде, разрушился.
   А.П. Да, никакой это не Фаэтон. Вот посмотрите, как его бьют. И вообще, почему эти астероиды такие гладкие? Или вот у Георгия Михайловича в руках фотография Луны, которую сделали американцы. Если её можно показать, то было бы интересно. Луна – какая она гладкая. Почему она такая? Это такая же эрозия, как на Земле в результате работы атмосферы, воды, Солнца или пыли. Так микрометеориты долбят, вот уже сколько-то миллиардов лет, 5, 6 или 4 миллиарда лет долбят эти поверхности, это следы их ударов. И, в конце концов, сглаживают поверхность.
   Г.Г. Но тогда давайте поставим точку в споре – отпечаток американского ботинка на Луне сделан в Голливуде или на Луне? Возражение такое: в песке никогда не получается такого чёткого отпечатка, как американцы сняли. Значит это фальшивка. На самом деле там нет песка, там реголит… В чём отличие? На Земле песок всё время перемещается, ветер его обрабатывает, и он становится круглым. И поэтому, если в него что-то впечатать, за счёт того, что песчинки – круглые, они осыпятся. На Луне нет ветра, жёсткие лучи делают эту песчинку реголита, наоборот, похожей на ёжика. И поэтому когда в поверхность из таких игольчатых ежичков что-то впечатается, ботинок, например, он уже так и остаётся чётким. Так что это не фальшивка, это действительно ботинок астронавта.
   А.П. Да, но, кроме того, на Земле работает сила тяжести в 6 раз большая, чем на Луне. На Земле естественный уровень откоса – 40 градусов, как у наших железнодорожных насыпей. На Луне за счёт того, что сила тяжести меньше, намного более крутой уровень откоса. И, естественно, это всё делает возможным такой отпечаток.
   Г.Г. Но там нет песка, а там есть реголит.
   А.Г. Но это было не единственное возражение по поводу пребывания американцев на Луне, а только одно из. Но всё-таки давайте…
   Г.Г. Американцы на Луне были. Хотя, может быть, кое-что подсняли.
   А.П. Не знаю, подсняли или нет, но мы видели, как они прыгали. На Земле так прыгать нельзя, просто не получится.
   Г.Г. Да, вот говорят, «так нельзя прыгать». Оденьте скафандр и попрыгайте так на Земле!
   Г.Г. Скафандр ведь надут. Это как стальной панцирь рыцаря, и какие могут быть прыжки в нём.
   А.Г. Последний у меня вопрос, наверное, потому что время подходит к концу. Нам стоит ожидать появления на орбите нашей собственной, российской орбитальной станции? Или МКС – это теперь дом родной для всех народов, которые так или иначе стремятся в космос? Этот вопрос не столько, наверное, технологический, сколько ещё и политический. Ведь постоянное выдавливание нас с МКС – оно происходит, и будет происходить. Будет у нас свой дом в космосе или нет, в ближайшее время?
   А.П. Если это зависело бы от нас, он бы был.
   Г.Г. Он будет у нас, только китайский.
   А.Г. Так, так, так. А китайцы готовят свою станцию?
   Г.Г. Конечно. Ведь вы поймите, американцы привязали к своей МКС все страны. Потому что любой национальный проект был более эффективен в отношении цена/качества, что «Фрифлаер» во Франции, что «Зенгер» в Германии, и надо было всё это отнять и стянуть на МКС, чтобы не было видно, что те проекты дешевле и намного эффективнее с точки зрения науки. И всех в МКС кнутом и пряником загнали. И только китайцы на МКС бросили 2% и продолжают делать свою национальную программу.
   А.П. Они уже в конце года собираются её запустить.
   В общем, будет или не будет наш космос развиваться, зависит от нашего будущего. А какое наше будущее? Знаете, прогнозировать будущее просто нельзя…
   Г.Г. Ни один прогноз будущего, как мы проверяли, не оправдался.
   А.П. Нет, есть замечательные…

РНК-мир

19.05.03
(хр.00:34:37)
 
   Участник:
   Алексей Рязанов – доктор биологических наук
 
   Алексей Рязанов: Начну с того, что расскажу, как вообще появилось представление о мире РНК. Собственно, молекулярная биология началась ровно 50 лет назад. Потому что весной 53-го года была опубликована статья Уотсона и Крика, где они установили структуру двойной спирали ДНК. И, в общем-то, сразу после этого стало понятно, как кодируется биологическая информация, и родилась центральная догма молекулярной биологии. Согласно этой догме, информация закодирована в ДНК, в генах. Потом эта информация перечитывается в РНК, затем – в белок. Вот такая догма: ДНК – РНК – белок. И, согласно этой догме, нуклеиновые кислоты, ДНК и РНК, несли информативную функцию, а остальные все функции были отведены белкам. Но на самом деле вскоре после открытия структуры ДНК и установления центральной догмы молекулярной биологии стало ясно, что РНК, возможно, имеет не только информативную функцию.
   И вот здесь Александром Сергеевичем Спириным и его учителем Андреем Николаевичем Белозерским было сделано принципиальное открытие. В середине 50-х годов они изучали нуклеотидный состав РНК и ДНК у разных бактерий. ДНК и РНК состоят из четырех нуклеотидов. Это аденин, гуанин, цитозин и тимин. Но соотношение этих нуклеотидов может сильно варьироваться у разных организмов. Спирин и Белозерский, изучая нуклеотидный состав ДНК у разных бактерий, обнаружили сильную вариацию. То есть, у некоторых видов бактерий было очень много Г и Ц, а у других бактерий было очень много А и Т. И также они в этих опытах изучили нуклеотидный состав РНК. И обнаружили удивительную вещь. Оказалось, что нуклеотидный состав у разных бактерий в ДНК сильно отличался. В то время как нуклеотидный состав в PHK был более-менее постоянным.
   И это, собственно, выглядело очень удивительно, потому что считалось, что нуклеотидный состав РНК должен отражать состав ДНК. И коль скоро оказалось, что отсутствовала такая прямая корреляция, стало ясно, что основная масса РНК несёт какую-то другую функцию. Не участвует непосредственно в переносе информации от ДНК к белку. С другой стороны, когда они построили график состава нуклеотидов в РНК и сравнили с составом ДНК в разных бактериях, стало ясно, что существует слабая корреляция. То есть, отсюда следует, что существует небольшая фракция РНК, которая действительно соответствует ДНК и которая является переносчиком информации между ДНК и белками, но при этом основная масса РНК, очевидно, выполняла какую-то другую функцию – структурную или функциональную. И на самом деле отсюда, по-видимому, стоит начать отсчёт этой истории со всякими нетрадиционными функциями РНК, которая, в конце концов, привела к идее рибозимов и идее РНК-мира.
   Но здесь, я думаю, стоит сначала обсудить, откуда взялась идея рибозимов и РНК-ферментов. Я, когда был ещё студентом, собственно, наблюдал всю эту историю с самого начала. Потому что это всё произошло сравнительно недавно, в начале 80-х годов. Я тоже интересовался происхождением жизни и в какой-то момент понял, что на самом деле центральным вопросом в происхождении жизни является вопрос о том, как нуклеиновые кислоты, информация, которая находится в нуклеиновых кислотах, переводится в информацию белковую. И возникла тогда такая идея, что, возможно, те белки, которые устанавливают соответствие между аминокислотами и нуклеотидами, на самом деле являлись не чисто белками, а состоят из белковой части и нуклеиновой части. И я стал собирать информацию о разных ферментах, которые были белками, но при этом содержали в себе нуклеиновые кислоты. И в литературе было несколько таких примеров.
   Во-первых, Сидни Олдман в Йельском университете показал, что есть такой фермент, который специфически расщепляет определённую РНК и этот фермент состоит из белковой части и части, представленной РНК. Тогда этому большого значения никто не придал, но, тем не менее, были такие данные. Потом в Институте биохимии имени Баха Анна Николаевна Петрова изучала фермент амилаза. Это ветвящийся фермент, который ответственен за формирование гликогена. И тоже обнаружилось, что этот фермент в своём составе содержит РНК. В самом начале 80-х годов появилась работа Томаса Чака, который показал, что есть РНК, которые могут сами себя разрезать. И, собственно, это было открытием ферментативной активности у РНК.
   И с тех пор было показано, что существует очень много разных ферментов, разных информативных активностей у РНК. То есть, стало очевидным, что РНК может обладать теми же свойствами, что и белки. И на самом деле здесь самое интересное следствие это то, что история с открытием рибозимов или РНК-ферментов привела к совершенно новой концепции происхождения жизни. Поэтому, я думаю, сначала стоит обсудить, какие вообще существовали теории происхождения жизни, и как открытие РНК-ферментов преобразило эту область. Наиболее научная теорией происхождения жизни была теория Александра Ивановича Опарина, которую он высказал в 20-е годы.
   На этой картинке вы видите общую схему концепции Опарина. Он предполагал, что аминокислоты могут собираться в полипептиды, полипептиды могут собираться в белки. И далее эти белки могут агрегировать в так называемые коацерваты. И идею эту он заимствовал из коллоидной химии. Центральной идеей Опарина было то, что на каком-то этапе эволюции белки или какие-то сложные полимеры смогли обособиться от окружающей среды. И возникла идея этих коацерватов, то есть таких капель внутри раствора коллоидных частиц, которые могли накапливать различные биополимеры и могли расти, и могли как-то делиться. Но центральной проблемой здесь являлась проблема наследственности. Если даже какая-то новая функция возникла в таких каплях, непонятно, как она могла сохраниться, как она могла передаться потомству. Даже если эти капли могли расти и делиться. И, конечно, в общем-то, Опарин считал, что центральную роль в эволюции этих первых протоклеток играли белки, потому что в то время считалось, что только белки могут обслуживать метаболизм, могут выполнять каталитические функции. Но белки, к сожалению, не могут в отличие от нуклеиновых кислот. Поэтому когда обнаружили, что РНК может тоже выполнять те же функции, что и белки, катализировать химические реакции, ферментативные реакции, то, соответственно, сразу возникла идея, что, может быть, жизнь началась не с белков, а именно с РНК.
   И вот в последние годы академик Спирин разработал новую концепцию происхождения жизни, в которой он сделал ряд предположений о том, как молекулы РНК могли, в конце концов, самоорганизоваться до такого уровня, чтобы стать живыми клетками.
   Александр Гордон: Да, только у меня сразу возникает вопрос: а куда тогда девать ДНК, если РНК может выполнять функции и ДНК и белка – саморепликацию и ферментативную деятельность?
   А.Р. Здесь так же, как с белками. То есть, РНК может выполнять и репликативные функции и ферментативные функции, но ферментативные функции белки выполняют лучше. То же самое и с ДНК. Для хранения генетической информации ДНК лучше.
   А.Г. Чем РНК?
   А.Р. Да.
   А.Г. Но, в принципе, РНК…
   А.Р. В принципе, РНК может делать то, что ДНК, и то, что белки.
   А.Г. Вернёмся к спиринской теории возникновения жизни. Не очень понятно, с чего всё началось, то есть каким образом возникла РНК и реплицировала сама себя.
   А.Р. Очевидно, что в какой-то момент должны были возникнуть рибонуклеотиды. И хотя существует масса опытов, где было показано, что абиогенно можно получить простейшие аминокислоты, можно получить довольно сложные органические соединения, но всё-таки нуклеотиды никто не смог получить абиогенным путём. Поэтому всё это ещё остаётся загадкой. Но, по крайней мере, здесь нет никаких принципиальных проблем, можно вполне себе представить, что это могло произойти. Мы просто не знаем, как это происходило. Потом в следующий момент эти нуклеотиды должны были соединиться в полимерную цепь, должны были образоваться олигонуклеотиды, которые потом должны были удлиняться. Здесь существует ряд проблем.