А.Г. Вполне отвечает.
В.А. Вполне отвечает. Но дальнейший анализ и жёсткие дискуссии по этому поводу показали, что в этой критической точке для того, чтобы вы усилили такую слабую асимметрию, вам нужно время, большее времени существования Вселенной.
А.Г. Продолжение сразу после рекламы… Пожалуйста.
В.А. Да, всё-таки, конечно, проблема возникновения жизни – это невероятно интересная, очень интригующая, очень непонятная проблема.
Р.К. И тяжёлая.
В.А. Но тяжёлая не по решению, тяжёлая по постановке задачи. Вот в чём всё дело.
Р.К. Дело в выборе подходов.
В.А. Как говорил академик Владимиров (и Виталий Иосифович Гольданский, кстати, говорил то же самое): «Учёные полжизни тратят на постановку задачи. После того как вы поставили задачу, вы испытываете блаженство, купаясь в море чётко сформулированной мысли».
В данном случае, конечно, мне представляется, что самая захватывающая часть этой задачи связана с катастрофой ошибок, парадоксом Левинталя, то есть с тем, что мы называем «переходом к непреодолимой сложности». Я, Рэм, хочу пофантазировать… Не пофантазировать, а, в конце концов, поговорить вот на какую тему.
Ведь мы же всё прекрасно понимаем, насколько сильно живое отличается от неживого. А в чём, собственно, различие? Репликация? Пожалуйста, повторили на маленьких молекулах. Органические соединения? Пожалуйста, сделали их естественным путём. В чём, тем не менее, это ощущение совершенно непреодолимого конфликта, непреодолимой пропасти? В сложности? Определите, что такое сложность! В уникальности? «Это не может появиться, потому что это не может появиться никогда». Да, мы уже близки к этому. К тому, что перед нами нечто, что само по себе повторить невозможно. Вот это и есть катастрофа ошибок. Это и есть парадокс Левинталя. И мне кажется, это центральная проблема, которая, если будет атакована правильным образом и если будет найден способ решения, тогда только мы сможем сделать хоть какой-то шаг в направлении создания осмысленной теории эволюции. Я думаю, что на решение этих проблем, в химии – тоже, и в физике – тоже, конечно, нужно потратить большие усилия. Я мечтаю создать центр, где бы можно было бы собрать людей…
Р.К. Вот кристаллограф Гавеззотти в одном из обзоров построил образ идеальной лаборатории такого типа. Она требует, по его расчётам, три миллиона долларов. И потом по миллиону долларов в год.
В.А. Да нет.
Р.К. Владик, никуда не денешься.
В.А. Нет, это как-то совершенно неправильно. Хотя мы говорим сейчас уже не о науке, а о её организационной стороне…
Р.К. Но ты же поставил задачу уже…
В.А. Нет, нет. Наука не требует больших денег, это неправильно.
Р.К. Это разве большие деньги?
В.А. Конечно, три миллиона долларов – это большие деньги.
Р.К. Для такой проблемы?
В.А. Нет, наука не требует больших денег, идеи не требуют больших денег. Технологии – да. Мир идёт по пути развития научных технологий только для того, чтобы приблизить их непосредственно к рынку, это стоит дорого. Но научные идеи и создание среды, в которой могли бы генерироваться научные идеи, это стоит недорого. И не надо пугать людей.
А.Г. Но стоят достойного уровня жизни учёного.
В.А. Абсолютно правильно, достойного уровня, но не жизни, а как вам сказать… Просто должна быть некая среда, в которой ты ощущал бы себя достойно. Вот собственно и всё. Речь идёт о среде. Ну, ладно, это, так сказать, детали…
Живая и неживая материя
Участники:
Мстислав Владимирович Крылов – доктор биологических наук
Михаил Наумович Либенсон – доктор физико-математических наук
Мстислав Крылов: Эволюция живой и неживой материи подчиняется одним и тем же концептуальным законам физики и химии. И поэтому мы вместе с доктором физико-математических наук Михаилом Либенсоном решили разработать эту проблему на двоих.
Наверное, ты начнёшь, расскажешь, как возникла Вселенная, об инфляционной гипотезе, о большом взрыве, а потом я уже перейду к тому времени, когда начала формироваться естественная материя и живые организмы.
Михаил Либенсон: Спасибо за такую возможность. Я должен сказать, что, хотя я знаком с общим взглядом на Мир, основанным на теории Большого Взрыва, с тем, как возникла и развивается Вселенная, я не являюсь глубоким профессионалом в этой области. Я читаю лекции «Концепции современного естествознания» студентам одного из вузов Петербурга. И очень этой темой интересуюсь. Но, поскольку здесь претензий на какие-то новые вещи у нас нет, я просто напомню, что, согласно теории Большого Взрыва, Вселенная возникла как флуктуация, и первоначально, в первый момент, который и определить-то трудно (потому что я дольше говорю, чем это состоялось), плотность исходного вещества (Вселенная возникла из сингулярности) была чудовищной – 10 в 97-й степени грамм на кубический сантиметр, а температура – 10 в 32-й степени градусов, Кельвина, или Цельсия (тут неважно, в чём определять), а дальше началось стремительное расширение того, что образовалось, и температура падала. А то, что образовалось, начало стремительно меняться, преобразовываться. И проходило некоторые стадии. Эти стадии в течение первых трех минут прошли так много ступеней эволюции, что изучение их ещё только, так сказать, начинается. Если перечислить только, то сначала получилось нечто с огромным отрицательным давлением, и, согласно общей теории относительности, такая вещь не могла быть устойчивой. Из неустойчивости получилось то, что уже стало после расширения обычным веществом. Но там присутствовала огромная доля излучения. И то, что известно из физики элементарных частиц, позволило понять, что потом, спустя ничтожные доли секунды, получились первые барионы, а через очень короткое время пошло образование ядер. И на протяжении долей секунды образовались первые ядра самых лёгких элементов – водорода и гелия. Образование же тяжёлых элементов, кирпичиков хорошо нам знакомого вещества, произошло уже гораздо позже и длилось не доли секунды, а миллионы лет. И за это время то, что возникло, охватило огромные области. Но к этому мы ещё вернёмся, когда появятся картинки, а пока коснёмся вот чего. Главный и очень важный момент для общего нашего рассказа в том, что мы увидим серьёзные усложнения системы, которая возникла как некая неоднородность.
Усложнение – это очень важное свойство мира, который продолжает расширяться, оставаясь неравновесным и сугубо нелинейным, по оценкам, уже 12-15 миллиардов лет. Вот что можно сказать во вступлении о неживой природе.
М.К. Ну что же, расширяющейся Вселенной свойственна неравновесность. И многие процессы, протекающие во Вселенной, неравновесны, в том числе и жизнь. Жизнь можно охарактеризовать как открытую неравновесную систему, находящуюся в стационарном состоянии, когда приток вещества и энергии равен оттоку.
В неравновесных системах могут проходить процессы самоорганизации. Эти системы становятся чувствительны даже к очень слабым воздействиям. Они становятся чувствительными к слабым гравитационным полям, к электромагнитным полям. Короче говоря, эти системы становятся необычайно чувствительными к любым флуктуациям. И они способны подстраиваться под изменяющиеся условия. Кроме того, эти системы ещё и стремятся к уменьшению производства энтропии. Одним из мощных антиэнтропийных факторов является усложнение системы. Поэтому усложнение, о котором сказал Михаил Наумович, определяется именно состоянием системы, её неравновесностью. И эти усложнения, конечно, протекают с участием обратных связей, либо положительных, либо отрицательных.
Что можно сказать об общности законов физики и химии для живых организмов? Размеры клетки определяются законами диффузии. Известно, что масса клетки растёт пропорционально кубу, а поверхность клетки, через которую осуществляется диффузия веществ, также растёт, но пропорционально квадрату. Значит, клетка не может быть очень большой. Таким образом, закон диффузии накладывает ограничения на размеры клетки.
Ещё пример – мы все прекрасно знаем, что стволы растений, крупных деревьев, скажем, имеют в разрезе радиальную форму. Вот эта радиальная форма определяется гравитацией. Скажем, «торпедовидная» форма животных, быстро перемещающихся в плотных средах – акул, дельфинов – определяется гидродинамическими законами. Наконец, размеры или, вернее даже, масса летающих птиц определяется законами аэродинамики. Самая большая птица, которая может летать, это дрофа, и она не может иметь весь больше 23-24 килограмм.
Александр Гордон: Жить в физике и быть свободным от физики невозможно.
М.К. Невозможно. Законы физики диктуют очень жёстко конформацию живой материи.
М.Л. Если можно, я тут скажу несколько слов. Уже прозвучало, что и неживой и живой материи присуще свойство самоорганизации. Надо сказать, что это очень важная концепция – концепция самоорганизации, которая известна давно и происходит от естественных наук. Она стала более широкой и глобальной по своему значению, влиянию и применению, чем первоначально.
Здесь существенно подчеркнуть, что самоорганизация возникает в открытых системах, где должны быть развитыми системы обратных связей – положительных и отрицательных. Положительные обратные связи важны в том отношении, что в нелинейной системе может самопроизвольно происходить переход из одного состояния в другое. Флуктуация, которая связана положительными обратными связями с этими условиями, позволяет ей самой не самоуничтожаться быстро, а продолжать действовать. И постепенно системе уже невозможно оставаться в предыдущем состоянии, и она переходит в новое. А отрицательные обратные связи стабилизируют ситуацию. Поэтому мы имеем во времени некий переход. В пространстве он может сопровождаться образованием диссипативных структур, вообще, неким формообразованием. И это существенно. Причём, имеются системы с накоплением изменений.
Система может запомнить изменение, а потом его усилить на следующих циклах. Это тоже объединяет и физические законы, и то, что может иметь место в биологических системах. Об этом мы ещё поговорим попозже.
М.К. Я хотел бы поговорить о том, каким образом процессы, существующие в неживой материи, используются живыми системами. Так скажем, передача энергии в сопряжённых химических реакциях происходит через промежуточный продукт. Если мы себе представим реакцию, скажем, А-В-С, а следующую реакцию сопряжённую С-D-E, то С будет общим продуктом для этих двух цепочек химических систем, причём, в одной она будет конечным продуктом, а в другой системе будет начальным продуктом. Такие процессы существуют в неорганической природе, и они очень широко распространены в биологической природе.
И очень важны для понимания функционирования живых систем так называемые процессы кросс-катализа. Например, реакция Жаботинского-Белоусова, где химические молекулы синхронно меняют своё тождество, и раствор превращается по цвету то в красный, то в синий. Эту реакцию называют «химическими часами» – через равные промежутки времени меняется цвет раствора. Это объясняется тем, что конечный продукт катализирует начальный продукт, это кросс-катализ. Такие реакции широко наблюдаются в биологии. Скажем, синтез нуклеиновых кислот определяется белками. А структура белков, и их синтез определяется нуклеиновыми кислотами. Кросс-катализ имеется и в неживой природе, и в живой природе, то есть существует некий континуум эволюционных процессов в этих системах.
М.Л. В итоге такого вступления мы постарались проследить примеры закономерностей, известных из физики и хорошо уже проверенных, в частности, закономерностей самоорганизации, и сделать качественные выводы, которые очень похожи на то, что имеет место и в живой природе. Это даёт больше оснований думать о том, что они действительно связаны между собой. И вообще говоря, в чём-то природа едина и не нуждается в каких-то специфических, очень иногда надуманных концепциях, объясняющих непреодолимое различие между неживой и живой природой. Мы, конечно, не касаемся всего сразу. Здесь очень много вопросов можно задать. Мы можем говорить только о том, о чём говорим сами.
И ещё можно сказать вот что. Концепция рождения и развития Вселенной, собственно, не такая уж старая. Когда я учился в школе, нас учили, что Вселенная безгранична, она никогда не начиналась во времени, и никогда не закончится. И уже начав работать, я узнал, что существуют просто захватывающие по своему сюжету сценарии развития Вселенной, – это уже вторая половина XX века.
Любопытно вот что отметить. Считается, что XX век – это время триумфа биологии. Сколько много важных Нобелевских премий присуждено за выдающиеся работы в области биологии и примыкающей к ней медицине. Много работ, конечно, и по физике удостоено Нобелевской премии. Но среди выдающихся достижений науки, на мой взгляд, как-то не очень заметно то, что сделал ряд учёных (их не так много), которые разработали концепцию Вселенной. Просто для этого нужно иметь глубокие профессиональные знания, гораздо более глубокие, чем может пропустить через себя даже человек, имеющий высшее образование. И в этом трудность – как донести это до слушателей, читателей, зрителей.
А.Г. Ещё одна проблема. Дело в том, что наблюдательные экспериментальные данные, особенно в астрофизике, с каждым днём обновляются, прибавляются, заставляют теоретиков менять свои представления о том, что было справедливо ещё год назад, два года назад. Поэтому, конечно, астрофизика – и космология, как следствие, – сейчас тоже впереди, на коне. Но всё-таки, не проводя жирной черты между живой и неживой природой, утверждая, что и та, и другая развиваются и действуют по одним и тем же законам усложнения, самоорганизации и усложнения – всё-таки мы натыкаемся-то на невозможность экспериментальным путём получить ту самую первую форму жизни, ту самую первую, не знаю, как её назовём, – «матрицу», способную репродуцироваться. И это остаётся огромной загадкой.
М.К. Я бы на этот вопрос ответил так. В неравновесных системах идут необратимые процессы. Время имеет направленность, и поэтому невозможно повторить то, что уже было. Попытки это сделать, правда, предпринимаются, но, в общем, они большого успеха не имеют. Дело в том, что, скажем, амфибии произошли от рыб. Но амфибии не могут превратиться в рыб. Ступеньки такие: рыбы, амфибии, рептилии, птицы и млекопитающие. Млекопитающие опять вернулись в воду, дельфины, китообразные – но ведь они не приобрели жабры. Они решили эту проблему иначе. То есть эволюция необратима. В зоологии это формулируется как закон Долло. Но это лишь частный случай общего закона однонаправленности времени.
А.Г. Но, тем не менее, присутствуют же регрессивные формы в эволюции, когда некий вид сознательно отказывается от морфологических признаков, которые он приобрёл в течение эволюции – по сути дела, упрощаясь, а не усложняясь. Это же тоже эволюция.
М.К. Это характерно для многих паразитов. Паразит возлагает часть функций на хозяина, система паразит-хозяин при этом усложняется.
А.Г. Продолжайте, извините, что перебил.
М.К. Я хотел ещё остановиться на основной нашей концепции, мы почему-то о ней ничего не сказали – на том, что материя принимает формы в соответствии с условиями. И, как я уже говорил, – в сильно неравновесных состояниях материя подстраивается под условия.
А.Г. Когда вы говорите «форма», вы что имеете в виду?
М.К. Скажем, если о неорганической материи, я бы сказал так: водород превращается в гелий при определённых условиях. Чтобы эта реакция произошла, нужно 10 миллионов градусов.
А.Г. Всё понятно.
М.К. На ранней Земле простейшие организмы жили без свободного кислорода, то есть не было кислорода, и они прекрасно существовали и размножались. И они дали начало сине-зелёным водорослям, которые стали использовать энергию солнечного света, то есть начался фотосинтез. В результате метаболизма начал выделяться свободный кислород, и он стал появляться в атмосфере. И этот кислород уже был ядом для тех начальных форм, которые породили новые. Поэтому эволюцию можно сформулировать таким образом (вот на этом этапе, крупномасштабно, чтобы понять): новое зарождается в недрах старого, новое изменяет условия, и эти условия становятся неприемлемыми для старого. И старое должно либо погибнуть, либо уйти с авансцены.
М.Л. Либо трансформироваться.
М.К. Поэтому анаэробы, организмы, которые могут жить только без наличия свободного кислорода в атмосфере, вынуждены были уйти в илы, то есть туда, где нет свободного кислорода. А всю арену жизни заняли организмы, которые используют свободный кислород. Таким образом, они очень сильно продвинулись, потому что использование кислорода позволяет более эффективно осуществлять метаболизм.
А.Г. Хотя любопытно было представить себе, как пошла бы анаэробная эволюция, если бы не случилось то, что случилось.
М.К. Да. Это очень интересно. Но всё-таки есть такая точка зрения, что они непременно бы дали начало организмам, которые начали использовать энергию солнца.
М.Л. Ну да, быть более приспособленными к тем условиям, которые есть.
М.К. Потому что закон усложнения диктует материи этот путь – физический закон, кстати.
А.Г. А закон усложнения говорит о том, до какой степени материя может быть усложнена?
М.К. Нет, нет.
А.Г. То есть это бесконечный процесс.
М.К. Физики говорят: «будущее не задано», поэтому трудно сказать.
М.Л. Это на самом деле вопрос очень дискуссионный и интересный, в принципе. Вот скажем, очень сложная система, многофакторная, открытая система, где есть сильные обратные связи, которая способна к неустойчивости. Тут предсказать поведение системы очень трудно. Более того, есть так называемый горизонт прогноза для таких систем, когда небольшое отклонение в начальных условиях ведёт на определённом шаге к непредсказуемому результату. И в этом плане словесные представления недостаточны.
Математическое описание – где да, где нет. Но даже при его наличии мы получаем некую непредсказуемость. И это очень важный вывод современной синергетики, одной из очень быстро прогрессирующих областей знания. К ней относятся по-разному разные учёные, я не хочу в эту полемику вступать, но именно ей принадлежит такой вывод, что мир непредсказуем – в широком смысле. Поэтому здесь нельзя говорить о детальной точности.
Но можно обратиться теперь к другой точке зрения по этому вопросу. Мы говорим: мир не равновесен. И это очень правильно. Собственно, все науки, астрофизика, космология, все они уже экспериментально свидетельствуют о том, что мир действительно не равновесен. Он не линеен, это тоже понятно. Но спрашивается: а всё-таки к чему стремится весь Мир – с большой буквы? К какому-то равновесию, в конце концов, как какая-то конкретная система, или нет? Каково глобальное будущее? Так вот спрашивается: на какое время давать прогноз? И тут ответа, конечно, нет. Потому что и этот вопрос остаётся вопросом.
То есть с любой точки зрения есть разные решения… До сих пор неизвестно точно, какова средняя плотность вещества во Вселенной. То ли она будет непрерывно раздуваться и расширяться, то ли будет, в конце концов, возвратное движение и схлопывание, которое пойдёт по другому пути, и само по себе это будет уже совершенно другой процесс эволюции.
А.Г. Но вот от астрофизиков я слышал версию о том, что открытие физического вакуума и определение того факта, что Вселенная расширяется с ускорением, говорит всё-таки о конечном разуплотнении вещества во Вселенной, по крайней мере, в видимой его части, и, так или иначе, финал неизбежен.
М.Л. Ну, да. Это другой финал. Правильно? Да, это иная схема финала. Но время достижения финала в этом смысле тоже растяжимо. То есть, на что заказывать прогноз?
М.К. Физики постулируют, что будущее не задано, и, тем не менее, они не могут удержаться от гипотез. Предположим, что же будет, когда Вселенная перестанет расширяться и время потечёт в обратную сторону? Ибо Вселенная, по модели Фридмана, пульсирует.
М.Л. Вот я вижу картинки. Это что значит?
А.Г. Это значит, что вы можете говорить о них. Пожалуйста.
М.Л. Я узнал одну из своих картинок, которая относится к теме самоорганизации. Это довольно старая картинка. Это вспышка излучения импульсного лазера, которое через линзу фокусируется на поверхность материала и производит облучение с довольно высокой плотностью мощности, так что поверхность изменяется. Среди различных изменений, простых и сложных, можно заметить типичные картины самоорганизации, которые нам интересны. О них я могу чуть подробнее рассказать, если мы увидим следующую картинку.
Вот такая интересная шляпка. Был сделан следующий опыт, сделан физиками Узбекистана, тогда Узбекистан был республикой Советского Союза. Это излучение непрерывного лазера на углекислом газе подавалось на поверхность медной пластины, довольно толстой. Излучение было достаточным для того, чтобы пластина оплавилась. И вот из области расплава начал подниматься вот такой «пенёк», который возвысился и закристаллизовался. Это некие довольно сложные композиции из металла, его окислов: это медь, Cu2О, покрытая сверху пластиночками (затвердевшими окислами), как шапочкой. Это типичная картина самоорганизации. Такой результат не задан никакими условиями самой медной пластины. «Пенёк» появился в результате действия излучения и факторов, которые способствовали вытягиванию материала, вроде как зарождающегося смерча. Это один тип самоорганизации при воздействии лазерного излучения. Я занимаюсь лазерным воздействием очень давно, поэтому мне ближе эти картинки. Следующие две тоже очень интересны.
Вот тут, может, не очень хорошо видно, но, если приглядеться, то можно увидеть серию «полосочек», или рябь на поверхности. Это более мягкое воздействие уже нескольких импульсов лазерного излучения на поверхность полупроводника. А «полосочки» соответствуют образованию так называемых самоорганизующихся поверхностных структур. Не говоря детально о том, как это происходит, я хочу сказать, что во многих областях науки были сделаны любопытные шаги вперёд. Например, в оптике стало возможным говорить о том, что при падении света на границу раздела, не всех сред, но многих, на поверхности происходит не только отражение света и преломление, но и частичное преобразование света в поверхностную электромагнитную волну. Она интерферируют с падающей, и в интерференционном поле образуется такой рельеф. Этот рельеф закрепляется – поверхность оплавлена и начинает чуть-чуть испаряться, в температурных максимумах индуцированного поля происходит «выедание» луночки, а в минимумах остаётся бугорок.
Интересно вот что. Чем больше высота такой структуры, тем сильнее преобразование света в поверхностную волну, тем глубже модуляция, и от импульса к импульсу идёт усиление такой структуры.
А вот следующая картина, она наиболее характерна. Когда я показываю её на лекциях, я спрашиваю: что это такое? Самый простой ответ, типичный, между прочим, что это вязаный свитер, с дырками, правда. Вот приглядитесь, можно так сказать? Свитер, правда?
А.Г. Можно сказать, да. А можно отнести это, кстати, и к вашей области деятельности. Поскольку похоже на поверхность какого-нибудь листа…
М.Л. А вот на самом деле это тоже последовательное воздействие на поверхность, скажем, германия (в данном случае неважно) серии лазерных импульсов, которые привели к образованию целой гаммы поверхностных волн, которые интерферируют и очень сильно изменяют форму поверхности. В чём здесь самоорганизация? В процессе такого воздействия возникают и усиливаются положительные обратные связи между изменениями высоты рельефа и коэффициентом преобразования лазерного излучения в поверхностную волну – от импульса к импульсу. И если добавить, что здесь тысяча импульсов воздействовала, это будет очень любопытно.
Так вот, можно провести некие аналогии между тем, что происходит в таких опытах (кстати, они достаточно интересны и сами по себе) и, допустим, какими-то биологическими процессами. В чём сила самоорганизующейся системы? В появлении таких обратных связей. Она закрепляет то, что получилось, даже при импульсном воздействии, и сохраняет это до следующего такого воздействия. Возможна эстафетная передача с постепенным переходом от исходной системы к новой. Ведь, собственно, такой системы не было, она появилась и осталась тут в виде картинки, можно образец показать. Можно эту систему разрушить, условия изменятся, и такой рисуночек пропадёт.
В биологии тоже такое возможно, и в химии это возможно. И в этом смысле самоорганизация – это действительно процесс, который очень широк по своим возможностям. Вот о чём я хотел сказать.
М.К. Я хочу немножко рассказать о процессах самоорганизации, проходящих в живых системах. Ты упомянул очень интересную вещь – это эстафетность эволюции. Потом поговорим подробнее об эстафетном характере эволюции.
Молекулы ферментов синтезируются на матричной РНК из аминокислотных остатков и имеют линейную форму. Потом уже идёт сложный процесс, когда они «сходят» с этого конвейера, и молекулы приобретают трехмерную структуру, они усложняются, самоорганизуются. И сама молекула, организуется таким образом, что свободной энергии становится мало. Причём жизненные процессы идут только в водной среде. В воде, которая окружает её, энтропия увеличивается. Так что энтропия воды либо остаётся на постоянном уровне, либо даже возрастает. Но в системе молекулы она уменьшается. Это ещё раз подтверждает, что неравновесные процессы, в общем, ведут не всегда – это не абсолютная вещь – но, по крайней мере, иногда ведут к уменьшению энтропии.
В.А. Вполне отвечает. Но дальнейший анализ и жёсткие дискуссии по этому поводу показали, что в этой критической точке для того, чтобы вы усилили такую слабую асимметрию, вам нужно время, большее времени существования Вселенной.
А.Г. Продолжение сразу после рекламы… Пожалуйста.
В.А. Да, всё-таки, конечно, проблема возникновения жизни – это невероятно интересная, очень интригующая, очень непонятная проблема.
Р.К. И тяжёлая.
В.А. Но тяжёлая не по решению, тяжёлая по постановке задачи. Вот в чём всё дело.
Р.К. Дело в выборе подходов.
В.А. Как говорил академик Владимиров (и Виталий Иосифович Гольданский, кстати, говорил то же самое): «Учёные полжизни тратят на постановку задачи. После того как вы поставили задачу, вы испытываете блаженство, купаясь в море чётко сформулированной мысли».
В данном случае, конечно, мне представляется, что самая захватывающая часть этой задачи связана с катастрофой ошибок, парадоксом Левинталя, то есть с тем, что мы называем «переходом к непреодолимой сложности». Я, Рэм, хочу пофантазировать… Не пофантазировать, а, в конце концов, поговорить вот на какую тему.
Ведь мы же всё прекрасно понимаем, насколько сильно живое отличается от неживого. А в чём, собственно, различие? Репликация? Пожалуйста, повторили на маленьких молекулах. Органические соединения? Пожалуйста, сделали их естественным путём. В чём, тем не менее, это ощущение совершенно непреодолимого конфликта, непреодолимой пропасти? В сложности? Определите, что такое сложность! В уникальности? «Это не может появиться, потому что это не может появиться никогда». Да, мы уже близки к этому. К тому, что перед нами нечто, что само по себе повторить невозможно. Вот это и есть катастрофа ошибок. Это и есть парадокс Левинталя. И мне кажется, это центральная проблема, которая, если будет атакована правильным образом и если будет найден способ решения, тогда только мы сможем сделать хоть какой-то шаг в направлении создания осмысленной теории эволюции. Я думаю, что на решение этих проблем, в химии – тоже, и в физике – тоже, конечно, нужно потратить большие усилия. Я мечтаю создать центр, где бы можно было бы собрать людей…
Р.К. Вот кристаллограф Гавеззотти в одном из обзоров построил образ идеальной лаборатории такого типа. Она требует, по его расчётам, три миллиона долларов. И потом по миллиону долларов в год.
В.А. Да нет.
Р.К. Владик, никуда не денешься.
В.А. Нет, это как-то совершенно неправильно. Хотя мы говорим сейчас уже не о науке, а о её организационной стороне…
Р.К. Но ты же поставил задачу уже…
В.А. Нет, нет. Наука не требует больших денег, это неправильно.
Р.К. Это разве большие деньги?
В.А. Конечно, три миллиона долларов – это большие деньги.
Р.К. Для такой проблемы?
В.А. Нет, наука не требует больших денег, идеи не требуют больших денег. Технологии – да. Мир идёт по пути развития научных технологий только для того, чтобы приблизить их непосредственно к рынку, это стоит дорого. Но научные идеи и создание среды, в которой могли бы генерироваться научные идеи, это стоит недорого. И не надо пугать людей.
А.Г. Но стоят достойного уровня жизни учёного.
В.А. Абсолютно правильно, достойного уровня, но не жизни, а как вам сказать… Просто должна быть некая среда, в которой ты ощущал бы себя достойно. Вот собственно и всё. Речь идёт о среде. Ну, ладно, это, так сказать, детали…
Живая и неживая материя
21.05.03
(хр.00:50:06)
Участники:
Мстислав Владимирович Крылов – доктор биологических наук
Михаил Наумович Либенсон – доктор физико-математических наук
Мстислав Крылов: Эволюция живой и неживой материи подчиняется одним и тем же концептуальным законам физики и химии. И поэтому мы вместе с доктором физико-математических наук Михаилом Либенсоном решили разработать эту проблему на двоих.
Наверное, ты начнёшь, расскажешь, как возникла Вселенная, об инфляционной гипотезе, о большом взрыве, а потом я уже перейду к тому времени, когда начала формироваться естественная материя и живые организмы.
Михаил Либенсон: Спасибо за такую возможность. Я должен сказать, что, хотя я знаком с общим взглядом на Мир, основанным на теории Большого Взрыва, с тем, как возникла и развивается Вселенная, я не являюсь глубоким профессионалом в этой области. Я читаю лекции «Концепции современного естествознания» студентам одного из вузов Петербурга. И очень этой темой интересуюсь. Но, поскольку здесь претензий на какие-то новые вещи у нас нет, я просто напомню, что, согласно теории Большого Взрыва, Вселенная возникла как флуктуация, и первоначально, в первый момент, который и определить-то трудно (потому что я дольше говорю, чем это состоялось), плотность исходного вещества (Вселенная возникла из сингулярности) была чудовищной – 10 в 97-й степени грамм на кубический сантиметр, а температура – 10 в 32-й степени градусов, Кельвина, или Цельсия (тут неважно, в чём определять), а дальше началось стремительное расширение того, что образовалось, и температура падала. А то, что образовалось, начало стремительно меняться, преобразовываться. И проходило некоторые стадии. Эти стадии в течение первых трех минут прошли так много ступеней эволюции, что изучение их ещё только, так сказать, начинается. Если перечислить только, то сначала получилось нечто с огромным отрицательным давлением, и, согласно общей теории относительности, такая вещь не могла быть устойчивой. Из неустойчивости получилось то, что уже стало после расширения обычным веществом. Но там присутствовала огромная доля излучения. И то, что известно из физики элементарных частиц, позволило понять, что потом, спустя ничтожные доли секунды, получились первые барионы, а через очень короткое время пошло образование ядер. И на протяжении долей секунды образовались первые ядра самых лёгких элементов – водорода и гелия. Образование же тяжёлых элементов, кирпичиков хорошо нам знакомого вещества, произошло уже гораздо позже и длилось не доли секунды, а миллионы лет. И за это время то, что возникло, охватило огромные области. Но к этому мы ещё вернёмся, когда появятся картинки, а пока коснёмся вот чего. Главный и очень важный момент для общего нашего рассказа в том, что мы увидим серьёзные усложнения системы, которая возникла как некая неоднородность.
Усложнение – это очень важное свойство мира, который продолжает расширяться, оставаясь неравновесным и сугубо нелинейным, по оценкам, уже 12-15 миллиардов лет. Вот что можно сказать во вступлении о неживой природе.
М.К. Ну что же, расширяющейся Вселенной свойственна неравновесность. И многие процессы, протекающие во Вселенной, неравновесны, в том числе и жизнь. Жизнь можно охарактеризовать как открытую неравновесную систему, находящуюся в стационарном состоянии, когда приток вещества и энергии равен оттоку.
В неравновесных системах могут проходить процессы самоорганизации. Эти системы становятся чувствительны даже к очень слабым воздействиям. Они становятся чувствительными к слабым гравитационным полям, к электромагнитным полям. Короче говоря, эти системы становятся необычайно чувствительными к любым флуктуациям. И они способны подстраиваться под изменяющиеся условия. Кроме того, эти системы ещё и стремятся к уменьшению производства энтропии. Одним из мощных антиэнтропийных факторов является усложнение системы. Поэтому усложнение, о котором сказал Михаил Наумович, определяется именно состоянием системы, её неравновесностью. И эти усложнения, конечно, протекают с участием обратных связей, либо положительных, либо отрицательных.
Что можно сказать об общности законов физики и химии для живых организмов? Размеры клетки определяются законами диффузии. Известно, что масса клетки растёт пропорционально кубу, а поверхность клетки, через которую осуществляется диффузия веществ, также растёт, но пропорционально квадрату. Значит, клетка не может быть очень большой. Таким образом, закон диффузии накладывает ограничения на размеры клетки.
Ещё пример – мы все прекрасно знаем, что стволы растений, крупных деревьев, скажем, имеют в разрезе радиальную форму. Вот эта радиальная форма определяется гравитацией. Скажем, «торпедовидная» форма животных, быстро перемещающихся в плотных средах – акул, дельфинов – определяется гидродинамическими законами. Наконец, размеры или, вернее даже, масса летающих птиц определяется законами аэродинамики. Самая большая птица, которая может летать, это дрофа, и она не может иметь весь больше 23-24 килограмм.
Александр Гордон: Жить в физике и быть свободным от физики невозможно.
М.К. Невозможно. Законы физики диктуют очень жёстко конформацию живой материи.
М.Л. Если можно, я тут скажу несколько слов. Уже прозвучало, что и неживой и живой материи присуще свойство самоорганизации. Надо сказать, что это очень важная концепция – концепция самоорганизации, которая известна давно и происходит от естественных наук. Она стала более широкой и глобальной по своему значению, влиянию и применению, чем первоначально.
Здесь существенно подчеркнуть, что самоорганизация возникает в открытых системах, где должны быть развитыми системы обратных связей – положительных и отрицательных. Положительные обратные связи важны в том отношении, что в нелинейной системе может самопроизвольно происходить переход из одного состояния в другое. Флуктуация, которая связана положительными обратными связями с этими условиями, позволяет ей самой не самоуничтожаться быстро, а продолжать действовать. И постепенно системе уже невозможно оставаться в предыдущем состоянии, и она переходит в новое. А отрицательные обратные связи стабилизируют ситуацию. Поэтому мы имеем во времени некий переход. В пространстве он может сопровождаться образованием диссипативных структур, вообще, неким формообразованием. И это существенно. Причём, имеются системы с накоплением изменений.
Система может запомнить изменение, а потом его усилить на следующих циклах. Это тоже объединяет и физические законы, и то, что может иметь место в биологических системах. Об этом мы ещё поговорим попозже.
М.К. Я хотел бы поговорить о том, каким образом процессы, существующие в неживой материи, используются живыми системами. Так скажем, передача энергии в сопряжённых химических реакциях происходит через промежуточный продукт. Если мы себе представим реакцию, скажем, А-В-С, а следующую реакцию сопряжённую С-D-E, то С будет общим продуктом для этих двух цепочек химических систем, причём, в одной она будет конечным продуктом, а в другой системе будет начальным продуктом. Такие процессы существуют в неорганической природе, и они очень широко распространены в биологической природе.
И очень важны для понимания функционирования живых систем так называемые процессы кросс-катализа. Например, реакция Жаботинского-Белоусова, где химические молекулы синхронно меняют своё тождество, и раствор превращается по цвету то в красный, то в синий. Эту реакцию называют «химическими часами» – через равные промежутки времени меняется цвет раствора. Это объясняется тем, что конечный продукт катализирует начальный продукт, это кросс-катализ. Такие реакции широко наблюдаются в биологии. Скажем, синтез нуклеиновых кислот определяется белками. А структура белков, и их синтез определяется нуклеиновыми кислотами. Кросс-катализ имеется и в неживой природе, и в живой природе, то есть существует некий континуум эволюционных процессов в этих системах.
М.Л. В итоге такого вступления мы постарались проследить примеры закономерностей, известных из физики и хорошо уже проверенных, в частности, закономерностей самоорганизации, и сделать качественные выводы, которые очень похожи на то, что имеет место и в живой природе. Это даёт больше оснований думать о том, что они действительно связаны между собой. И вообще говоря, в чём-то природа едина и не нуждается в каких-то специфических, очень иногда надуманных концепциях, объясняющих непреодолимое различие между неживой и живой природой. Мы, конечно, не касаемся всего сразу. Здесь очень много вопросов можно задать. Мы можем говорить только о том, о чём говорим сами.
И ещё можно сказать вот что. Концепция рождения и развития Вселенной, собственно, не такая уж старая. Когда я учился в школе, нас учили, что Вселенная безгранична, она никогда не начиналась во времени, и никогда не закончится. И уже начав работать, я узнал, что существуют просто захватывающие по своему сюжету сценарии развития Вселенной, – это уже вторая половина XX века.
Любопытно вот что отметить. Считается, что XX век – это время триумфа биологии. Сколько много важных Нобелевских премий присуждено за выдающиеся работы в области биологии и примыкающей к ней медицине. Много работ, конечно, и по физике удостоено Нобелевской премии. Но среди выдающихся достижений науки, на мой взгляд, как-то не очень заметно то, что сделал ряд учёных (их не так много), которые разработали концепцию Вселенной. Просто для этого нужно иметь глубокие профессиональные знания, гораздо более глубокие, чем может пропустить через себя даже человек, имеющий высшее образование. И в этом трудность – как донести это до слушателей, читателей, зрителей.
А.Г. Ещё одна проблема. Дело в том, что наблюдательные экспериментальные данные, особенно в астрофизике, с каждым днём обновляются, прибавляются, заставляют теоретиков менять свои представления о том, что было справедливо ещё год назад, два года назад. Поэтому, конечно, астрофизика – и космология, как следствие, – сейчас тоже впереди, на коне. Но всё-таки, не проводя жирной черты между живой и неживой природой, утверждая, что и та, и другая развиваются и действуют по одним и тем же законам усложнения, самоорганизации и усложнения – всё-таки мы натыкаемся-то на невозможность экспериментальным путём получить ту самую первую форму жизни, ту самую первую, не знаю, как её назовём, – «матрицу», способную репродуцироваться. И это остаётся огромной загадкой.
М.К. Я бы на этот вопрос ответил так. В неравновесных системах идут необратимые процессы. Время имеет направленность, и поэтому невозможно повторить то, что уже было. Попытки это сделать, правда, предпринимаются, но, в общем, они большого успеха не имеют. Дело в том, что, скажем, амфибии произошли от рыб. Но амфибии не могут превратиться в рыб. Ступеньки такие: рыбы, амфибии, рептилии, птицы и млекопитающие. Млекопитающие опять вернулись в воду, дельфины, китообразные – но ведь они не приобрели жабры. Они решили эту проблему иначе. То есть эволюция необратима. В зоологии это формулируется как закон Долло. Но это лишь частный случай общего закона однонаправленности времени.
А.Г. Но, тем не менее, присутствуют же регрессивные формы в эволюции, когда некий вид сознательно отказывается от морфологических признаков, которые он приобрёл в течение эволюции – по сути дела, упрощаясь, а не усложняясь. Это же тоже эволюция.
М.К. Это характерно для многих паразитов. Паразит возлагает часть функций на хозяина, система паразит-хозяин при этом усложняется.
А.Г. Продолжайте, извините, что перебил.
М.К. Я хотел ещё остановиться на основной нашей концепции, мы почему-то о ней ничего не сказали – на том, что материя принимает формы в соответствии с условиями. И, как я уже говорил, – в сильно неравновесных состояниях материя подстраивается под условия.
А.Г. Когда вы говорите «форма», вы что имеете в виду?
М.К. Скажем, если о неорганической материи, я бы сказал так: водород превращается в гелий при определённых условиях. Чтобы эта реакция произошла, нужно 10 миллионов градусов.
А.Г. Всё понятно.
М.К. На ранней Земле простейшие организмы жили без свободного кислорода, то есть не было кислорода, и они прекрасно существовали и размножались. И они дали начало сине-зелёным водорослям, которые стали использовать энергию солнечного света, то есть начался фотосинтез. В результате метаболизма начал выделяться свободный кислород, и он стал появляться в атмосфере. И этот кислород уже был ядом для тех начальных форм, которые породили новые. Поэтому эволюцию можно сформулировать таким образом (вот на этом этапе, крупномасштабно, чтобы понять): новое зарождается в недрах старого, новое изменяет условия, и эти условия становятся неприемлемыми для старого. И старое должно либо погибнуть, либо уйти с авансцены.
М.Л. Либо трансформироваться.
М.К. Поэтому анаэробы, организмы, которые могут жить только без наличия свободного кислорода в атмосфере, вынуждены были уйти в илы, то есть туда, где нет свободного кислорода. А всю арену жизни заняли организмы, которые используют свободный кислород. Таким образом, они очень сильно продвинулись, потому что использование кислорода позволяет более эффективно осуществлять метаболизм.
А.Г. Хотя любопытно было представить себе, как пошла бы анаэробная эволюция, если бы не случилось то, что случилось.
М.К. Да. Это очень интересно. Но всё-таки есть такая точка зрения, что они непременно бы дали начало организмам, которые начали использовать энергию солнца.
М.Л. Ну да, быть более приспособленными к тем условиям, которые есть.
М.К. Потому что закон усложнения диктует материи этот путь – физический закон, кстати.
А.Г. А закон усложнения говорит о том, до какой степени материя может быть усложнена?
М.К. Нет, нет.
А.Г. То есть это бесконечный процесс.
М.К. Физики говорят: «будущее не задано», поэтому трудно сказать.
М.Л. Это на самом деле вопрос очень дискуссионный и интересный, в принципе. Вот скажем, очень сложная система, многофакторная, открытая система, где есть сильные обратные связи, которая способна к неустойчивости. Тут предсказать поведение системы очень трудно. Более того, есть так называемый горизонт прогноза для таких систем, когда небольшое отклонение в начальных условиях ведёт на определённом шаге к непредсказуемому результату. И в этом плане словесные представления недостаточны.
Математическое описание – где да, где нет. Но даже при его наличии мы получаем некую непредсказуемость. И это очень важный вывод современной синергетики, одной из очень быстро прогрессирующих областей знания. К ней относятся по-разному разные учёные, я не хочу в эту полемику вступать, но именно ей принадлежит такой вывод, что мир непредсказуем – в широком смысле. Поэтому здесь нельзя говорить о детальной точности.
Но можно обратиться теперь к другой точке зрения по этому вопросу. Мы говорим: мир не равновесен. И это очень правильно. Собственно, все науки, астрофизика, космология, все они уже экспериментально свидетельствуют о том, что мир действительно не равновесен. Он не линеен, это тоже понятно. Но спрашивается: а всё-таки к чему стремится весь Мир – с большой буквы? К какому-то равновесию, в конце концов, как какая-то конкретная система, или нет? Каково глобальное будущее? Так вот спрашивается: на какое время давать прогноз? И тут ответа, конечно, нет. Потому что и этот вопрос остаётся вопросом.
То есть с любой точки зрения есть разные решения… До сих пор неизвестно точно, какова средняя плотность вещества во Вселенной. То ли она будет непрерывно раздуваться и расширяться, то ли будет, в конце концов, возвратное движение и схлопывание, которое пойдёт по другому пути, и само по себе это будет уже совершенно другой процесс эволюции.
А.Г. Но вот от астрофизиков я слышал версию о том, что открытие физического вакуума и определение того факта, что Вселенная расширяется с ускорением, говорит всё-таки о конечном разуплотнении вещества во Вселенной, по крайней мере, в видимой его части, и, так или иначе, финал неизбежен.
М.Л. Ну, да. Это другой финал. Правильно? Да, это иная схема финала. Но время достижения финала в этом смысле тоже растяжимо. То есть, на что заказывать прогноз?
М.К. Физики постулируют, что будущее не задано, и, тем не менее, они не могут удержаться от гипотез. Предположим, что же будет, когда Вселенная перестанет расширяться и время потечёт в обратную сторону? Ибо Вселенная, по модели Фридмана, пульсирует.
М.Л. Вот я вижу картинки. Это что значит?
А.Г. Это значит, что вы можете говорить о них. Пожалуйста.
М.Л. Я узнал одну из своих картинок, которая относится к теме самоорганизации. Это довольно старая картинка. Это вспышка излучения импульсного лазера, которое через линзу фокусируется на поверхность материала и производит облучение с довольно высокой плотностью мощности, так что поверхность изменяется. Среди различных изменений, простых и сложных, можно заметить типичные картины самоорганизации, которые нам интересны. О них я могу чуть подробнее рассказать, если мы увидим следующую картинку.
Вот такая интересная шляпка. Был сделан следующий опыт, сделан физиками Узбекистана, тогда Узбекистан был республикой Советского Союза. Это излучение непрерывного лазера на углекислом газе подавалось на поверхность медной пластины, довольно толстой. Излучение было достаточным для того, чтобы пластина оплавилась. И вот из области расплава начал подниматься вот такой «пенёк», который возвысился и закристаллизовался. Это некие довольно сложные композиции из металла, его окислов: это медь, Cu2О, покрытая сверху пластиночками (затвердевшими окислами), как шапочкой. Это типичная картина самоорганизации. Такой результат не задан никакими условиями самой медной пластины. «Пенёк» появился в результате действия излучения и факторов, которые способствовали вытягиванию материала, вроде как зарождающегося смерча. Это один тип самоорганизации при воздействии лазерного излучения. Я занимаюсь лазерным воздействием очень давно, поэтому мне ближе эти картинки. Следующие две тоже очень интересны.
Вот тут, может, не очень хорошо видно, но, если приглядеться, то можно увидеть серию «полосочек», или рябь на поверхности. Это более мягкое воздействие уже нескольких импульсов лазерного излучения на поверхность полупроводника. А «полосочки» соответствуют образованию так называемых самоорганизующихся поверхностных структур. Не говоря детально о том, как это происходит, я хочу сказать, что во многих областях науки были сделаны любопытные шаги вперёд. Например, в оптике стало возможным говорить о том, что при падении света на границу раздела, не всех сред, но многих, на поверхности происходит не только отражение света и преломление, но и частичное преобразование света в поверхностную электромагнитную волну. Она интерферируют с падающей, и в интерференционном поле образуется такой рельеф. Этот рельеф закрепляется – поверхность оплавлена и начинает чуть-чуть испаряться, в температурных максимумах индуцированного поля происходит «выедание» луночки, а в минимумах остаётся бугорок.
Интересно вот что. Чем больше высота такой структуры, тем сильнее преобразование света в поверхностную волну, тем глубже модуляция, и от импульса к импульсу идёт усиление такой структуры.
А вот следующая картина, она наиболее характерна. Когда я показываю её на лекциях, я спрашиваю: что это такое? Самый простой ответ, типичный, между прочим, что это вязаный свитер, с дырками, правда. Вот приглядитесь, можно так сказать? Свитер, правда?
А.Г. Можно сказать, да. А можно отнести это, кстати, и к вашей области деятельности. Поскольку похоже на поверхность какого-нибудь листа…
М.Л. А вот на самом деле это тоже последовательное воздействие на поверхность, скажем, германия (в данном случае неважно) серии лазерных импульсов, которые привели к образованию целой гаммы поверхностных волн, которые интерферируют и очень сильно изменяют форму поверхности. В чём здесь самоорганизация? В процессе такого воздействия возникают и усиливаются положительные обратные связи между изменениями высоты рельефа и коэффициентом преобразования лазерного излучения в поверхностную волну – от импульса к импульсу. И если добавить, что здесь тысяча импульсов воздействовала, это будет очень любопытно.
Так вот, можно провести некие аналогии между тем, что происходит в таких опытах (кстати, они достаточно интересны и сами по себе) и, допустим, какими-то биологическими процессами. В чём сила самоорганизующейся системы? В появлении таких обратных связей. Она закрепляет то, что получилось, даже при импульсном воздействии, и сохраняет это до следующего такого воздействия. Возможна эстафетная передача с постепенным переходом от исходной системы к новой. Ведь, собственно, такой системы не было, она появилась и осталась тут в виде картинки, можно образец показать. Можно эту систему разрушить, условия изменятся, и такой рисуночек пропадёт.
В биологии тоже такое возможно, и в химии это возможно. И в этом смысле самоорганизация – это действительно процесс, который очень широк по своим возможностям. Вот о чём я хотел сказать.
М.К. Я хочу немножко рассказать о процессах самоорганизации, проходящих в живых системах. Ты упомянул очень интересную вещь – это эстафетность эволюции. Потом поговорим подробнее об эстафетном характере эволюции.
Молекулы ферментов синтезируются на матричной РНК из аминокислотных остатков и имеют линейную форму. Потом уже идёт сложный процесс, когда они «сходят» с этого конвейера, и молекулы приобретают трехмерную структуру, они усложняются, самоорганизуются. И сама молекула, организуется таким образом, что свободной энергии становится мало. Причём жизненные процессы идут только в водной среде. В воде, которая окружает её, энтропия увеличивается. Так что энтропия воды либо остаётся на постоянном уровне, либо даже возрастает. Но в системе молекулы она уменьшается. Это ещё раз подтверждает, что неравновесные процессы, в общем, ведут не всегда – это не абсолютная вещь – но, по крайней мере, иногда ведут к уменьшению энтропии.