Система CGS не вводила, однако, твердой и общепринятой единицы электрического сопротивления. И поэтому на ежегодном конгрессе Британской ассоциации в 1861 году был назначен Комитет по эталонам.
   В его состав вошли самые видные английские физики-электрики: Уитстон, Максвелл, Джоуль, Томсон, Бальфур Стюарт, Флеминг Дженкин. В задачу комитета входило, помимо всего прочего, точное определение единицы электрического сопротивления на основе системы CGS.
   Томсон предложил метод измерения, и в 1862-1863 годах посетители физической лаборатории Кингс-колледжа частенько видели Максвелла, Бальфура Стюарта и Флеминга Дженкина, склонившихся над образцами, схемами и гальванометрами.
   Результаты их исследований были опубликованы в 1863 году, и уже после смерти Максвелла, в 1881 году, легли в основу решения Международного конгресса электриков в Париже, рекомендовавшего основные электрические единицы: ом – для сопротивления, вольт – для электродвижущей силы, ампер – для силы тока.
   Так Максвелл способствовал тому, что слова «ампер», «вольт», «ом» прочно вошли в наш повседневный обиход. Позднее в число электромагнитных единиц была введена еще одна единица – для магнитного потока. Ее назвали – «максвелл».
   ...Одним из ярких событий лондонской жизни, не изобиловавшей особыми развлечениями, был визит к Максвеллам одного из известнейших физиков того времени, одного из открывателей великого закона сохранения энергии, друга Вильяма Томсона – гейдельбергского профессора физиологии Германа Гельмгольца.
   Гельмгольц очень любил Англию и никогда не упускал возможности посетить ее. Берлин и Вена казались ему по сравнению с Лондоном большими деревнями.
   – Нельзя описать жизнь Лондона, нужно взглянуть на нее хотя бы одним глазком, – говаривал Гельмгольц.
   И поэтому Гельмгольц пользовался любым предлогом, чтобы посетить Англию. Когда весной 1864 года он был приглашен прочесть цикл лекций по сохранению энергии и теории цветов в Королевском институте, он, разумеется, не отказался.
   На лекции собралось довольно много народу, в том числе (это всегда поражало Гельмгольца) – большое число женщин. Он заподозрил, правда и не без оснований, что все они собираются сюда, чтобы «других посмотреть и себя показать», а заодно и развлечься соперничеством знаменитых ученых. Гельмгольц особенно уважал этих женщин за то, что они никогда не позволяли себе засыпать на лекциях, «хотя к тому было большое искушение».
   И поэтому Гельмгольц нисколько не удивился, когда к нему после лекции подошла молодая симпатичная пара – просто одетый темноволосый человек и с ним болезненного вида женщина. Гельмгольц сразу узнал Максвелла, с которым познакомился несколько лет назад, кажется, на встрече Британской ассоциации в Абердине.
   Максвеллы поздравили Гельмгольца с успехом его лекции, он их – с запозданием – с вступлением в брак, поговорили на какие-то околонаучные темы, а потом Максвеллы пригласили его на субботу в гости... Идя домой, они обменивались впечатлениями об этом сорокалетнем усаче-красавце, пышущем здоровьем и энергией.
   – Какая внутренняя сила! – сказал Максвелл восхищенно...
   ...Суббота была сумрачной. С утра зарядил дождь. Максвеллы суетились вокруг стола, уставленного всевозможными яствами и шампанским. Вместе с ними хлопотал и профессор Поль, приятель Максвелла и его же «подопытный кролик» при экспериментах по цвету – Поль был ярко выраженным дальтоником.
   Смотря на унылый пейзаж за окном, Максвеллы решили уже, что визит не состоится, но вот лихо подкатил кеб и вышел из него и постучал в дверь великий физик Герман Гельмгольц.
   Было весело. Летела в потолок пробка от шампанского, пузырилось вино, разрумянилась Кетрин, профессор Поль послушно называл цвета, которые демонстрировали ему Максвелл и Гельмгольц в цветовом ящике. Гельмгольц любовался прекрасными приборами Максвелла. Крутился вокруг неутомимый и хорошо выдрессированный терьер Тоби. Разговор, естественно, коснулся физических материй.
   Максвелл восхищался законом сохранения энергии.
   – Вы знаете, – говорил он, – мне кажется, важность этого закона даже не столько в точном установлении факта, сколько в плодотворности методов, основанных на этом принципе.
   Гельмгольц молчаливо соглашался с ним.
   Разгоряченный Максвелл решился наконец задать Гельмгольцу главный, так давно занимавший его вопрос:
   – Почему с того времени, как вы разъяснили с точки зрения сохранения энергии электромагнитную индукцию, вы ни разу не увлеклись электричеством?
   Гельмгольц подумал – видимо, вопрос был не из простых. Наконец ответил:
   – Мне кажется, – сказал он, – что вся электродинамика сейчас – это непроходимая пустыня... Разрозненные факты, основанные на неточных наблюдениях... Следствия каких-то сомнительных теорий... Сейчас в этом еще невозможно разобраться...
   И Максвелл ужасно пожалел в тот день, что не мог показать Гельмгольцу свою следующую, уже написанную, но еще не вышедшую из печати статью «Динамическая теория электромагнитного поля».
   Именно – поля, а не пустыни.

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

   После серии статей «О физических линиях» у Максвелла был уже, по сути дела, весь материал для построения новой теории электромагнетизма. Теперь уже для теории электромагнитного поля.
   Эта теория была сначала опробована Максвеллом в Королевском обществе. И те из членов общества, кто читал раньше четыре его статьи «О физических силовых линиях», поразились.
   Максвеллову теорию нельзя был узнать. Рухнули громоздкие построения неуклюжих механических моделей. Исчезли строительные леса, с помощью которых создавалась теория электромагнетизма.
   Взгляду присутствовавших на заседании общества наконец-то во всей своей обнаженности предстало сложнейшее, тончайшей работы здание Максвелловой теории электромагнитного поля. Начисто исчезли шестеренки, вихри, «паразитные колесики». Философия Максвелла одержала еще одну победу: он продемонстрировал миру, что его мышление никак не находится под гнетом визуальных представлений, моделей, инженерного воображения.
   Его ум мог отрываться от земли.
   Строительные леса сослужили свою службу, и Максвелл отбросил их без сожаления. Как-то он сказал:
   – На благо людей с различным складом ума научная правда должна представляться в различных формах и должна считаться равно научной, будет ли она представлена в ясной форме и живых красках физической иллюстрации или в простоте и бледности символического выражения.
   Уравнения поля были для Максвелла ничуть не менее реальны и ощутимы, чем результаты лабораторных опытов.
   Теперь и электромагнитная индукция Фарадея, и ток смещения Максвелла выводились не с помощью механической модели, а с помощью математических операций. И тоже не вполне безупречных. Иной раз в них было больше гениальной физической интуиции, чем математической красоты и последовательности. Да и выводы новой теории не были зачастую еще подкреплены опытом.
   В статье «Динамическая теория» Максвелл впервые использовал термин «электромагнитное поле».
   «Теория, которую я предлагаю, может быть названа теорией электромагнитного поля, потому что она имеет дело с пространством, окружающим электрические или магнитные тела, и она может быть названа также динамической теорией, поскольку она допускает, что в этом пространстве имеется материя, находящаяся в движении, посредством которой и производятся наблюдаемые электромагнитные явления».
   Максвелл прибавил к веществу – виду материи, известному тысячелетия, еще один ее вид, ранее неизвестный, – электромагнитное поле.
   В этой статье было еще одно прозрение.
   Что произойдет, например, при разряде лейденской банки? Проскочит с сухим треском искра.
   Искра – электрический ток колебательного характера – на это указывали Томсон и Гельмгольц.
   Ток создает вокруг себя магнитное поле – это открыли и доказали Эрстед и Ампер.
   Поле угасает вместе с умирающей искрой.
   Поле изменяется.
   Изменение магнитного поля приводит к появлению электрического поля – это Фарадей. Электрическое поле будет меняться с угасанием искры.
   Изменение электрического поля вызывает в окружающей среде возникновение тока смещения Максвелла, который также вызывает магнитное поле.
   Всплеск магнитного поля вызывает всплеск электрического поля.
   Всплеск электрической волны рождает всплеск волны магнитной.
   Холодная пустота оживилась электромагнитной рябью.
   Впервые из-под пера тридцатитрехлетнего пророка появились в 1864 году электромагнитные волны.
   Эти волны были незнакомы миру.
   Они были пока еще только на бумаге.
   Они были предсказаны Максвеллом.
   Но еще не в том виде, как мы их понимаем сейчас. Максвелл говорил в статье 1864 года только о магнитных волнах.
   Да, велика власть авторитетов, их подспудное влияние, тяжесть заслуг, и даже самые великие умы склонны иной раз поддаться им.
   Фарадей был для Максвелла и учителем, и советчиком, и образцом ученого. И власть его мыслей, утверждений, догадок, почти всегда гениальных, была непреходящей. И это однажды сыграло в какой-то степени отрицательную роль.
 
   Фарадей, говоря в письме Максвеллу о возможности распространения магнитных воздействий, именно это и имел в виду – то есть распространение магнитных воздействий в виде поперечных волн.
   Когда Максвелл вывел в «Динамической теории электромагнитного поля» свои уравнения, одно из них свидетельствовало, казалось, именно о том, о чем говорил Фарадей: магнитные воздействия действительно распространялись в виде поперечных волн.
   И не заметил тогда еще, по-видимому, Максвелл, что из его уравнений следует больше: наряду с магнитным воздействием во все стороны распространяется электрическое возмущение.
   «Волна состоит только из магнитного возмущения», – писал Максвелл, не замечая одного из выводов, даваемых его формулами.
   Электромагнитная волна в полном смысле этого слова, включающая одновременно и электрическое и магнитное возмущения, появилась у Максвелла позже, уже в Гленлейре, в 1868 году, в статье «О методе прямого сравнения электростатической силы с электромагнитной с замечанием по поводу электромагнитной теории света».

ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ СВЕТА

   В «Динамической теории электромагнитного поля» приобрела четкие очертания и доказательность намеченная еще раньше электромагнитная теория света.
   Как передаются электрические и магнитные влияния на расстояние? Какова скорость распространения этого влияния?
   Карл Фридрих Гаусс интересовался этим, стремился найти механизм передачи воздействий, но не нашел его. А вот его последователь Риман приблизился к решению, предположив, что эфир обладает свойством сопротивления изменениям его ориентации.
   Максвелл не знал, что еще в 1858 году, в год, когда он, ненадолго отвлекшись от науки, устраивал свои семейные дела, тридцатидвухлетний Бернгард Риман, обреченный в Геттингене на нищету и болезни, направил в Геттингенское научное общество статью, явно содержащую волновое уравнение – путь к электромагнитным волнам.
   Но в Геттингене царствовал Вильгельм Вебер, и статья Римана подверглась жестокой критике со стороны Клаузиуса, отметившего, что работа в корне противоречит теории Вебера. Риман взял статью обратно... Опубликована она была уже после смерти сорокалетнего Римана, в 1867 году.
   Не нашел решения и Томсон, хотя у него было многое – и признание реальности силовых линий, и признание вихревого характера магнетизма, и интуитивное – из его электротепловых аналогий – предчувствие, что скорость распространения электрических воздействий конечна.
   Не нашел доказательств и Фарадей...
   Сразу после открытия им закона электромагнитной индукции в 1831 году, в год рождения сына у четы Клерков Максвеллов, Фарадей решил, что скорость распространения магнитных сил конечна.
   Фарадей шел и дальше. Недаром в цитированном его письме к Максвеллу мелькает мысль о том, что надо было бы измерить время распространения электромагнитных воздействий, которое может быть «столь же мало, сколь время распространения света».
   Недаром Фарадей отвез еще в 1832 году запечатанный конверт в Лондонское королевское общество... На конверте было написано:
   «Новые воззрения, подлежащие в настоящее время хранению в архивах Королевского общества».
   В 1938 году, через сто шесть лет, конверт этот был вскрыт в присутствии многих английских ученых. Слова, которые написаны были на пожелтевшем листке, потрясли всех: выяснилось, что Фарадей ясно представлял себе, что индуктивные явления распространяются в пространстве с некоторой скоростью, причем в виде волн.
   «Я пришел к заключению, что на распространение магнитного воздействия требуется время, которое, очевидно, окажется весьма незначительным. Я полагаю также, что электрическая индукция распространяется точно таким же образом. Я полагаю, что распространение магнитных сил от магнитного полюса похоже на колебания взволнованной водной поверхности... По аналогии я считаю возможным применить теорию колебаний к распространению электрической индукции». Фарадей писал, что хотел «закрепить открытие за собой определенной датой и таким образом иметь право, в случае экспериментального подтверждения, объявить эту дату – датой моего открытия. В настоящее время, насколько мне известно, никто из ученых, кроме меня, не имеет подобных взглядов».
   Он возвратился к этой мысли на гораздо более высоком и правильном уровне в 1846 году, в статье «Мысли о лучевых вибрациях».
   Родство света и магнетизма показал еще Фарадей. У Фарадея, как и у молодого Максвелла, была подаренная Николем призма – «николь».
   Но Фарадей использовал подарок лучше.
   При определенном положении «николь» не пропускает поляризованный луч. Фарадей устанавливал «николь» на темноту, а затем включал близко расположенный электромагнит. На экране появлялся свет. Значит, магнетизм может воздействовать на свет. Значит, оптические и электромагнитные явления не безразличны друг другу? Нет ли в них глубокого родства?
   Но все это были догадки. А нужны были доказательства.
   Уже в «Физических линиях» было Максвеллом представлено важнейшее доказательство, но косвенное.
   Доказательством было равенство скоростей света и электромагнитной волны. Доказательством были одинаковые свойства сред, в которых распространяются световые и электромагнитные волны. Нужно было бы теперь доказать полную идентичность световых и электромагнитных волн.
   И здесь-то, в формулировании электромагнитной теории света, Максвелл еще раз проявляет свою величайшую скромность. Он отмечает, что «концепция проникновения поперечных магнитных возмущений... ясно поддерживалась профессором Фарадеем в его „Мыслях о лучевых вибрациях“. Электромагнитная теория света, как она была им предложена, по сути своей такова же, что я начал развивать в своей статье».
   Здесь речь уже шла не о колебаниях, подобных колебаниям водной поверхности, – продольных колебаниях, а о поперечных колебаниях, свойственных твердым телам.
   Глубокие, правильные мысли, но недоказанные.
   Фарадей, с его трезвым умом реалиста, почти наверное знал, что скорость волны конечна, и уже собирал дряхлеющими руками шестеренки и колесики установки, которая, по мысли его, должна была бы доказать это; но фатальное ослабление его умственных способностей в старости стало одним из препятствий великому начинанию.
   Уравнения статьи Максвелла ясно показывали, что поперечные колебания, и только поперечные, будут распространяться вдоль поля и что число, выражающее скорость распространения, должно быть тем же самым, что и то, которое выражает число электростатических единиц электричества в одной электромагнитной единице.
   Особенность теории электромагнетизма, вызванной к жизни моделью, – это принятие Максвеллом вслед за Фарадеем и Томсоном того факта, что магнитная энергия есть кинетическая энергия среды, заполняющей все пространство, в то время как электрическая энергия – это энергия натяжения той же самой среды[38].
   Теперь уже для Максвелла неизбежны следующие выводы:
   1. Оптические свойства среды связаны с ее электромагнитными свойствами.
   2. Свет представляет собой не что иное, как электромагнитные волны.
   Максвеллу удалось наконец объединить две разрозненные ранее области физики – световые и электрические явления.

РЕШЕНИЕ ПЕРЕЕХАТЬ В ГЛЕНЛЕЙР

   Мысль о том, чтобы поменять Лондон на Гленлейр, навсегда поселиться в родном имении, приходила исподволь. Лондон постепенно утрачивал для Максвеллов свою былую привлекательность.
   Для него прежде всего потому, что надо было работать над собственными теориями, а это не удавалось. Как ни старался он уходить от политики, от светской суеты, от университетских обязанностей, они то и дело сваливались на него, выводили из строя, мешали научной работе. Рассеянная лондонская жизнь мешала сосредоточиться, написать главные книги жизни.
   Надежды Максвелла на близкое общение с его кумиром – Фарадеем тоже не оправдались. Фарадей не мог уже даже ответить на письмо Максвелла, содержащее важнейший вывод о равенстве скоростей света, полученных оптическим и электрическим методами. Он уединенно жил в пожалованном королевой особняке в Хэмптон-Корте, и уже перестал, как делал это всю жизнь, посещать еженедельные заседания в Королевском институте, и вообще перестал участвовать в жизни научного мира. Он никого не допускал к себе, кроме верного ученика и последователя Джона Тиндаля, который сообщал ему все последние научные новости.
   Время от времени истощенный ум Фарадея взбадривался, и он снова начинал работать, смешивая уже иной раз реальные факты с фантазией, переоценивая свои открытия. Такие вспышки стоили дорого – они лишь ускоряли его быстрое умственное угасание...
   С годами он отказывался от всего, что могло бы помешать ему работать, от писем, от лекций, от встреч с друзьями.
   Последняя лекция – на рождество 1860 года.
   Сложил с себя обязанности профессора – октябрь 1861 года.
   Последняя работа в лаборатории – 12 марта 1862 года.
   Сложил с себя обязанности главы христианской общины в 1864 году.
   Сложил с себя обязанности, связанные с электрическим освещением маяков, в 1865 году.
   Последний раз интересовался электричеством – его восхитила громадная электрическая машина Хольтца – в 1865 году.
   Силы его непрерывно слабели...
   Он умер спокойно и без сожаления.
   Его похоронили на Хайгетском кладбище в Лондоне уже тогда, когда Максвеллы уехали из этого города...
   У Кетрин были свои причины оставить Лондон. Не удалась у них, столь вожделенная для Кетрин, светская жизнь. Практика «визитов», которую в первые лондонские годы попыталась претворить в жизнь Кетрин, с треском провалилась – не таковы были друзья Максвелла, да и не таков был он сам, чтобы терять время на светские условности, – наука требовала последних крох свободного времени...
   Да к тому же и с начальством Кингс-колледжа у Максвелла стали складываться отнюдь не безоблачные отношения. Причина была все та же: неспособность Джеймса Клерка Максвелла сохранять порядок и тишину на своих лекциях. Ни начальство, ни студенты не оценили его стремления перевести обучение физике из класса в лабораторию, превратить обучение в творческий процесс.
   Курс электричества и магнетизма, читавшийся Максвеллом в Кингс-колледже, был самого высокого уровня и поэтому был весьма сложен. Те, кто видел Клерка Максвелла у доски в те лондонские годы, утверждают, что создавалось впечатление, что на него одного слишком много студентов в одной аудитории... Опять вспомнились абердинские неудачи: они с неизбежностью повторялись, и опять стоял у доски одинокий и молчаливый Максвелл, стоял перед развеселившимися неизвестно по какой причине студентами...
   Поговаривали даже, что начальство Кингс-колледжа попросту предложило Максвеллу сложить с себя профессорские обязанности ввиду его полной неспособности держать класс в тишине, повиновении и внимании...
   Словом, для переезда в Гленлейр были все основания.
   Начало гленлейрского периода омрачено еще одной болезнью. Как, казалось, хорошо начался гленлейрский осенний сезон! Джеймс и Кетрин Мери скакали по вечерним холмам, вдыхая сладкие запахи полевых цветов; врывались под темную и сырую крышу леса...
   Но Джеймс скакал на незнакомой лошади, она плохо слушалась его: из-за этого понесла она там, где не ожидал Максвелл, и он головой ударился о нависшую ветвь.
   Ранение это вызвало длительную и тяжелую болезнь – рожистое воспаление головы. Врач запретил умственную работу. Самое большое напряжение, которое Максвелл мог тогда выдержать, – это слушать, как Кетрин читает по вечерам английских классиков, и вопрос о Кингс-колледже отпал сам собой.
   После выздоровления Максвелл начал создавать для себя и Кетрин новый стиль жизни, соответствующий их новому положению – лэйрда и жены лэйрда.
   Он перестроил и расширил, как завещал отец, дом в Гленлейре. Попросил своего кузена Вильяма Кея, теперь уже инженера, спроектировать мост через Урр, задуманный отцом. Построил его. Отрастил окладистую черную бороду. Завел в саду павлинов.
   В те времена сада в имении еще не было – его заменял лес на берегу ручья. Прямо на столбиках парадного входа сидели павлины, как живые статуи. Миссис Клерк Максвелл, когда могла встать с постели, с увлечением кормила их.
   Поселившись, как им казалось, здесь навсегда, Максвеллы решили нанять садовника и разбить сад. Но между садовником и садом, с одной стороны, и павлинами – с другой, возник конфликт: павлины выклевывали все, что было посеяно. Тогда Максвелл решил создать для павлинов, как он выражался, «центры притяжения» недалеко от дома, где птиц кормили маисом и прочими вкусными вещами. Поэтому павлины двигались «по силовым линиям» от сараев, где они высиживали яйца, до «центров притяжения», оставляя сад в покое.
   Любимым развлечением по-прежнему, как и в старые времена, были прогулки верхом.
   Вечером супруги читали друг другу, чаще всего Джеймс своим глуховатым голосом. Любимы были Чосер, Мильтон, но больше всего Шекспир.
   Многие биографы удивлялись: чем вызвано столь явное небрежение Максвелла по отношению к новой литературе? Ведь совсем недавно умерли Шелли, Китс, Ламб и Скотт, современниками были Диккенс, Теннисон, Теккерей, Маколей, Джордж Элиот, Мередит. Максвелл не очень любил их и читал редко, если вообще читал...
   Чем старше он становился, тем решительнее переносил свои симпатии в области литературы и философии в сторону признанных классиков, туда, где улеглись страсти, где ясны были уже с высоты XIX века и достижения, и просчеты, и вершины, и впадины, и рифы. Может быть, он экономил мысли и эмоции для своих научных трудов, используя только бесспорное, не желая терять время на то, что потом будет затоплено холодными водами Леты?
   Но предпочтение обычаям ушедших веков шло и дальше – его взгляды на проблему «хозяин и слуга» можно было признать вполне средневековыми. Свято соблюдал Максвелл и многими уже оставленный обычай ежедневной молитвы, проводимой всеми домашними под руководством хозяина.
   Может быть, просто не хотел задумываться над этими проблемами, считая их неважными, не стоящими затрат умственной энергии? Брал их так, как они были раньше, оставляя энергию для науки, для главного?
   Главным для него была сейчас работа над основными трудами жизни – «Теорией теплоты» и «Трактатом об электричестве и магнетизме». Им посвящалось все время. Переписка с другими учеными Англии в гленлейрский период так возросла, что почтовое ведомство поставило для него за мостом через Урр специальный почтовый ящик на подставке. Прогуливая собак, Максвелл ходил к этому ящику в любую погоду и всегда возвращался с громадными кипами писем, книг, рукописей.
   Весной они с Кетрин обычно ездили в Лондон. Одиночество прерывалось и его частыми визитами в Кембридж, где он участвовал в трайпосах в 1866, 1867, 1869, 1870 годах – теперь уже в качестве экзаменатора.
   Вопросы, предлагавшиеся им на трайпосе, были в корне отличны от тех, которые когда-то получал и он сам, и его сокурсники. Они относились уже не к абстрактной математике, а к совершенно новой области, еще не имевшей названия. Той, которую мы называем сейчас «математической физикой».
   Его влияние в Кембридже было столь сильным, что многие стали поговаривать уже о полной реформе трайпоса, о введении в него «прикладных» вопросов... И действительно, в то время как в других университетах оканчивающие оттачивали свои способности на курсах теплоты и электричества, «спорщики» Кембриджа по-прежнему ломали головы над математическими головоломками, иной раз не имеющими ни научного, ни прикладного значения. Вопросы Максвелла на трайпосе 1866 года влили свежую кровь в эту уже умирающую систему университетского образования в Кембридже. Кембридж стал медленно поворачиваться навстречу требованиям века...
   И еще один раз было нарушено гленлейрское одиночество. Не бывавший нигде за границей Максвелл решил провести весну 1867 года вместе с Кетрин в Италии – врач рекомендовал Кетрин временно сменить климат.