Страница:
Понадобились тончайшие эксперименты П.Н.Лебедева по световому давлению, чтобы Вильям Томсон поверил в теорию своего друга. Вильям Томсон, тогда уже величественный старец лорд Кельвин, был изумлен простой доказательностью опытов Лебедева. Он сказал К.А.Тимирязеву следующую знаменательную фразу:
– Вы, может быть, знаете, что я всю жизнь воевал с Максвеллом, не признавая его светового давления, и вот ваш Лебедев заставил меня сдаться перед его опытами...
Лебедев примирил Максвелла с его другом и критиком Вильямом Томсоном, человеком, удостоившимся в английской науке самых высших почестей, более высоких, чем Ньютон, чем Фарадей и Максвелл.
Томсон верно служил своему веку и был полезен ему, может быть, так, как никто. Он умер, считая, что прекрасный храм классической физики уже построен. Что ясно небо над ним, если не считать двух маленьких облачков: необъяснимого эксперимента Майкельсона по измерению скорости света относительно «эфира» и непонятного характера излучения абсолютно черного тела. К образованию этих «облачков» приложил руку и Максвелл, и впоследствии они пролились благодатным дождем теории относительности и квантовой физики.
Королевский астроном Эйри, так восхищавшийся работой Максвелла о Сатурне, новую теорию принял в штыки. Теория Максвелла не властвовала даже в Кавендишской лаборатории, где он был директором...
На континенте тоже не особенно жаловали заумную теорию островитянина. Особенно раздражал метод Максвелла французских ученых, воспитанных на изящных, тонкой кружевной выделки, трудах Лапласа и Ампера.
Дюгем писал о «Трактате»:
«Все сочинение проникнуто одним и тем же духом. Подробно рассматривается только существенное, то есть общее всем возможным теориям, и почти везде обходится молчанием все, что согласуется лишь с одной частной теорией. Поэтому читатель видит перед собой форму, почти лишенную содержания, и он склонен с первого взгляда принять ее за беглую и неуловимую тень. Это вызывает у читателя усилия и новые размышления, и в конце концов читатель убеждается в искусственности теоретических построений, которые вызывали у него раньше такое восхищение».
В другой работе Пуанкаре писал:
«Система Максвелла была странна и малопривлекательна, так как он предполагал весьма сложное строение эфира: можно было подумать, что читаешь описание завода с целой системой зубчатых колес, рычагами, передающими движение и сгибающимися от усилия, центробежными регуляторами и передаточными ремнями».
В Германии к новой теории отнеслись как к интересному курьезу. Здесь теории Максвелла завоевать позиции было особенно трудно. Именно здесь великий Гаусс довел до совершенства теорию потенциала, здесь работали Вебер и Нейман, столпы дальнодействия.
Лишь немногие немецкие физики со всей серьезностью отнеслись к теории Максвелла. И прежде всего – друг и соперник Людвиг Больцман. Больцман очень переживал то, что не смог из-за нелепой случайности вовремя, к выходу «Трактата», представить одно из доказательств правильности Максвелловой теории. Плененный когда-то силой механических моделей Максвелла, он и сейчас стал пытаться свести к ним его уравнения. О моделях в «Трактате» говорилось приглушенно, и Больцман решил, что Максвелл имеет их, но прячет.
Недооценивал Максвелла столь почитавший его Больцман. Уже после смерти Максвелла он поспешил в Кембридж, в Кавендишскую лабораторию. Все спрашивал:
– Где тут у вас максвелловские механические модели, которыми он обосновал свои уравнения?
Больцман восхищался Максвеллом. Излагая на лекциях максвелловскую теорию, он предварял изложение эпиграфом из «Фауста»:
Восхищение Больцмана этой «книгой за семью печатями», этими уравнениями не имело предела. Он постоянно цитировал строки из «Фауста»:
Герману Гельмгольцу теория Максвелла тоже очень нравилась. Своей формальной простотой. Но не мог он целиком встать на философские позиции Максвелла. Гельмгольц попытался найти компромисс между теориями великих немцев Гаусса, Вебера и Неймана и теорией электромагнитного поля Максвелла. Напрасна была эта попытка – примирить непримиримое, сочетать несочетаемое. И чем дальше заходил в этих попытках Гельмгольц, побуждая своего ученика Генриха Герца многократно экспериментально проверять Максвелловы уравнения, тем ясней и ясней становилась их полная справедливость. И ограниченность теорий, основанных на дальнодействии, в том числе и непоследовательной теории самого Гельмгольца...
Герц писал впоследствии об уравнениях Максвелла: «Трудно избавиться от чувства, что эти математические формулы живут независимой жизнью и обладают своим собственным интеллектом, что они мудрее, чем мы сами, мудрее даже, чем их первооткрыватели, и что мы извлекаем из них больше, чем было заложено в них первоначально».
Большое впечатление теория Максвелла произвела на русских ученых. Многие из них учились в Германии и испытали на себе влияние Больцмана и Гельмгольца. Всем известна роль Умова, Столетова, Лебедева в развитии и укреплении Максвелловой теории. Русские ученые поддерживали и развивали ее еще до открытий Герца, до великого перелома, произведенного его волнами.
Одним из тех, на кого работы Максвелла произвели наиболее сильное впечатление, был молодой голландский физик Гендрик Антуан Лоренц. Он писал впоследствии:
«...»Трактат об электричестве и магнетизме» произвел на меня, пожалуй, одно из самых сильных впечатлений в жизни: толкование света как электромагнитного явления по своей смелости превзошло все, что я до сих пор знал. Но книга Максвелла была не из легких! Написанная в годы, когда идеи ученого еще не получили окончательной формулировки, она не представляла законченного целого и не давала ответа на многие вопросы. Один французский ученый, имени которого я, к сожалению, не помню, заявил по прочтении книги, что она его восхитила, но так и не ответила на вопрос, что представляет собой электрически заряженный шар...
Как бы то ни было, но в данный момент теория электромагнитного поля Максвелла представляется нам настолько красивой и простой, что мы чуть ли не с сожалением думаем о том, что в нее могут быть внесены какие-либо изменения».
Но и восхищенному Лоренцу тяжело было сразу докопаться до физического смысла уравнений. «Автор электронной теории, – пишет А.Ф.Иоффе, – рассказывал мне, что, познакомившись впервые с уравнениями Максвелла, он не смог понять их физического смысла и обратился к переводчику сочинений Максвелла. Но и этот подтвердил, что никакого физического смысла эти уравнения не имеют, понять их нельзя; их следует рассматривать как чисто математическую абстракцию».
Лоренц был первым ученым, практически применившим теорию Максвелла в своей научной работе. Свою блестящую докторскую диссертацию 1875 года по проблеме отражения и преломления света диэлектриками и металлами он построил полностью на теории Максвелла.
Лоренц впоследствии попытался применить электромагнитную теорию Максвелла к движущимся телам – и в этом труде впервые появились «преобразования Лоренца» – важнейшая предпосылка создания теории относительности.
«Трактат» постепенно становился библией новой физики – физики эпохи электричества, теории относительности, радиотехники, атомной энергии...
ОТКРЫТИЕ КАВЕНДИШСКОЙ ЛАБОРАТОРИИ
«МАТЕРИЯ И ДВИЖЕНИЕ». РЕЦЕНЗИЯ ТЭТА
КЕМБРИДЖСКАЯ СУЕТА
– Вы, может быть, знаете, что я всю жизнь воевал с Максвеллом, не признавая его светового давления, и вот ваш Лебедев заставил меня сдаться перед его опытами...
Лебедев примирил Максвелла с его другом и критиком Вильямом Томсоном, человеком, удостоившимся в английской науке самых высших почестей, более высоких, чем Ньютон, чем Фарадей и Максвелл.
Томсон верно служил своему веку и был полезен ему, может быть, так, как никто. Он умер, считая, что прекрасный храм классической физики уже построен. Что ясно небо над ним, если не считать двух маленьких облачков: необъяснимого эксперимента Майкельсона по измерению скорости света относительно «эфира» и непонятного характера излучения абсолютно черного тела. К образованию этих «облачков» приложил руку и Максвелл, и впоследствии они пролились благодатным дождем теории относительности и квантовой физики.
Королевский астроном Эйри, так восхищавшийся работой Максвелла о Сатурне, новую теорию принял в штыки. Теория Максвелла не властвовала даже в Кавендишской лаборатории, где он был директором...
На континенте тоже не особенно жаловали заумную теорию островитянина. Особенно раздражал метод Максвелла французских ученых, воспитанных на изящных, тонкой кружевной выделки, трудах Лапласа и Ампера.
Дюгем писал о «Трактате»:
«Мы полагали, что вступаем в мирное и упорядоченное жилище дедуктивного разума, а вместо этого оказались на каком-то заводе».Пуанкаре, в общем доброжелатель, писал в своем труде «Электричество и оптика»:
«Отсутствие логики», «массивная реалистичность», «сложная и надуманная теория».
«Все сочинение проникнуто одним и тем же духом. Подробно рассматривается только существенное, то есть общее всем возможным теориям, и почти везде обходится молчанием все, что согласуется лишь с одной частной теорией. Поэтому читатель видит перед собой форму, почти лишенную содержания, и он склонен с первого взгляда принять ее за беглую и неуловимую тень. Это вызывает у читателя усилия и новые размышления, и в конце концов читатель убеждается в искусственности теоретических построений, которые вызывали у него раньше такое восхищение».
В другой работе Пуанкаре писал:
«Система Максвелла была странна и малопривлекательна, так как он предполагал весьма сложное строение эфира: можно было подумать, что читаешь описание завода с целой системой зубчатых колес, рычагами, передающими движение и сгибающимися от усилия, центробежными регуляторами и передаточными ремнями».
В Германии к новой теории отнеслись как к интересному курьезу. Здесь теории Максвелла завоевать позиции было особенно трудно. Именно здесь великий Гаусс довел до совершенства теорию потенциала, здесь работали Вебер и Нейман, столпы дальнодействия.
Лишь немногие немецкие физики со всей серьезностью отнеслись к теории Максвелла. И прежде всего – друг и соперник Людвиг Больцман. Больцман очень переживал то, что не смог из-за нелепой случайности вовремя, к выходу «Трактата», представить одно из доказательств правильности Максвелловой теории. Плененный когда-то силой механических моделей Максвелла, он и сейчас стал пытаться свести к ним его уравнения. О моделях в «Трактате» говорилось приглушенно, и Больцман решил, что Максвелл имеет их, но прячет.
Недооценивал Максвелла столь почитавший его Больцман. Уже после смерти Максвелла он поспешил в Кембридж, в Кавендишскую лабораторию. Все спрашивал:
– Где тут у вас максвелловские механические модели, которыми он обосновал свои уравнения?
Больцман восхищался Максвеллом. Излагая на лекциях максвелловскую теорию, он предварял изложение эпиграфом из «Фауста»:
Он, конечно, кокетничал. Понимал он эту теорию, как немногие. Много лет спустя со всего мира съезжались к нему люди, жаждавшие, чтобы он объяснил им смысл Максвелловых уравнений.
Я должен пот тяжелый лить,
чтобы научить тому,
что не понимаю сам.
Восхищение Больцмана этой «книгой за семью печатями», этими уравнениями не имело предела. Он постоянно цитировал строки из «Фауста»:
Не понял Больцман, как можно было создать такую теорию без механической модели. Он все чаще и чаще приходил к конфликтам и непониманию. Новая физика, у колыбели которой стоял Максвелл, становилась глубоко чуждой Больцману. Он с каждым годом все яснее понимал, что конфликт этот неразрешим – нужно было родиться заново, чтобы воспринимать «эти вещи». Не в силах совладать со своими чувствами, он покончил с со бой, выбросившись из окна...
Не бог ли эти знаки начертал?
Таинственен их скрытый дар!
Они природы силы раскрывают
И сердце нам блаженством наполняют.
Герману Гельмгольцу теория Максвелла тоже очень нравилась. Своей формальной простотой. Но не мог он целиком встать на философские позиции Максвелла. Гельмгольц попытался найти компромисс между теориями великих немцев Гаусса, Вебера и Неймана и теорией электромагнитного поля Максвелла. Напрасна была эта попытка – примирить непримиримое, сочетать несочетаемое. И чем дальше заходил в этих попытках Гельмгольц, побуждая своего ученика Генриха Герца многократно экспериментально проверять Максвелловы уравнения, тем ясней и ясней становилась их полная справедливость. И ограниченность теорий, основанных на дальнодействии, в том числе и непоследовательной теории самого Гельмгольца...
Герц писал впоследствии об уравнениях Максвелла: «Трудно избавиться от чувства, что эти математические формулы живут независимой жизнью и обладают своим собственным интеллектом, что они мудрее, чем мы сами, мудрее даже, чем их первооткрыватели, и что мы извлекаем из них больше, чем было заложено в них первоначально».
Большое впечатление теория Максвелла произвела на русских ученых. Многие из них учились в Германии и испытали на себе влияние Больцмана и Гельмгольца. Всем известна роль Умова, Столетова, Лебедева в развитии и укреплении Максвелловой теории. Русские ученые поддерживали и развивали ее еще до открытий Герца, до великого перелома, произведенного его волнами.
Одним из тех, на кого работы Максвелла произвели наиболее сильное впечатление, был молодой голландский физик Гендрик Антуан Лоренц. Он писал впоследствии:
«...»Трактат об электричестве и магнетизме» произвел на меня, пожалуй, одно из самых сильных впечатлений в жизни: толкование света как электромагнитного явления по своей смелости превзошло все, что я до сих пор знал. Но книга Максвелла была не из легких! Написанная в годы, когда идеи ученого еще не получили окончательной формулировки, она не представляла законченного целого и не давала ответа на многие вопросы. Один французский ученый, имени которого я, к сожалению, не помню, заявил по прочтении книги, что она его восхитила, но так и не ответила на вопрос, что представляет собой электрически заряженный шар...
Как бы то ни было, но в данный момент теория электромагнитного поля Максвелла представляется нам настолько красивой и простой, что мы чуть ли не с сожалением думаем о том, что в нее могут быть внесены какие-либо изменения».
Но и восхищенному Лоренцу тяжело было сразу докопаться до физического смысла уравнений. «Автор электронной теории, – пишет А.Ф.Иоффе, – рассказывал мне, что, познакомившись впервые с уравнениями Максвелла, он не смог понять их физического смысла и обратился к переводчику сочинений Максвелла. Но и этот подтвердил, что никакого физического смысла эти уравнения не имеют, понять их нельзя; их следует рассматривать как чисто математическую абстракцию».
Лоренц был первым ученым, практически применившим теорию Максвелла в своей научной работе. Свою блестящую докторскую диссертацию 1875 года по проблеме отражения и преломления света диэлектриками и металлами он построил полностью на теории Максвелла.
Лоренц впоследствии попытался применить электромагнитную теорию Максвелла к движущимся телам – и в этом труде впервые появились «преобразования Лоренца» – важнейшая предпосылка создания теории относительности.
«Трактат» постепенно становился библией новой физики – физики эпохи электричества, теории относительности, радиотехники, атомной энергии...
ОТКРЫТИЕ КАВЕНДИШСКОЙ ЛАБОРАТОРИИ
И вот настал этот день, день великий и торжественный, которого ждали столь долго, к которому готовились, 16 июня 1874 года – день торжественного открытия Кавендишской лаборатории. Это был праздник для всего Кембриджа, и Максвелл оказался в центре его, смущенный и радостный. Звонили колокола, в сторону Тринити по Кингс-парад и Сент-Джон-стрит спешили кебы, поспешали, путаясь в средневековых мантиях, великие кембриджцы, недели с трудом тащили свои булавы, а Максвелл в спешке – буквально в последние минуты налаживались калориферы – разрываясь, пожимая на ходу руки, бежит в актовый зал Тринити, затем в Тринити-чапел, где развертываются основные события дня.
На торжество прибыло много именитых гостей – и среди них сэр Чарлз Лайелл, седовласый старец, великий геолог, и тоже уже старый, шестидесятитрехлетний Урбен Жан Жозеф Леверрье, соперник Адамса в открытии Нептуна, – им в этот день, в день открытия лаборатории, будут вручены канцлером дипломы почетных докторов права Кембриджского университета. Здесь и величественный герцог – ректор, и Кейлей, и Стокс, и Адамс, много друзей Максвелла. Среди заграничных гостей – тридцатипятилетний русский профессор Александр Григорьевич Столетов: он искренне завидует Максвеллу. Все его, Столетова, усилия по созданию настоящей физической лаборатории в России пока еще были впустую. Ему и его ученикам – Умову и Жуковскому долго еще придется собираться для обсуждения сложных физических материй у него на квартире. Приходилось ездить к Кирхгофу в Геттинген и Гейдельберг, чтобы поставить несложные экспериментальные работы. А сколько идей, требующих хорошей лаборатории, было у Столетова! Максвелл особенно восхищался методом, предложенным Столетовым для измерения отношения электромагнитной единицы количества электричества к электростатической, которое по теории Максвелла должно быть равно скорости света. Столетов с искренней завистью, с радостью за Максвелла, за английскую и мировую физику ожидал вместе со всеми гостями момента, когда распахнутся двери Кавендишской лаборатории.
И когда пестрая толпа во главе с герцогом и Максвеллом после того, как герцог свершил официально акт дарения университету новой лаборатории, отправилась осматривать ее, Столетов поспешил вослед и с радостным ожиданием вошел в трехэтажное каменное здание со стрельчатыми дверьми и окнами, украшенное срезанной по уши оленьей головой, торчащей из стены, – дань девонширскому гербу.
Во всю ширину первого этажа простиралась лаборатория для магнитных измерений. Чтобы сделать их более точными, из помещения изгнаны все железные и стальные предметы, а трубы отопления изготовлены из меди. Столы, на которых стояли приборы, были скорее не столами, а монолитными каменными плитами, покоящимися на кирпичных колоннах, каждая из которых проходит сквозь пол через специальное отверстие, не касаясь его, – и никакая беготня по полу не могла бы теперь вызвать дрожание приборов!
На одном из каменных столов возвышался большой электродинамометр Британской ассоциации, на котором Максвелл вместе с Флемингом Дженкином и Бальфуром Стюартом занимался измерением образцового ома. На другом столе – точнейший магнитометр.
Следующий зал – царство часов, часов необычных и неожиданных, зал измерения времени. На каменном основании покоились здесь Главные часы, и там же – каменная рама для подвески экспериментального маятника.
Рядом с залом часов – комната весов и комната для тепловых измерений, в которой Максвелл разместил свои аппараты, использовавшиеся еще в Кенсингтоне для определения вязкости воздуха.
Следующая – комната для батарей, и в ней была громадная батарея Даниэля, всем на зависть и подражание.
Помещения первого этажа завершала небольшая мастерская со станками и приспособлениями – и это тоже весьма предусмотрительно, если учесть, что ближе Лондона – а это пятьдесят миль – механика не было, и во всем – в изготовлении образцов и деталей, в стеклодувных работах – необходимо полагаться только на себя. Продумано все. Даже подоконники. Каменные, широкие, как снаружи помещения, так и внутри, причем внутренняя и наружная поверхности на одном уровне, так что в случае необходимости устанавливать приборы можно даже на окнах, даже вне помещения!
Второй этаж был личной лабораторией Максвелла. На одном из шкафов в углу стоял электрометр, в аппаратной и стеклянных шкафах хранились приборы. На этом этаже была личная комната Максвелла и лекционный театр на 180 студентов.
Третий этаж занят лабораториями акустики, оптики, теплового излучения, темной комнатой с черными стенами, окрашенными, как говорили, сажей, разведенной в пиве. Здесь же выделено место для исследований электричества высокого напряжения: предусмотрена даже специальная установка для подсушивания воздуха. Под самым потолком этой комнаты – окошко в лекционный театр, и это позволяло демонстрировать опыты по высоковольтному электричеству даже в том случае, если воздух в лекционном театре был слишком влажен и не позволял непосредственно на месте использовать электростатические машины со стеклянными дисками.
На лестничной клетке было оставлено место для бунзеновского водяного насоса и манометра, имевших в высоту чуть ли не 15 метров.
Лаборатория насквозь проникнута духом усовершенствования, уточнения – Максвелл убежден, что в уточнении измерений скрываются возможности новых великих открытий.
Для того чтобы сверхточным термометрам не мешало присутствие наблюдателя, излучающего тепло, наблюдение за шкалами приборов должно было вестись из соседней комнаты через специальное окошко посредством подзорной трубы. Вообще, все стены, полы и потолки лаборатории имели подъемные дверцы, с помощью которых можно сообщаться, протягивать через них коммуникации и провода.
Максвелл ходил по лаборатории, окруженный шумной восхищенной толпой, разъяснял непонятное.
– А как же столы второго этажа, выходит, они подвержены сотрясениям пола? – спрашивали непосвященные.
– Это тоже предусмотрено, – отвечал Максвелл, – столы верхних этажей покоятся не на полу, а на особых балках, независимых от пола и укрепленных в капитальных стенах здания. Вибрация приборам не угрожает.
Максвелл ходил между этими людьми, пожимал руки, здоровался, прощался, кому-то что-то объяснял, а мысли его были уже дома, на Скруп-террас, куда ему было доставлено еще одно пожертвование герцога, приманка, троянский конь, пожиратель времени и истощитель мысли – двадцать пакетов манускриптов достопочтенного Генри Кавендиша, чьим именем была названа лаборатория и чьим внучатым племянником был теперешний канцлер университета.
На торжество прибыло много именитых гостей – и среди них сэр Чарлз Лайелл, седовласый старец, великий геолог, и тоже уже старый, шестидесятитрехлетний Урбен Жан Жозеф Леверрье, соперник Адамса в открытии Нептуна, – им в этот день, в день открытия лаборатории, будут вручены канцлером дипломы почетных докторов права Кембриджского университета. Здесь и величественный герцог – ректор, и Кейлей, и Стокс, и Адамс, много друзей Максвелла. Среди заграничных гостей – тридцатипятилетний русский профессор Александр Григорьевич Столетов: он искренне завидует Максвеллу. Все его, Столетова, усилия по созданию настоящей физической лаборатории в России пока еще были впустую. Ему и его ученикам – Умову и Жуковскому долго еще придется собираться для обсуждения сложных физических материй у него на квартире. Приходилось ездить к Кирхгофу в Геттинген и Гейдельберг, чтобы поставить несложные экспериментальные работы. А сколько идей, требующих хорошей лаборатории, было у Столетова! Максвелл особенно восхищался методом, предложенным Столетовым для измерения отношения электромагнитной единицы количества электричества к электростатической, которое по теории Максвелла должно быть равно скорости света. Столетов с искренней завистью, с радостью за Максвелла, за английскую и мировую физику ожидал вместе со всеми гостями момента, когда распахнутся двери Кавендишской лаборатории.
И когда пестрая толпа во главе с герцогом и Максвеллом после того, как герцог свершил официально акт дарения университету новой лаборатории, отправилась осматривать ее, Столетов поспешил вослед и с радостным ожиданием вошел в трехэтажное каменное здание со стрельчатыми дверьми и окнами, украшенное срезанной по уши оленьей головой, торчащей из стены, – дань девонширскому гербу.
Во всю ширину первого этажа простиралась лаборатория для магнитных измерений. Чтобы сделать их более точными, из помещения изгнаны все железные и стальные предметы, а трубы отопления изготовлены из меди. Столы, на которых стояли приборы, были скорее не столами, а монолитными каменными плитами, покоящимися на кирпичных колоннах, каждая из которых проходит сквозь пол через специальное отверстие, не касаясь его, – и никакая беготня по полу не могла бы теперь вызвать дрожание приборов!
На одном из каменных столов возвышался большой электродинамометр Британской ассоциации, на котором Максвелл вместе с Флемингом Дженкином и Бальфуром Стюартом занимался измерением образцового ома. На другом столе – точнейший магнитометр.
Следующий зал – царство часов, часов необычных и неожиданных, зал измерения времени. На каменном основании покоились здесь Главные часы, и там же – каменная рама для подвески экспериментального маятника.
Рядом с залом часов – комната весов и комната для тепловых измерений, в которой Максвелл разместил свои аппараты, использовавшиеся еще в Кенсингтоне для определения вязкости воздуха.
Следующая – комната для батарей, и в ней была громадная батарея Даниэля, всем на зависть и подражание.
Помещения первого этажа завершала небольшая мастерская со станками и приспособлениями – и это тоже весьма предусмотрительно, если учесть, что ближе Лондона – а это пятьдесят миль – механика не было, и во всем – в изготовлении образцов и деталей, в стеклодувных работах – необходимо полагаться только на себя. Продумано все. Даже подоконники. Каменные, широкие, как снаружи помещения, так и внутри, причем внутренняя и наружная поверхности на одном уровне, так что в случае необходимости устанавливать приборы можно даже на окнах, даже вне помещения!
Второй этаж был личной лабораторией Максвелла. На одном из шкафов в углу стоял электрометр, в аппаратной и стеклянных шкафах хранились приборы. На этом этаже была личная комната Максвелла и лекционный театр на 180 студентов.
Третий этаж занят лабораториями акустики, оптики, теплового излучения, темной комнатой с черными стенами, окрашенными, как говорили, сажей, разведенной в пиве. Здесь же выделено место для исследований электричества высокого напряжения: предусмотрена даже специальная установка для подсушивания воздуха. Под самым потолком этой комнаты – окошко в лекционный театр, и это позволяло демонстрировать опыты по высоковольтному электричеству даже в том случае, если воздух в лекционном театре был слишком влажен и не позволял непосредственно на месте использовать электростатические машины со стеклянными дисками.
На лестничной клетке было оставлено место для бунзеновского водяного насоса и манометра, имевших в высоту чуть ли не 15 метров.
Лаборатория насквозь проникнута духом усовершенствования, уточнения – Максвелл убежден, что в уточнении измерений скрываются возможности новых великих открытий.
Для того чтобы сверхточным термометрам не мешало присутствие наблюдателя, излучающего тепло, наблюдение за шкалами приборов должно было вестись из соседней комнаты через специальное окошко посредством подзорной трубы. Вообще, все стены, полы и потолки лаборатории имели подъемные дверцы, с помощью которых можно сообщаться, протягивать через них коммуникации и провода.
Максвелл ходил по лаборатории, окруженный шумной восхищенной толпой, разъяснял непонятное.
– А как же столы второго этажа, выходит, они подвержены сотрясениям пола? – спрашивали непосвященные.
– Это тоже предусмотрено, – отвечал Максвелл, – столы верхних этажей покоятся не на полу, а на особых балках, независимых от пола и укрепленных в капитальных стенах здания. Вибрация приборам не угрожает.
Максвелл ходил между этими людьми, пожимал руки, здоровался, прощался, кому-то что-то объяснял, а мысли его были уже дома, на Скруп-террас, куда ему было доставлено еще одно пожертвование герцога, приманка, троянский конь, пожиратель времени и истощитель мысли – двадцать пакетов манускриптов достопочтенного Генри Кавендиша, чьим именем была названа лаборатория и чьим внучатым племянником был теперешний канцлер университета.
«МАТЕРИЯ И ДВИЖЕНИЕ». РЕЦЕНЗИЯ ТЭТА
На фоне «Трактата» совершенно потерялась вышедшая в том же 1873 году «небольшая книжка на большую тему», первый серьезный опыт Максвелла в области популяризации науки. Хотел ли он расширить узкий круг признания?
По-видимому, нет, ибо «Материя и движение» хотя и содержала множество глубоких его собственных мыслей, не выражала только его личных взглядов, а если и выражала, то в еще меньшей степени, чем «Трактат».
Для нас, потомков, эта книга интересна потому, что раскрывает точку зрения Максвелла на некоторые принципиальные вопросы строения материи.
Как устроен атом?
Как его представлял Максвелл до открытия электронов, до расщепления атома? Смог ли он и в этой области продемонстрировать глубину своей физической интуиции, «неспособность думать о физике неправильно»? Ясна ли была ему сложность строения «элементарного» атома?
В те годы издавалась знаменитая «Британская энциклопедия», в авторы которой были приглашены виднейшие специалисты в своей области. Был приглашен и Максвелл. Он написал для нового издания несколько статей. Среди них – «Атом», «Притяжение», «Эфир».
В статье «Атом» – категоричное заявление: «Атом есть тело, которое нельзя рассечь пополам!»
Точно то же заявление, что и в его речи под названием «Молекулы», произнесенной в Бредфорде, на встрече Британской ассоциации, в 1873 году. Та тоже начиналась с утверждения:
«Атом есть тело, которое нельзя рассечь пополам». Чувствуя излишнюю категоричность такого заявления, Максвелл не удовлетворяется им. В популярной книжке «Материя и движение» он делится своими сомнениями:
«Даже атом, если мы рассматриваем его как нечто способное к вращению, должен быть представляем состоящим из многих материальных частичек».
Нет, не мог Максвелл думать о физике неправильно. Он понимал ограниченность общепринятой тогда в науке версии «неделимого атома», но, не будучи в состоянии экспериментально или теоретически доказать это, не будучи в состоянии предложить альтернативное решение, не может молчать и делится сомнениями в книге, к которой трудно «придраться», – в популярной «Материи».
Здесь же – раздумья Максвелла о соотношении прерывного и непрерывного в природе. Изгнав из «Трактата» дискретные заряды, но будучи вынужденным вводить пресловутые «молекулы электричества» в главу об электролизе, Максвелл все-таки где-то в глубине души, видимо, жалел физически довольно ясные заряды. В «Материи и движении» Максвелл рассматривает понятия дискретности и непрерывности, не отдавая предпочтения ни тому, ни другому, допуская возможность и одного, и другого.
«Всякое наше знание как о времени, так и о месте, в сущности, относительно», – писал Максвелл. Свобода от оков предубежденности позволяла ему выходить за рамки известных фактов, делать глубочайшие догадки, прогнозы, предположения. «Великой задачей ученых нашего века является распространение наших знаний о движении вещества от тех случаев, в которых мы можем видеть и измерять движение, к тем, в которых наши чувства не могут его обнаружить».
Старый дружище Питер Тэт написал на «Материю и движение» рецензию в «Природе».
Тэт противопоставляет эту непритязательную популярную книжку некоторым вышедшим за последнее время толстым трактатам.
По-видимому, нет, ибо «Материя и движение» хотя и содержала множество глубоких его собственных мыслей, не выражала только его личных взглядов, а если и выражала, то в еще меньшей степени, чем «Трактат».
Для нас, потомков, эта книга интересна потому, что раскрывает точку зрения Максвелла на некоторые принципиальные вопросы строения материи.
Как устроен атом?
Как его представлял Максвелл до открытия электронов, до расщепления атома? Смог ли он и в этой области продемонстрировать глубину своей физической интуиции, «неспособность думать о физике неправильно»? Ясна ли была ему сложность строения «элементарного» атома?
В те годы издавалась знаменитая «Британская энциклопедия», в авторы которой были приглашены виднейшие специалисты в своей области. Был приглашен и Максвелл. Он написал для нового издания несколько статей. Среди них – «Атом», «Притяжение», «Эфир».
В статье «Атом» – категоричное заявление: «Атом есть тело, которое нельзя рассечь пополам!»
Точно то же заявление, что и в его речи под названием «Молекулы», произнесенной в Бредфорде, на встрече Британской ассоциации, в 1873 году. Та тоже начиналась с утверждения:
«Атом есть тело, которое нельзя рассечь пополам». Чувствуя излишнюю категоричность такого заявления, Максвелл не удовлетворяется им. В популярной книжке «Материя и движение» он делится своими сомнениями:
«Даже атом, если мы рассматриваем его как нечто способное к вращению, должен быть представляем состоящим из многих материальных частичек».
Нет, не мог Максвелл думать о физике неправильно. Он понимал ограниченность общепринятой тогда в науке версии «неделимого атома», но, не будучи в состоянии экспериментально или теоретически доказать это, не будучи в состоянии предложить альтернативное решение, не может молчать и делится сомнениями в книге, к которой трудно «придраться», – в популярной «Материи».
Здесь же – раздумья Максвелла о соотношении прерывного и непрерывного в природе. Изгнав из «Трактата» дискретные заряды, но будучи вынужденным вводить пресловутые «молекулы электричества» в главу об электролизе, Максвелл все-таки где-то в глубине души, видимо, жалел физически довольно ясные заряды. В «Материи и движении» Максвелл рассматривает понятия дискретности и непрерывности, не отдавая предпочтения ни тому, ни другому, допуская возможность и одного, и другого.
«Всякое наше знание как о времени, так и о месте, в сущности, относительно», – писал Максвелл. Свобода от оков предубежденности позволяла ему выходить за рамки известных фактов, делать глубочайшие догадки, прогнозы, предположения. «Великой задачей ученых нашего века является распространение наших знаний о движении вещества от тех случаев, в которых мы можем видеть и измерять движение, к тем, в которых наши чувства не могут его обнаружить».
Старый дружище Питер Тэт написал на «Материю и движение» рецензию в «Природе».
Тэт противопоставляет эту непритязательную популярную книжку некоторым вышедшим за последнее время толстым трактатам.
«...Работа Клерка Максвелла – это просто сама природа, такая, как мы понимаем ее. Вершины, пропасти, глубокие трещины ледников – все они здесь в их естественной красоте и величии. Те, кто хочет увидеть их вблизи, может попробовать приблизиться к ним с той стороны, что ему больше нравится. Когда он приближается к тому, что, как он боится, может оказаться опасным или непроходимым местом, он найдет здесь ступени, прорубленные в скале, или предусмотрительно привязанную вспомогательную веревку... которые оставлены здесь искусной рукой того, кто проложил свои собственные дороги во всех направлениях...»Питер Тэт восхищался Максвеллом, любил его, смог побороть, когда стал старше и мудрее, свою ревность к старому другу Джеймсу, учившемуся на равных с ним в школе и не достигшему при окончании университета тех успехов, которых достиг он сам. Питер был «первым спорщиком» в своем году, а Максвелл – «вторым» в своем. Они были, конечно, вместе с Томсоном и Стоксом виднейшими физиками викторианской Англии, но оригинальность и смелость неожиданных идей Максвелла была недостижима для остальных...
КЕМБРИДЖСКАЯ СУЕТА
Но заниматься собственной научной работой в Кембридже было для Максвелла совсем не так просто. Ведь Максвелл теперь был уже в центре университетской жизни, его захлестывали суета Кембриджа, его многочисленные новые обязанности, которых он так долго избегал. И оказалось, что эта суета тоже может приносить радость. Он был избран членом совета сената университета и содействовал проведению в жизнь университетской реформы, которая в конечном итоге сделала Кембридж местом, где ковались кадры настоящей английской науки.
Он стал членом и другой комиссии – с большой радостью! – комиссии по реорганизации математического трайпоса. Эта комиссия заседала каждую неделю.
Он был одним из экзаменаторов нового, естественнонаучного трайпоса, а в 1873 году стал дополнительным экзаменатором математического трайпоса, уже проводившегося по новым правилам.
Он избирался президентом Кембриджского философского общества на сессии 1876-1877 годов, президентом секции математики и физики на ежегодной встрече Британской ассоциации в Ливерпуле.
Начинают приходить приятные хлопоты, связанные с его все растущим признанием. В 1870 году он избран почетным доктором литературы Эдинбургского университета. В 1874 году избран иностранным почетным членом Американской академии искусств и наук в Бостоне, в 1875 году – членом Американского философского общества в Филадельфии и членом-корреспондентом Королевского общества наук Геттингена, в 1876 году получил диплом почетного доктора гражданского права в Оксфорде и избран почетным членом Нью-Йоркской академии наук.
1877 год отмечен избранием в члены королевской Академии наук в Амстердаме и иностранные члены-корреспонденты класса математики и естественных наук имперской академии в Вене. В 1878 году он получил медаль Вольта и степень доктора физических наук гонорис кауза в университете Падуи. Все это было приятно, хотя требовало внимания и переписки.
Отнимали время лекции. Лент-терм – термодинамика, Майкельмас и пасхальный – электричество и электромагнетизм.
В лабораторию он ходил каждый день, обходил всех, но оставался с ними недолго. Вообще он старался сделать так, чтобы в его советах ученики не усматривали ничего обязательного для себя. Только совет. Так он представлял себе роль научного наставника. С давних пор. Еще со времен Эдинбурга.
С той же целью – сделать свои посещения лаборатории менее официальными – он почти всегда появлялся в лаборатории с собакой, а то и с двумя – Тоби и Куни, Тоби – еще из Гленлейра, Тоби номер пять или шесть.
– Удивительно глупо чувствуешь себя, когда гуляешь без собаки, – говаривал Максвелл.
Тоби прекрасно ориентировался в лаборатории. Он рычал и проявлял недовольство всякий раз, когда вблизи производились электрические разряды. Однако он мгновенно успокаивался, когда его гладил хозяин. Хозяину позволялось все: даже размещать на его шее электроды. При этой операции Тоби тихонько рычал, но никак не выказывал признаков настоящего беспокойства.
Тоби вместе с Максвеллом уверенно следовал по стопам старины Кавендиша – тот когда-то обнаружил, что собачий мех создает при натирании еще более сильное электричество, чем кошачий, и сейчас Тоби предстояло защищать в лаборатории честь всего собачьего рода. Его усаживали на изолирующую подставку, натирали кошачьей шкурой. Все выдерживал Тоби ради хозяина, втайне, видимо, надеясь, что когда-нибудь это кончится. Так и получилось.
– Лучше живая собака, чем мертвый лев! – сказал однажды Максвелл, прекращая опыты над любимцем. Но это случилось не раньше того, как было доказано, что Кавендиш прав.
Тоби один имел привилегию находиться в помещении, когда хозяин занимался собственными экспериментами. Максвелл работал увлеченно, забывая обо всем. Во время работы он обычно насвистывал. А когда задумывался, бессознательно протягивал руку вниз, где сидел любимец, и гладил его, приговаривая:
– Тоби... Тоби... Тоби...
Детей у Максвелла так и не появилось. Кетрин часто болела и несколько лет почти не вставала с постели. Максвелл был лучшей сиделкой, какую можно было себе представить.
Однажды, когда ей было особенно плохо, он три недели не ложился в постель и спал только урывками, в кресле у ее кровати. Все это время он регулярно читал лекции и посещал лабораторию.
А однажды, когда он наклонился к спящей Кетрин, собачонка Куни, дремавшая на постели, спросонья цапнула его за нос. Даже не вскрикнув, Максвелл вышел, придерживая на руках все еще висевшую на его лице собачонку. Он всегда был предельно выдержан и спокоен.
Были ли его отношения с женой безоблачными?
Авторы единственной биографии Максвелла, Кемпбелл и Гарнетт, не поместившие портрета Кетрин, упирают на духовную близость супругов. Из некоторых других источников можно сделать вывод о том, что духовная близость была лишь одной из сторон многогранных семейных отношений Максвеллов.
Упоминают, например, о том, что Кетрин недолюбливала его встречи с друзьями. Даже когда они вместе ходили в гости, когда Джеймсу было особенно весело и приятно, его всегда охлаждал голос Кетрин:
– Джеймс, пора домой. Ты начинаешь получать удовольствие.
Наверное, было это. Не зря, видимо, друзья Максвелла называли между собой Кетрин не иначе, как «эта женщина»... Но важнее то, что Кетрин разделила его работу, его идеалы. Уже после смерти Максвелла Кетрин, умирая, завещала почти все деньги – 6000 фунтов стерлингов – Кавендишской лаборатории. На эти деньги была основана стипендия Максвелла для лучших аспирантов. Ее в разное время получали самые способные молодые исследователи, работавшие в лаборатории, например П.Л.Капица.
Он стал членом и другой комиссии – с большой радостью! – комиссии по реорганизации математического трайпоса. Эта комиссия заседала каждую неделю.
Он был одним из экзаменаторов нового, естественнонаучного трайпоса, а в 1873 году стал дополнительным экзаменатором математического трайпоса, уже проводившегося по новым правилам.
Он избирался президентом Кембриджского философского общества на сессии 1876-1877 годов, президентом секции математики и физики на ежегодной встрече Британской ассоциации в Ливерпуле.
Начинают приходить приятные хлопоты, связанные с его все растущим признанием. В 1870 году он избран почетным доктором литературы Эдинбургского университета. В 1874 году избран иностранным почетным членом Американской академии искусств и наук в Бостоне, в 1875 году – членом Американского философского общества в Филадельфии и членом-корреспондентом Королевского общества наук Геттингена, в 1876 году получил диплом почетного доктора гражданского права в Оксфорде и избран почетным членом Нью-Йоркской академии наук.
1877 год отмечен избранием в члены королевской Академии наук в Амстердаме и иностранные члены-корреспонденты класса математики и естественных наук имперской академии в Вене. В 1878 году он получил медаль Вольта и степень доктора физических наук гонорис кауза в университете Падуи. Все это было приятно, хотя требовало внимания и переписки.
Отнимали время лекции. Лент-терм – термодинамика, Майкельмас и пасхальный – электричество и электромагнетизм.
В лабораторию он ходил каждый день, обходил всех, но оставался с ними недолго. Вообще он старался сделать так, чтобы в его советах ученики не усматривали ничего обязательного для себя. Только совет. Так он представлял себе роль научного наставника. С давних пор. Еще со времен Эдинбурга.
С той же целью – сделать свои посещения лаборатории менее официальными – он почти всегда появлялся в лаборатории с собакой, а то и с двумя – Тоби и Куни, Тоби – еще из Гленлейра, Тоби номер пять или шесть.
– Удивительно глупо чувствуешь себя, когда гуляешь без собаки, – говаривал Максвелл.
Тоби прекрасно ориентировался в лаборатории. Он рычал и проявлял недовольство всякий раз, когда вблизи производились электрические разряды. Однако он мгновенно успокаивался, когда его гладил хозяин. Хозяину позволялось все: даже размещать на его шее электроды. При этой операции Тоби тихонько рычал, но никак не выказывал признаков настоящего беспокойства.
Тоби вместе с Максвеллом уверенно следовал по стопам старины Кавендиша – тот когда-то обнаружил, что собачий мех создает при натирании еще более сильное электричество, чем кошачий, и сейчас Тоби предстояло защищать в лаборатории честь всего собачьего рода. Его усаживали на изолирующую подставку, натирали кошачьей шкурой. Все выдерживал Тоби ради хозяина, втайне, видимо, надеясь, что когда-нибудь это кончится. Так и получилось.
– Лучше живая собака, чем мертвый лев! – сказал однажды Максвелл, прекращая опыты над любимцем. Но это случилось не раньше того, как было доказано, что Кавендиш прав.
Тоби один имел привилегию находиться в помещении, когда хозяин занимался собственными экспериментами. Максвелл работал увлеченно, забывая обо всем. Во время работы он обычно насвистывал. А когда задумывался, бессознательно протягивал руку вниз, где сидел любимец, и гладил его, приговаривая:
– Тоби... Тоби... Тоби...
Детей у Максвелла так и не появилось. Кетрин часто болела и несколько лет почти не вставала с постели. Максвелл был лучшей сиделкой, какую можно было себе представить.
Однажды, когда ей было особенно плохо, он три недели не ложился в постель и спал только урывками, в кресле у ее кровати. Все это время он регулярно читал лекции и посещал лабораторию.
А однажды, когда он наклонился к спящей Кетрин, собачонка Куни, дремавшая на постели, спросонья цапнула его за нос. Даже не вскрикнув, Максвелл вышел, придерживая на руках все еще висевшую на его лице собачонку. Он всегда был предельно выдержан и спокоен.
Были ли его отношения с женой безоблачными?
Авторы единственной биографии Максвелла, Кемпбелл и Гарнетт, не поместившие портрета Кетрин, упирают на духовную близость супругов. Из некоторых других источников можно сделать вывод о том, что духовная близость была лишь одной из сторон многогранных семейных отношений Максвеллов.
Упоминают, например, о том, что Кетрин недолюбливала его встречи с друзьями. Даже когда они вместе ходили в гости, когда Джеймсу было особенно весело и приятно, его всегда охлаждал голос Кетрин:
– Джеймс, пора домой. Ты начинаешь получать удовольствие.
Наверное, было это. Не зря, видимо, друзья Максвелла называли между собой Кетрин не иначе, как «эта женщина»... Но важнее то, что Кетрин разделила его работу, его идеалы. Уже после смерти Максвелла Кетрин, умирая, завещала почти все деньги – 6000 фунтов стерлингов – Кавендишской лаборатории. На эти деньги была основана стипендия Максвелла для лучших аспирантов. Ее в разное время получали самые способные молодые исследователи, работавшие в лаборатории, например П.Л.Капица.