Страница:
Апория картезианской физики - неразличимость тел при их отождествлении с частями пространства, это апория релятивизма. Картезианского релятивизма, относящего движения тел к смежным телам. Относительность движения как изменения расстояний от отдаленных тел отсчета имеет физический смысл, если тела отделимы своими динамическими свойствами (непроницаемостью, массой, весом, зарядом) от окружающей их пустоты - это уже не картезианская концепция. Современный релятивизм - теория относительности Эйнштейна представляет собой синтез концепции "движения в истинном смысле" и "движения в обычном смысле".
Действительно, у Эйнштейна исходное представление - релятивизм Галилея - Ньютона: система равномерно и прямолинейно движется в пространстве, и ее движение никак не влияет на поведение составляющих систему тел.
Поэтому движение состоит только в изменении относительного места системы - расстояний от этой системы до тел отсчета, которые принципиально равноправны. Дальше - расхождение. У Ньютона, кроме тол отсчета, движение может быть отнесено к самому пространству, к пустоте. В физике эфира пустота занята эфиром, но это уже переходная концепция; в ньютоновой картине мира тела движутся в пустоте. Но вернемся к ньютонову релятивизму. Уже здесь мы видим различие между концепциями Ньютона и Эйнштейна. У Ньютона относительное движение - это движение, отнесенное к телам, но движущееся тело отнюдь не обязано соприкасаться с телами отсчета. Изменяются расстояния, координаты не являются линейками, так же как ньютоново время, - это отнюдь не ход часов, вообще это совсем не физический процесс. В этом смысле у Ньютона, как и у Аристотеля, место корабля может быть отнесено к отдаленному берегу.
437
У Эйнштейна версия "движения в общепринятом смысле" как будто сохраняется. Движение Земли отнесено к несоприкасающемуся с ней Солнцу или к отдаленным неподвижным звездам. И тем не менее координаты всегда обладают действительным физическим смыслом. Когда Эйнштейн рисует систему координат как твердое тело, которое мы можем продолжить как угодно далеко во все стороны, до соприкосновения с движущимся телом, или же приделывает к твердому телу сколь угодно длинные линейки, эта воображаемая возможность отнюдь не условная апелляция к воображению. Во всяком случае не только апелляция к воображению, хотя неограниченно продолженное твердое тело и линейка - воображаемые вещи. Воображаемой здесь служит механическая схема, а не физическая содержательность пространственных и временных интервалов. Эти интервалы меняют свою величину в зависимости от движения системы, а в общей теории относительности они приобретают кривизну, в чем и состоит гравитационное поле.
Но этого мало. В теории относительности прострапственные и временные отрезки сливаются и становятся четырехмерными мировыми линиями, т.е. эвентуальными или реализованными движениями частиц.
В этом смысле теория относительности - некоторый возврат к "движению в подлинном смысле", к картезианскому релятивизму. Возврат совсем не простой: механический образ прилегающих тел, гарантирующий у Декарта физический смысл движения, заменен пространством эвентуальных соприкосновений. Но это уже не пространство механики, тождественное гомогенному веществу - у Декарта, и пустое, служащее, по выражению Вейля, "наемной казармой" для тел - у Ньютона.
Это пространство, заполненное не гомогенной, тождественной себе субстанцией и не лишенное субстанции "небытие"; оно заполнено различными нетождественными физическими событиями и процессами, это - физическое поле.
Эйнштейн и Ньютон
Прости меня, Ньютон; ты нашел единственный путь, возможный в твое время для человека величайшей научной творческой способности и силы мысли. Понятия, созданные тобой, и сейчас еще остаются ведущими в нашем физическом мышлении, хотя мы теперь и знаем, что если мы будем стремиться к более глубокому пониманию взаимосвязей, то мы должны будем заменить эти понятия другими, стоящими дальше от сферы непосредственного опыта.
Эйнштейн
Как изменяется в неклассической ретроспекции, в свете идей Эйнштейна оценка научной революции, создавшей классическую науку? Такая оценка выходит далеко за рамки истории науки. Она служит основой для решения крайне насущных проблем современности. Здесь мы можем следовать за самим Эйнштейном. Для него творчество Ньютона - исторический триумф разума. Статью "Исаак Ньютон", написанную к трехсотлетию рождения английского мыслителя, Эйнштейн начинает словами:
"Несомненно, что разум кажется нам слабым, когда мы думаем о стоящих перед ним задачах; особенно слабым он кажется, когда мы противопоставляем его безумству и страстям человечества, которые, надо признать, почти полностью руководят судьбами человеческими как в малом, так и в большом. Но творенья интеллекта переживают шумную суету поколений и на протяжении веков озаряют мир светом и теплом" [1].
1 Эйнштейн, 4, 78,
439
"На протяжении веков..." Можно быть уверенными, что такова будет участь творчества Эйнштейна, которое отнюдь не заслоняет света и тепла, излучаемого идеями Ньютона, и само не будет заслонено открытиями последующих веков. В чем же основа такого бессмертия творений разума, в чем инвариантная основа излучаемого ими света и тепла? Прежде всего, - в необратимости познания, в том, что творения разума могут быть уточнены и модифицированы сколь угодно радикально, но наука уже не может отказаться от них, вернуться назад. Это не бессмертие неподвижной статуи, это подлинное живое бессмертие. Понятие инварианта неотделимо от понятия преобразования; то общее и сквозное в интеллектуальной деятельности человека, что дает эмоциональный эффект, приносит ощущение света и тепла грядущим поколениям; это поиски нового, трансформация картины мира. Для Эйнштейна Ньютон не был апостолом окончательных истин в последней инстанции (как в приводившихся строках Попа: "Природа и се законы были покрыты мраком, бог сказал: "Да будет Ньютон!", и все осветилось..."). Революционная, ищущая, трансформирующая тенденция творчества Ньютона и всей классической науки в целом становится более отчетливой при сопоставлении с современным преобразованием картины мира, в свете переоценки (отнюдь не обесценивания) научных идей Ньютона, переоценки, вытекающей из идей Эйнштейна. До такой переоценки гелиоцентризм, идея инерции, понятие силы, исчисление бесконечно малых, дифференциальная концепция движения от точки к точке и от мгновения к мгновению - все эти компоненты классической науки не казались революцией и уже вовсе не казались этапом единого, необратимого и незавершенного процесса приближения картины мира к ее неисчерпаемому оригиналу. Мысль о подобном процессе высказывалась не раз, но она не могла поколебать распространенного вплоть до начала XX в. убеждения в непоколебимости фундаментальных классических основ пауки. В те времена история науки напоминала строки Попа, она говорила об озарении, открывшем законы мироздания, и о неизменности открытых законов. Если к такому озарению применить термин "научная революция", то смысл его будет отличаться от современного: сейчас, как бы ни определяли научную революцию, в ней видят не столько завершение поисков, сколько более интенсивное и радикальное продолжение неизбывной и необратимой трансформации знаний о мире. Теперь, исходя из современной неклассической ретроспекции, мы ищем аналогичные
440
черты в науке XVI-XVII вв., позволяющие говорить о произошедшей в этот период революции. Идеи Эйнштейна оказываются исходным пунктом нового взгляда в прошлое, новых историко-культурных, историко-научных и историко-философских оценок классической картины мира. Ее классицизм стал более условным, а ее революционный характер - более заметным. Он представляется сейчас весьма общим, интегральным, означающим не только трансформацию отдельных, отраслевых и частных, физических, астрономических, биологических и т. п. знаний, но и трансформацию самих методов, логических норм, общих канонов познания, того, что называют аксиоматикой науки. Это требует некоторой конкретизации и модификации самого понятия научной революции. Интегрализации этого понятия, указания на трансформацию логики познания, того, что объединяет науку данной эпохи. Ее объединяют повторяющиеся в каждой области научного познания каноны, образующие основные, в наибольшей степени сохраняющиеся при переходе в новую область методы и аксиомы познания, элементы "парадигмы" Томаса Куна. Сейчас, однако, центр тяжести в определении научной революции переносится па другое - па трансформацию парадигмы, которая требует уже не только исторического анализа каждой эпохи в истории познания, но и историологического анализа, выходящего за рамки эпох, определяющего познание в целом - определяющего историологичоские инварианты познания.
В истории познапия мы встречаем междисциплинарные преобразования (то, что изменяется при переходе из одной отрасли пауки в другую) и междисциплинарпые инварианты (субъект преобразования - то, что сохраняется при переходе). Далее мы встречаем историко-научные инварианты сдвигов во времени, инварианты перехода из одпой эпохи в другую. Анализ этих инвариантов образует общую теорию научного познания. Исследование научной революции XVI-XVII вв. как гносеологического феномена с современной точки зрения при сопоставлении классической науки, возникшей в результате указанной революции, с научной революцией XX в. опирается на историологию познания, связывающую историю научной революции с историей познания в целом.
441
Подобная связь делает понятие научной революции интегральным понятием. В историко-научной литературе термин "революция" часто применяется к очень крупным, но все же не охватывающим науку данной эпохи р целом открытиям и обобщениям. По большей части они заслуживают такого названия. Но когда речь идет о научной революции как этапе общей истории познания, о научной революции как гносеологическом феномене, имеется в виду трансформация того общего междисциплинарного инварианта, который определяет созданную данной эпохой картину мира как целое.
Выше, в специальном очерке, уже говорилось о необратимости познания и о его сильной необратимости. Последняя характеризует научные революции: в революционные периоды стиль научного мышления, воздействие науки на общий характер культуры, эффект науки зависят в явной форме от самого движения науки, каждый ответ науки на поставленный вопрос модифицирует этот вопрос, вызывает новые вопросы; вопрошающий аккомпанемент научного развития не замолкает. Для революционной ситуации в науке характерен экспериментальный результат, явно требующий новых исходных принципов, которые охватывают все мироздание, по находящий их лишь в порядке предварительной интуиции, ищущий внутреннего совершенства, фиксирующий на первых порах не столько однозначные ответы, сколько адресованные мирозданию вопросы, демонстрирующий в рамках теперь вопрошающую компоненту познания, его необратимое движение к истине. Таким экспериментом или наблюдением были в XVI в. эллиптические орбиты планет, а в начале XX в. - независимость скорости света от движения системы, в которой она измеряется. Аналогичную, революционную ситуацию создает универсальная идея, которая еще не находит внешнего оправдания и толкает вперед экспериментальное исследование, демонстрируя необратимое движение к истине. Подобные поиски преобразуют логику познания, логические нормы, это служит условием парадоксализации самых общих представлений о мире. Именно такие представления - их можно назвать металогическими - имел в виду Лаплас, когда он говорил, что разуму легче двигаться вперед, чем погружаться в самого себя. Такие погружения разума в самого себя ведут к сопоставлениям раньше (давно установленных фундаментальных принципов) и позже (новых принципов, внешнее оправдание которых еще впереди); и подобное сопоставление стягивает раньше и позже в теперь, демонстрируя сильную необратимость познания.
443
Представление о научной революции как о периоде сильной необратимости познания, связанное с трактовкой научной революции как гносеологического феномена, как этапа в развитии познания в его целом, позволяет, по-видимому, несколько дополнить понятия парадигмы и инварианта познания. Оба эти понятия исходят из некоторой тождественности позитивных утверждений. Инвариант - понятие, возникшее в математике, - получил весьма общий, во всяком случае, общефизический смысл, когда Эмма Нётер связала его с понятием сохранения физических величин. Можно думать, что указанное понятие получит еще более общий смысл, в том числе гносеологический. При этом па передний край выступает понятие, связанное с сохранением, но в известном смысле противоположное ему - преобразование позитивного ответа при сохранении вопроса. Сохраняющийся вопрос, "вопрошающий инвариант", особенно важен в случае научной революции, когда позитивные парадигмы меняются радикально, настолько радикально, что сохраняется лишь вопрос, на который раньше давали один ответ, а позже - другой. В период научной революции ответы меняются очень быстро и явно, на глазах того же поколения, в наше время - подчас в течение выхода нескольких последовательных номеров физического журнала. Это делает более явным сохранение сквозного вопроса. Его сохранение - это конкретизация, иллюстрация, вывод из основной черты познания как целого, из основной посылки теории познания. Сохранение, в качестве преемственного содержания науки, вопросов, которые каждая эпоха получает от предыдущей и переадресует следующей, все это говорит о бесконечности познания, о его историческом приближении к неисчерпаемой абсолютной истине.
Сейчас придется ввести некоторые ограничения в указанное разграничение позитивных и "вопрошающих" инвариантов. Речь шла о неисчерпаемости объекта науки, о бесконечном приближении познания к его действительному объекту. Но является ли такое приближение необратимым? Понятие необратимости указывает на гносеологическую ценность позитивных ответов, их сохранение
443
в самых радикальных научных революциях. Если отрицать истинность позитивных ответов, если свести научные революции к сохранению вопросов и представить такие революции чем-то вроде катастроф, якобы стирающих с лица Земли все старое, то мы придем к абсолютному релятивизму, к представлению об истории познания как истории заблуждений. Вопрос "как устроен мир?" как будто может сохраняться даже в такой истории. На самом деле, сохранение вопроса, неисчерпаемость познания неотделима от его поступательного и необратимого движения. Вопрос "как устроен мир?" сохраняется, модифицируясь, именно потому, что он получает в каждую эпоху приближенно правильный ответ, хотя и неокончательный, не закрывающий прогресса науки. Вопрошающая компонента науки неотделима в этом смысле от позитивной. Возьмем вопрос, который перешел из перипатетической науки в классическую: "почему тела продолжают двигаться после получения толчка?". Вопрос мог сохраниться лишь при условии некоторых накопленных в течение древности и средневековья необратимых констатации и обобщений. Присмотримся к написанной только что вопрошающей фразе. В ней каждое слово - итог необратимых, навсегда вошедших в науку позитивных итогов опыта и логического мышления. Слово почему - итог длительного и необратимого отказа от некаузального мышления, и как бы ни менялись представления о причинности, то, что стоит за этим словом, не может быть отринуто. Слово тела - итог наблюдения, приведшего к заключению о дискретности мира. Слово продолжают могло приобрести смысл только в результате накопления наблюдений, которым противостояло обычное прекращение движения, в результате появления абстрактного образа тела, предоставленного самому себе, и бесконечного движения, не встречающего препятствий. Слово толчок, обозначающее универсальную причину движения, могло фигурировать в заданном вопросе после необратимой позитивной констатации - обобщенного отказа от нематериальных источников движения.
Классическая наука могла адресовать будущему тот же вопрос в иной форме, которая включала понятия предоставленного себе, т.е. находящегося вне силовых полей, тела, движения как состояния (Галилей), прямолинейной инерции (Декарт), инерционных сил (Ньютон). Без этих понятий и образов Эйнштейн не мог бы ответить на вопрос ссылкой на особенности пространства, на его геометрические свойства, па его евклидовость или неевклидовость.
444
Подобных примеров можно было бы назвать сколько угодно. Они показывают, что вопросы науки без сопровождающих и формирующих позитивных утверждений не могут быть заданы и уже хотя бы поэтому не могут стать звеньями исторически развивающегося познания. Вся история науки демонстрирует невозможность сформулировать вопрос без определенных ответов, причем ответов, образующих необратимый ряд. "Вопрошающая" компонента познания и его "отвечающая" компонента - основные характеристики познания. Познание движется вперед в силу сохранения неисчерпанного каждый раз вопроса. Познание в целом движется вперед, "время познания" необратимо, потому что ответы науки сменяются новыми не в порядке катастроф Кювье, а в порядке возрастающей точности отображения объективной действительности.
Из указанного характера научной революции, из сильной необратимости процесса смены конкретных форм, в которые облачается сквозной вопрос о структуре мира, из постоянной в рамках научной революции связи и борьбы между раньше и позже следуют некоторые выводы о хронологических рамках научной революции, создавшей классическую науку. Раньше в данном случае означало господство перипатетических идей и выведение законов бытия из неподвижной схемы центра мироздания, его границ и "естественных мест". Позже означало обладавшую высоким внешним оправданием и внутренним совершенством науку XVIII-XIX вв. Между ними полутора-двухвековая полоса поисков нового внешнего оправдания и внутреннего совершенства, борьба старого, еще не ликвидированного, и нового, еще не достигнутого, полоса, когда старое и новое сливались в борьбе и превращали каждое теперь в арену борьбы. Подобная общая характеристика науки XVI-XVII вв. подводит при своей исторической конкретизации к выделению последовательных этапов научной революции.
445
Ее первым этапом было Возрождение. Высокое Возрождение - культура XVI в. В этот период перипатетическая наука еще не ушла в прошлое, она претерпевала внутреннюю трансформацию, культура Чинквеченто включала "аристотелевский ренессанс", развивалась и искала новые аргументы философия Аверроэса. Аверроизм, как и неоплатонизм, испытывал глубокую инверсию понятий, акцент переносился на живую подвижную материю, которая порождает меняющиеся формы, старая схема неподвижной гармонии бытия оказывалась уже в тени. Изменилось отношение к античным авторитетам, их критиковали, а защитники Аристотеля не отказывались от новой интерпретации перипатетических текстов. Перипатетическая картина мира теряла свою каноничность. Она еще была жива, натурфилософы XVI в., даже объявляя себя противниками перипатетики, зачастую не выходили за рамки комментирования Аристотеля. Перипатетика была прошлым, но прошлым, еще сохранявшимся в настоящем. Аналогичным образом позже, новое представление о мире, классическая наука оставались будущим, входящим в настоящее, борющимся с раньше, с прошлым, в рамках теперь. Прикладная механика уже накопляла внешнее оправдание для новых оснований картины мира, но встречная тенденция - разработка таких оснований - делала только первые шаги в рамках натурфилософии XVI в. Стиль научного мышления XVI в. был чрезвычайно своеобразным. Мыслитель Чинквеченто как бы спрессовывал в своем сознании временные пласты. В этом отношении научная мысль следовала за культурой предыдущего столетия и Проторенессанса. Уже у Данте спрессованное время выражалось не только в структуре "Божественной комедии", где автор беседует с людьми предшествующих веков, но и в самом содержании, в идеях великой поэмы - сплава средневековых реминисценций и ренессансных прогнозов.
Но была ли наука Возрождения наукой? Имеем ли мы право говорить о научной революции в XVI в.? По-видимому, будет вполне законным ответить на этот вопрос утвердительно. В рамках Возрождения система каузальных представлений о мире, опирающихся на логический анализ и эксперимент, еще не выделилась из моральных и эстетических представлений и высказывалась по преимуществу в натурфилософской форме. Но с этой формой, с эстетикой, моралью и натурфилософией были тесно связаны собственно научные открытия, такие, как система Коперника или подвиг Колумба. Само выделение
446
науки как автономной компоненты культуры было результатом революции в воззрениях на мир, на его познание. Современное представление о науке как о системе, освободившейся от внешних критериев, возникло на основе того, что было сделано в XVI в. Когда речь идет об этих временах, некоторое обобщение понятия науки соответствует ее реальному положению в культуре Возрождения. Известный фрагмент "Диалектики природы", где Энгельс рисует возникновение современного естествознания в рамках Чинквеченто, начинается общей характеристикой культуры Возрождения, а затем показано непрерывное развитие науки, последовательно обретающей современную форму [2].
2 См.: Маркс К., Энгельс Ф. Соч., т. XIV, с. 475-492.
Конец XVI в. и начало XVII в. особенно отчетливо демонстрируют сильную необратимость процесса познания. Возьмем творчество Джордано Бруно. В нем очень много от неоплатонизма, от Николая Кузанского и от итальянской натурфилософии XVI в. И вместе с тем многое принадлежит XVII в. - хотя бы четкая формулировка того, что вошло в науку как принцип относительности Галилея-Ньютона. Но есть более разительный пример сильной необратимости два основных сочинения Галилея: "Диалог" и "Беседы". Первая из названных работ еще тяготеет к ренессансному стилю мышления и изложения, вторая ближе к ньютоновым "Началам". Есть даже еще более яркая иллюстрация: в тексте самого "Диалога" мы наблюдаем сближение раньше (ренессансной натурфилософии) и позже (механики Нового времени). Они сближаются в объединяющем их теперь. Во всей современной "Диалогу" культуре трудно найти более убедительный аргумент для наименования начала Нового времени Постренессансом... Постренессанс и был хронологической рамкой второго этапа научной революции.
Третий этап научной революции (взятой в качестве гносеологического феномена как этап познания Вселенной в ее целом) - картезианская физика, а четвертый - динамизм Ньютона. Эти этапы сохраняют основную особенность первого, ренессансного этапа - спрессованность предреволюционного стиля мышления и стиля, характерного для послереволюционной классической науки
447
XVIII-XIX вв. Спрессованность во времени и борьбу этих раньше и позже. Но здесь такая спрессованность характеризует не только стиль научного мышления и изложения научных идей, но и содержание основных физических концепций, различие которых, собственно, и создает основу для разделения научной революции XVI - XVII вв. на этапы. Указанные концепции были модификациями одной, общей для Возрождения, Постренессанса, картезианской физики и ньютонова динамизма физической идеи - центральной физической идеи научной революции XVI-XVII вв. Но и сама эта идея - физический инвариант классической физики - была модификацией еще более общего принципа физического инварианта всей исторической эволюции познания, включая античную картину мира и современную квантово-релятивистскую, неклассическую науку.
Мы вернулись, таким образом, к единому, охватывающему все последовательные эпохи развития науки историологическому инварианту. Теперь, однако, нужно найти связь между историческими, эпохальными инвариантами, входящими в парадигму каждой эпохи, и сквозным, сохраняющимся, историологическим инвариантом познания - сквозной физической проблемой от Physis Аристотеля до прогнозируемою в настоящее время дальнейшего развития идей Эйнштейна.
Такой сквозной физической проблемой является проблема однородности и неоднородности мира, его изотропии и анизотропии. Физика и космология Аристотеля были теорией радиально-изотропного пространства (все радиальные направления от Земли к небу - равноценны), но это пространство неоднородно, оно включает неподвижный центр, неподвижные границы и неподвижные естественные места, на которые натянуто абсолютное пространство с привилегированной системой отсчета.
Научная революция XVI-XVII вв. была победой новой концепции однородности и изотропности мира. Переход был необратимым: такие, казалось бы, фундаментальные основы классической пауки, как абсолютное пространство и абсолютное время, могли не сохраниться и не сохранились в дальнейшей эволюции познания, да и в XVII в. они не были общепризнанными, но в новой картине мира было нечто, от чего познание уже не могло отступить. Таким был переход от однородности прост
Действительно, у Эйнштейна исходное представление - релятивизм Галилея - Ньютона: система равномерно и прямолинейно движется в пространстве, и ее движение никак не влияет на поведение составляющих систему тел.
Поэтому движение состоит только в изменении относительного места системы - расстояний от этой системы до тел отсчета, которые принципиально равноправны. Дальше - расхождение. У Ньютона, кроме тол отсчета, движение может быть отнесено к самому пространству, к пустоте. В физике эфира пустота занята эфиром, но это уже переходная концепция; в ньютоновой картине мира тела движутся в пустоте. Но вернемся к ньютонову релятивизму. Уже здесь мы видим различие между концепциями Ньютона и Эйнштейна. У Ньютона относительное движение - это движение, отнесенное к телам, но движущееся тело отнюдь не обязано соприкасаться с телами отсчета. Изменяются расстояния, координаты не являются линейками, так же как ньютоново время, - это отнюдь не ход часов, вообще это совсем не физический процесс. В этом смысле у Ньютона, как и у Аристотеля, место корабля может быть отнесено к отдаленному берегу.
437
У Эйнштейна версия "движения в общепринятом смысле" как будто сохраняется. Движение Земли отнесено к несоприкасающемуся с ней Солнцу или к отдаленным неподвижным звездам. И тем не менее координаты всегда обладают действительным физическим смыслом. Когда Эйнштейн рисует систему координат как твердое тело, которое мы можем продолжить как угодно далеко во все стороны, до соприкосновения с движущимся телом, или же приделывает к твердому телу сколь угодно длинные линейки, эта воображаемая возможность отнюдь не условная апелляция к воображению. Во всяком случае не только апелляция к воображению, хотя неограниченно продолженное твердое тело и линейка - воображаемые вещи. Воображаемой здесь служит механическая схема, а не физическая содержательность пространственных и временных интервалов. Эти интервалы меняют свою величину в зависимости от движения системы, а в общей теории относительности они приобретают кривизну, в чем и состоит гравитационное поле.
Но этого мало. В теории относительности прострапственные и временные отрезки сливаются и становятся четырехмерными мировыми линиями, т.е. эвентуальными или реализованными движениями частиц.
В этом смысле теория относительности - некоторый возврат к "движению в подлинном смысле", к картезианскому релятивизму. Возврат совсем не простой: механический образ прилегающих тел, гарантирующий у Декарта физический смысл движения, заменен пространством эвентуальных соприкосновений. Но это уже не пространство механики, тождественное гомогенному веществу - у Декарта, и пустое, служащее, по выражению Вейля, "наемной казармой" для тел - у Ньютона.
Это пространство, заполненное не гомогенной, тождественной себе субстанцией и не лишенное субстанции "небытие"; оно заполнено различными нетождественными физическими событиями и процессами, это - физическое поле.
Эйнштейн и Ньютон
Прости меня, Ньютон; ты нашел единственный путь, возможный в твое время для человека величайшей научной творческой способности и силы мысли. Понятия, созданные тобой, и сейчас еще остаются ведущими в нашем физическом мышлении, хотя мы теперь и знаем, что если мы будем стремиться к более глубокому пониманию взаимосвязей, то мы должны будем заменить эти понятия другими, стоящими дальше от сферы непосредственного опыта.
Эйнштейн
Как изменяется в неклассической ретроспекции, в свете идей Эйнштейна оценка научной революции, создавшей классическую науку? Такая оценка выходит далеко за рамки истории науки. Она служит основой для решения крайне насущных проблем современности. Здесь мы можем следовать за самим Эйнштейном. Для него творчество Ньютона - исторический триумф разума. Статью "Исаак Ньютон", написанную к трехсотлетию рождения английского мыслителя, Эйнштейн начинает словами:
"Несомненно, что разум кажется нам слабым, когда мы думаем о стоящих перед ним задачах; особенно слабым он кажется, когда мы противопоставляем его безумству и страстям человечества, которые, надо признать, почти полностью руководят судьбами человеческими как в малом, так и в большом. Но творенья интеллекта переживают шумную суету поколений и на протяжении веков озаряют мир светом и теплом" [1].
1 Эйнштейн, 4, 78,
439
"На протяжении веков..." Можно быть уверенными, что такова будет участь творчества Эйнштейна, которое отнюдь не заслоняет света и тепла, излучаемого идеями Ньютона, и само не будет заслонено открытиями последующих веков. В чем же основа такого бессмертия творений разума, в чем инвариантная основа излучаемого ими света и тепла? Прежде всего, - в необратимости познания, в том, что творения разума могут быть уточнены и модифицированы сколь угодно радикально, но наука уже не может отказаться от них, вернуться назад. Это не бессмертие неподвижной статуи, это подлинное живое бессмертие. Понятие инварианта неотделимо от понятия преобразования; то общее и сквозное в интеллектуальной деятельности человека, что дает эмоциональный эффект, приносит ощущение света и тепла грядущим поколениям; это поиски нового, трансформация картины мира. Для Эйнштейна Ньютон не был апостолом окончательных истин в последней инстанции (как в приводившихся строках Попа: "Природа и се законы были покрыты мраком, бог сказал: "Да будет Ньютон!", и все осветилось..."). Революционная, ищущая, трансформирующая тенденция творчества Ньютона и всей классической науки в целом становится более отчетливой при сопоставлении с современным преобразованием картины мира, в свете переоценки (отнюдь не обесценивания) научных идей Ньютона, переоценки, вытекающей из идей Эйнштейна. До такой переоценки гелиоцентризм, идея инерции, понятие силы, исчисление бесконечно малых, дифференциальная концепция движения от точки к точке и от мгновения к мгновению - все эти компоненты классической науки не казались революцией и уже вовсе не казались этапом единого, необратимого и незавершенного процесса приближения картины мира к ее неисчерпаемому оригиналу. Мысль о подобном процессе высказывалась не раз, но она не могла поколебать распространенного вплоть до начала XX в. убеждения в непоколебимости фундаментальных классических основ пауки. В те времена история науки напоминала строки Попа, она говорила об озарении, открывшем законы мироздания, и о неизменности открытых законов. Если к такому озарению применить термин "научная революция", то смысл его будет отличаться от современного: сейчас, как бы ни определяли научную революцию, в ней видят не столько завершение поисков, сколько более интенсивное и радикальное продолжение неизбывной и необратимой трансформации знаний о мире. Теперь, исходя из современной неклассической ретроспекции, мы ищем аналогичные
440
черты в науке XVI-XVII вв., позволяющие говорить о произошедшей в этот период революции. Идеи Эйнштейна оказываются исходным пунктом нового взгляда в прошлое, новых историко-культурных, историко-научных и историко-философских оценок классической картины мира. Ее классицизм стал более условным, а ее революционный характер - более заметным. Он представляется сейчас весьма общим, интегральным, означающим не только трансформацию отдельных, отраслевых и частных, физических, астрономических, биологических и т. п. знаний, но и трансформацию самих методов, логических норм, общих канонов познания, того, что называют аксиоматикой науки. Это требует некоторой конкретизации и модификации самого понятия научной революции. Интегрализации этого понятия, указания на трансформацию логики познания, того, что объединяет науку данной эпохи. Ее объединяют повторяющиеся в каждой области научного познания каноны, образующие основные, в наибольшей степени сохраняющиеся при переходе в новую область методы и аксиомы познания, элементы "парадигмы" Томаса Куна. Сейчас, однако, центр тяжести в определении научной революции переносится па другое - па трансформацию парадигмы, которая требует уже не только исторического анализа каждой эпохи в истории познания, но и историологического анализа, выходящего за рамки эпох, определяющего познание в целом - определяющего историологичоские инварианты познания.
В истории познапия мы встречаем междисциплинарные преобразования (то, что изменяется при переходе из одной отрасли пауки в другую) и междисциплинарпые инварианты (субъект преобразования - то, что сохраняется при переходе). Далее мы встречаем историко-научные инварианты сдвигов во времени, инварианты перехода из одпой эпохи в другую. Анализ этих инвариантов образует общую теорию научного познания. Исследование научной революции XVI-XVII вв. как гносеологического феномена с современной точки зрения при сопоставлении классической науки, возникшей в результате указанной революции, с научной революцией XX в. опирается на историологию познания, связывающую историю научной революции с историей познания в целом.
441
Подобная связь делает понятие научной революции интегральным понятием. В историко-научной литературе термин "революция" часто применяется к очень крупным, но все же не охватывающим науку данной эпохи р целом открытиям и обобщениям. По большей части они заслуживают такого названия. Но когда речь идет о научной революции как этапе общей истории познания, о научной революции как гносеологическом феномене, имеется в виду трансформация того общего междисциплинарного инварианта, который определяет созданную данной эпохой картину мира как целое.
Выше, в специальном очерке, уже говорилось о необратимости познания и о его сильной необратимости. Последняя характеризует научные революции: в революционные периоды стиль научного мышления, воздействие науки на общий характер культуры, эффект науки зависят в явной форме от самого движения науки, каждый ответ науки на поставленный вопрос модифицирует этот вопрос, вызывает новые вопросы; вопрошающий аккомпанемент научного развития не замолкает. Для революционной ситуации в науке характерен экспериментальный результат, явно требующий новых исходных принципов, которые охватывают все мироздание, по находящий их лишь в порядке предварительной интуиции, ищущий внутреннего совершенства, фиксирующий на первых порах не столько однозначные ответы, сколько адресованные мирозданию вопросы, демонстрирующий в рамках теперь вопрошающую компоненту познания, его необратимое движение к истине. Таким экспериментом или наблюдением были в XVI в. эллиптические орбиты планет, а в начале XX в. - независимость скорости света от движения системы, в которой она измеряется. Аналогичную, революционную ситуацию создает универсальная идея, которая еще не находит внешнего оправдания и толкает вперед экспериментальное исследование, демонстрируя необратимое движение к истине. Подобные поиски преобразуют логику познания, логические нормы, это служит условием парадоксализации самых общих представлений о мире. Именно такие представления - их можно назвать металогическими - имел в виду Лаплас, когда он говорил, что разуму легче двигаться вперед, чем погружаться в самого себя. Такие погружения разума в самого себя ведут к сопоставлениям раньше (давно установленных фундаментальных принципов) и позже (новых принципов, внешнее оправдание которых еще впереди); и подобное сопоставление стягивает раньше и позже в теперь, демонстрируя сильную необратимость познания.
443
Представление о научной революции как о периоде сильной необратимости познания, связанное с трактовкой научной революции как гносеологического феномена, как этапа в развитии познания в его целом, позволяет, по-видимому, несколько дополнить понятия парадигмы и инварианта познания. Оба эти понятия исходят из некоторой тождественности позитивных утверждений. Инвариант - понятие, возникшее в математике, - получил весьма общий, во всяком случае, общефизический смысл, когда Эмма Нётер связала его с понятием сохранения физических величин. Можно думать, что указанное понятие получит еще более общий смысл, в том числе гносеологический. При этом па передний край выступает понятие, связанное с сохранением, но в известном смысле противоположное ему - преобразование позитивного ответа при сохранении вопроса. Сохраняющийся вопрос, "вопрошающий инвариант", особенно важен в случае научной революции, когда позитивные парадигмы меняются радикально, настолько радикально, что сохраняется лишь вопрос, на который раньше давали один ответ, а позже - другой. В период научной революции ответы меняются очень быстро и явно, на глазах того же поколения, в наше время - подчас в течение выхода нескольких последовательных номеров физического журнала. Это делает более явным сохранение сквозного вопроса. Его сохранение - это конкретизация, иллюстрация, вывод из основной черты познания как целого, из основной посылки теории познания. Сохранение, в качестве преемственного содержания науки, вопросов, которые каждая эпоха получает от предыдущей и переадресует следующей, все это говорит о бесконечности познания, о его историческом приближении к неисчерпаемой абсолютной истине.
Сейчас придется ввести некоторые ограничения в указанное разграничение позитивных и "вопрошающих" инвариантов. Речь шла о неисчерпаемости объекта науки, о бесконечном приближении познания к его действительному объекту. Но является ли такое приближение необратимым? Понятие необратимости указывает на гносеологическую ценность позитивных ответов, их сохранение
443
в самых радикальных научных революциях. Если отрицать истинность позитивных ответов, если свести научные революции к сохранению вопросов и представить такие революции чем-то вроде катастроф, якобы стирающих с лица Земли все старое, то мы придем к абсолютному релятивизму, к представлению об истории познания как истории заблуждений. Вопрос "как устроен мир?" как будто может сохраняться даже в такой истории. На самом деле, сохранение вопроса, неисчерпаемость познания неотделима от его поступательного и необратимого движения. Вопрос "как устроен мир?" сохраняется, модифицируясь, именно потому, что он получает в каждую эпоху приближенно правильный ответ, хотя и неокончательный, не закрывающий прогресса науки. Вопрошающая компонента науки неотделима в этом смысле от позитивной. Возьмем вопрос, который перешел из перипатетической науки в классическую: "почему тела продолжают двигаться после получения толчка?". Вопрос мог сохраниться лишь при условии некоторых накопленных в течение древности и средневековья необратимых констатации и обобщений. Присмотримся к написанной только что вопрошающей фразе. В ней каждое слово - итог необратимых, навсегда вошедших в науку позитивных итогов опыта и логического мышления. Слово почему - итог длительного и необратимого отказа от некаузального мышления, и как бы ни менялись представления о причинности, то, что стоит за этим словом, не может быть отринуто. Слово тела - итог наблюдения, приведшего к заключению о дискретности мира. Слово продолжают могло приобрести смысл только в результате накопления наблюдений, которым противостояло обычное прекращение движения, в результате появления абстрактного образа тела, предоставленного самому себе, и бесконечного движения, не встречающего препятствий. Слово толчок, обозначающее универсальную причину движения, могло фигурировать в заданном вопросе после необратимой позитивной констатации - обобщенного отказа от нематериальных источников движения.
Классическая наука могла адресовать будущему тот же вопрос в иной форме, которая включала понятия предоставленного себе, т.е. находящегося вне силовых полей, тела, движения как состояния (Галилей), прямолинейной инерции (Декарт), инерционных сил (Ньютон). Без этих понятий и образов Эйнштейн не мог бы ответить на вопрос ссылкой на особенности пространства, на его геометрические свойства, па его евклидовость или неевклидовость.
444
Подобных примеров можно было бы назвать сколько угодно. Они показывают, что вопросы науки без сопровождающих и формирующих позитивных утверждений не могут быть заданы и уже хотя бы поэтому не могут стать звеньями исторически развивающегося познания. Вся история науки демонстрирует невозможность сформулировать вопрос без определенных ответов, причем ответов, образующих необратимый ряд. "Вопрошающая" компонента познания и его "отвечающая" компонента - основные характеристики познания. Познание движется вперед в силу сохранения неисчерпанного каждый раз вопроса. Познание в целом движется вперед, "время познания" необратимо, потому что ответы науки сменяются новыми не в порядке катастроф Кювье, а в порядке возрастающей точности отображения объективной действительности.
Из указанного характера научной революции, из сильной необратимости процесса смены конкретных форм, в которые облачается сквозной вопрос о структуре мира, из постоянной в рамках научной революции связи и борьбы между раньше и позже следуют некоторые выводы о хронологических рамках научной революции, создавшей классическую науку. Раньше в данном случае означало господство перипатетических идей и выведение законов бытия из неподвижной схемы центра мироздания, его границ и "естественных мест". Позже означало обладавшую высоким внешним оправданием и внутренним совершенством науку XVIII-XIX вв. Между ними полутора-двухвековая полоса поисков нового внешнего оправдания и внутреннего совершенства, борьба старого, еще не ликвидированного, и нового, еще не достигнутого, полоса, когда старое и новое сливались в борьбе и превращали каждое теперь в арену борьбы. Подобная общая характеристика науки XVI-XVII вв. подводит при своей исторической конкретизации к выделению последовательных этапов научной революции.
445
Ее первым этапом было Возрождение. Высокое Возрождение - культура XVI в. В этот период перипатетическая наука еще не ушла в прошлое, она претерпевала внутреннюю трансформацию, культура Чинквеченто включала "аристотелевский ренессанс", развивалась и искала новые аргументы философия Аверроэса. Аверроизм, как и неоплатонизм, испытывал глубокую инверсию понятий, акцент переносился на живую подвижную материю, которая порождает меняющиеся формы, старая схема неподвижной гармонии бытия оказывалась уже в тени. Изменилось отношение к античным авторитетам, их критиковали, а защитники Аристотеля не отказывались от новой интерпретации перипатетических текстов. Перипатетическая картина мира теряла свою каноничность. Она еще была жива, натурфилософы XVI в., даже объявляя себя противниками перипатетики, зачастую не выходили за рамки комментирования Аристотеля. Перипатетика была прошлым, но прошлым, еще сохранявшимся в настоящем. Аналогичным образом позже, новое представление о мире, классическая наука оставались будущим, входящим в настоящее, борющимся с раньше, с прошлым, в рамках теперь. Прикладная механика уже накопляла внешнее оправдание для новых оснований картины мира, но встречная тенденция - разработка таких оснований - делала только первые шаги в рамках натурфилософии XVI в. Стиль научного мышления XVI в. был чрезвычайно своеобразным. Мыслитель Чинквеченто как бы спрессовывал в своем сознании временные пласты. В этом отношении научная мысль следовала за культурой предыдущего столетия и Проторенессанса. Уже у Данте спрессованное время выражалось не только в структуре "Божественной комедии", где автор беседует с людьми предшествующих веков, но и в самом содержании, в идеях великой поэмы - сплава средневековых реминисценций и ренессансных прогнозов.
Но была ли наука Возрождения наукой? Имеем ли мы право говорить о научной революции в XVI в.? По-видимому, будет вполне законным ответить на этот вопрос утвердительно. В рамках Возрождения система каузальных представлений о мире, опирающихся на логический анализ и эксперимент, еще не выделилась из моральных и эстетических представлений и высказывалась по преимуществу в натурфилософской форме. Но с этой формой, с эстетикой, моралью и натурфилософией были тесно связаны собственно научные открытия, такие, как система Коперника или подвиг Колумба. Само выделение
446
науки как автономной компоненты культуры было результатом революции в воззрениях на мир, на его познание. Современное представление о науке как о системе, освободившейся от внешних критериев, возникло на основе того, что было сделано в XVI в. Когда речь идет об этих временах, некоторое обобщение понятия науки соответствует ее реальному положению в культуре Возрождения. Известный фрагмент "Диалектики природы", где Энгельс рисует возникновение современного естествознания в рамках Чинквеченто, начинается общей характеристикой культуры Возрождения, а затем показано непрерывное развитие науки, последовательно обретающей современную форму [2].
2 См.: Маркс К., Энгельс Ф. Соч., т. XIV, с. 475-492.
Конец XVI в. и начало XVII в. особенно отчетливо демонстрируют сильную необратимость процесса познания. Возьмем творчество Джордано Бруно. В нем очень много от неоплатонизма, от Николая Кузанского и от итальянской натурфилософии XVI в. И вместе с тем многое принадлежит XVII в. - хотя бы четкая формулировка того, что вошло в науку как принцип относительности Галилея-Ньютона. Но есть более разительный пример сильной необратимости два основных сочинения Галилея: "Диалог" и "Беседы". Первая из названных работ еще тяготеет к ренессансному стилю мышления и изложения, вторая ближе к ньютоновым "Началам". Есть даже еще более яркая иллюстрация: в тексте самого "Диалога" мы наблюдаем сближение раньше (ренессансной натурфилософии) и позже (механики Нового времени). Они сближаются в объединяющем их теперь. Во всей современной "Диалогу" культуре трудно найти более убедительный аргумент для наименования начала Нового времени Постренессансом... Постренессанс и был хронологической рамкой второго этапа научной революции.
Третий этап научной революции (взятой в качестве гносеологического феномена как этап познания Вселенной в ее целом) - картезианская физика, а четвертый - динамизм Ньютона. Эти этапы сохраняют основную особенность первого, ренессансного этапа - спрессованность предреволюционного стиля мышления и стиля, характерного для послереволюционной классической науки
447
XVIII-XIX вв. Спрессованность во времени и борьбу этих раньше и позже. Но здесь такая спрессованность характеризует не только стиль научного мышления и изложения научных идей, но и содержание основных физических концепций, различие которых, собственно, и создает основу для разделения научной революции XVI - XVII вв. на этапы. Указанные концепции были модификациями одной, общей для Возрождения, Постренессанса, картезианской физики и ньютонова динамизма физической идеи - центральной физической идеи научной революции XVI-XVII вв. Но и сама эта идея - физический инвариант классической физики - была модификацией еще более общего принципа физического инварианта всей исторической эволюции познания, включая античную картину мира и современную квантово-релятивистскую, неклассическую науку.
Мы вернулись, таким образом, к единому, охватывающему все последовательные эпохи развития науки историологическому инварианту. Теперь, однако, нужно найти связь между историческими, эпохальными инвариантами, входящими в парадигму каждой эпохи, и сквозным, сохраняющимся, историологическим инвариантом познания - сквозной физической проблемой от Physis Аристотеля до прогнозируемою в настоящее время дальнейшего развития идей Эйнштейна.
Такой сквозной физической проблемой является проблема однородности и неоднородности мира, его изотропии и анизотропии. Физика и космология Аристотеля были теорией радиально-изотропного пространства (все радиальные направления от Земли к небу - равноценны), но это пространство неоднородно, оно включает неподвижный центр, неподвижные границы и неподвижные естественные места, на которые натянуто абсолютное пространство с привилегированной системой отсчета.
Научная революция XVI-XVII вв. была победой новой концепции однородности и изотропности мира. Переход был необратимым: такие, казалось бы, фундаментальные основы классической пауки, как абсолютное пространство и абсолютное время, могли не сохраниться и не сохранились в дальнейшей эволюции познания, да и в XVII в. они не были общепризнанными, но в новой картине мира было нечто, от чего познание уже не могло отступить. Таким был переход от однородности прост