Страница:
Теория относительности показала, что исходные динамические закономерности мира иные, не такие, какими их описал Ньютон в "Началах". Но это не изменило динамического характера закономерностей механики (в отличие от статистических закономерностей термодинамики).
Двадцать лет спустя этот динамический, чуждый понятию вероятности характер законов механики был опрокинут новой революцией в науке. Истоки новой революции содержались во все том же томе "Annalen der Physik" - в статье Эйнштейна о квантах света. Но отношение Эйнштейна к мысли о статистических закономерностях как исходных закономерностях мира было очень сложным. В нем нужно разобраться, иначе нельзя показать гармонию всего творчества Эйнштейна в целом. Здесь пришлось так подробно рассказать о статистических закономерностях термодинамики и включить элементарные пояснения, чтобы потом легче было изложить и
103
разъяснить отношение Эйнштейна к квантово-статистическим закономерностям. Этот вопрос интересует не только физиков. Как подходил величайший физик нашего времени к проблеме основных, исходных закономерностей мира - это вопрос не истории физики, а вопрос всей культурной истории XX столетия.
В юности на Эйнштейна произвела сильное впечатление именно неотделимость закономерностей термодинамики от механики молекул. Термодинамика в глазах Эйнштейна - не отрицание движения частиц, т.е. механики как основы картины мира (так думали Мах и Оствальд), и не область непосредственного господства механических законов (так думали эпигоны механицизма); для Эйнштейна термодинамика является широкой областью опосредствованного применения и подтверждения законов движения дискретных частей материи. Для механицизма XVIII в. и для его эпигонов физические задачи, которые решались при помощи механики, были однотипными. В науке XIX в. эти задачи были разнообразными в смысле сложности, многокрасочности, несводимости одна к другой. Для Эйнштейна подобное разнообразие задач и предметов - доказательство силы и согласия с действительностью той теории, которая в последнем счете, не зачеркивая специфичности частных задач, служит ключом к их решению. "Теория, - пишет Эйнштейн, - производит тем большее впечатление, чем проще ее предпосылки, чем разнообразнее предметы, которые она связывает, и чем шире область ее применения. Отсюда глубокое впечатление, которое произвела на меня классическая термодинамика. Это единственная физическая теория общего содержания, относительно которой я убежден, что в рамках применимости ее основных понятий она никогда не будет опровергнута (к особому сведению принципиальных скептиков)" [2].
2 Эйнштейн, 4, 270.
Что именно в классической термодинамике придает ей такую исключительную устойчивость?
Классические законы, определяющие ускорения, скорости и положения молекул в каждый момент, иначе говоря, законы механики Ньютона, уступили место другим, более точным законам. Незыблемым остается положение о переходе термодинамических систем в достаточно боль
104
ших пространственных и временных областях из менее вероятных состояний в более вероятные и выведение этой закономерности из большого числа беспорядочных движений отдельных молекул. Могут измениться законы, управляющие этими движениями, но связь сложных необратимых, вероятностных, статистических процессов с движением частиц остается незыблемой.
Теория броуновского движения разбивала иллюзию независимости макроскопических законов от кинетических моделей, в которых фигурируют молекулы. Эйнштейн, рассказывая, как законы броуновского движения и другие открытия в учении о теплоте и молекулярном движении убедили скептиков в реальности атомов, отмечает, что скептицизм Маха и Оствальда вытекал из предвзятой позитивистской схемы.
"Предубеждение этих ученых против атомной теории можно, несомненно, отнести за счет их позитивистской философской установки. Это интересный пример того, как философские предубеждения мешают правильной интерпретации фактов даже ученым со смелым мышлением и с тонкой интуицией" [3].
3 Эйнштейн, 4, 276.
Могут ли, спрашивает Эйнштейн, факты сами по себе без теоретических конструкций привести к научному представлению о действительности? Под теоретической конструкцией подразумеваются те или иные гипотезы о непосредствепно ненаблюдаемых атомах и молекулах и об их движениях. Для Маха подобное вторжение в непосредственно не наблюдаемую область "метафизика". Для Оствальда задача ограничивается описанием макроскопически наблюдаемых переходов энергии из одной формы в другую без проникновения в закулисный мир движущихся частиц материи. Для Эйнштейна именно в таком проникновении и состоит задача познания физических процессов. Описание непосредственно наблюдаемых фактов (в данном случае - макроскопических процессов) не дает однозначной теории. Непосредственно связанные с эмпирическим материалом понятия вовсе не вытекают однозначным образом из объективной реальности. Их "очевидность" - иллюзия, возникшая от длительного применения.
105
Фотоны
Не являются ли лучи света очень малыми телами, испускаемыми светящимся веществом?
Ньютон
В предыдущей главе говорилось о "классическом идеале" науки, о картине мира, которая может отличаться от ньютоновой по характеру законов, движения тел, но принадлежит к тому же типу: ее исходными понятиями служат относительное движение и взаимодействие частиц и состоящих из них тел. Столкновение механики Ньютона с термодинамикой окончилось благополучно и для механики Ньютона, и для "классического идеала" вообще. Механика Ньютона сохранила свои позиции за кулисами статистических законов термодинамики. Это, впрочем, еще не гарантировало абсолютной точности ньютонового варианта "классического идеала". Следующие столкновения (с электродинамикой!) заставили перейти к иным вариантам.
Теория относительности была освобождением "классического идеала" от противоречий и произвольных допущений, она приносила ему "внешнее оправдание" и "внутреннее совершенство" ценой перехода от ньютонового варианта к новому. Эта схема будет проиллюстрирована при изложении работ Эйнштейна 1905 г. (специальная теория относительности) и 1916 г. (общая теория относительности). Но указанная программа привела и к более радикальному результату. Она поставила под сомнение не только ньютонов вариант "классического идеала", но и самый этот идеал - картину мира, в которой наиболее элементарными понятиями служат перемещение и взаимодействие тождественных себе тел. С таким результатом теории относительности мы столкнемся в связи с работами Эйнштейна в тридцатые пятидесятые годы.
106
Указанный более радикальный результат - пересмотр "классического идеала" - гораздо явственнее и скорее, чем в теории относительности, наметился при развитии идеи, выдвинутой Эйнштейном также в 1905 г., - идеи квантов света, или фотонов. Первоначально речь шла также о торжестве "классического идеала". Но развитие идей, высказанных Эйнштейном в теории фотонов, в конце концов стало угрожать "классическому идеалу" в целом. Когда же принципы теории относительности и принципы квантовой теории света объединились, картина взаимного перемещения тождественных себе тел потеряла свой титул исходного, наиболее глубокого представления о мире.
В 1900 г. Макс Планк разрешил некоторые, очень тяжелые, противоречия теории излучения, предположив, что энергия электромагнитных волн, т.е. света, излучается и поглощается дискретными, далее неделимыми количествами, квантами.
Эйнштейн в 1905 г. выдвинул теорию, согласно которой свет не только излучается и поглощается, но и состоит из дискретных, далее неделимых порций, квантов света. Они представляют собой частицы, которые движутся в пустоте со скоростью 300 000 километров в секунду. Впоследствии (в двадцатые годы) эти частицы получили название фотонов.
Существование фотонов - квантов света - само по себе не следует из существования неделимых порций излучения и поглощения. Эйнштейн разъяснил соотношение гипотезы фотонов и теории Планка следующим сравнением:
"Если пиво всегда продают в бутылках, содержащих пинту, отсюда вовсе не следует, что пиво состоит из неделимых частей, равных пинте". Филипп Франк развил эту аналогию [1]. Чтобы проверить, состоит ли пиво в бочонке из неделимых далее частей, разольем его из бочонка в некоторое число сосудов, например в десять сосудов. Разливать мы будем пиво совершенно произвольным образом, предоставляя случаю определить, сколько попадет в каждый сосуд. Измерим, сколько пива ока
107
залось в каждом сосуде, и потом выльем его обратно в бочонок. Повторим такую операцию некоторое большое число раз. Если пиво не состоит из неделимых частей, среднее количество пива в каждом сосуде будет одно и то же для всех этих сосудов. Если же пиво состоит из неделимых частей, между сосудами появятся различия в среднем количестве пива. Представим себе в качестве крайнего случая, что бочонок содержит только одну неделимую порцию пива. Тогда вся эта порция будет вылита каждый раз только в один сосуд и различие между содержимым сосудов будет наибольшим: в одном сосуде окажется все пиво из бочонка, остальные сосуды останутся пустыми. Если бочонок состоит из двух, трех и так далее неделимых порций, отклонения от среднего значения станут все меньше. Таким образом, по величине отклонений от среднего значения, т.е. по величине флюктуаций, можно судить о величине неделимых порций пива.
1 См.: Frank, 72.
Перейдем теперь к изучению электромагнитных волн. Пусть они заполняют ограниченный стенками "бочонок" - некоторый объем пространства, состоящий из отдельных клеток. Можно ли разделить энергию этих волн на сколь угодно большое число частей или мы натолкнемся на неделимые далее "порции"? И если излученное электромагнитное поле дискретно, то какова величина его наименьших "порций"?
На эти вопросы можно ответить, измеряя отклонения количества энергии в клетках от среднего значения - вариации этого количества при переходе от одной клетки к другой. Если минимальные "порции" велики, то и вариации велики; если "порции" малы, то и вариации малы.
Измерения дают следующий результат. В фиолетовом свете (более высокие частоты электромагнитных колебаний), заполняющем некоторый объем, мы встречаемся со сравнительно большими вариациями количеств энергии в различных клетках. В красном свете (менее высокие частоты колебаний) флюктуации количества энергии, т.е. вариации при переходе из одной клетки в другую, меньше. Отсюда следует, что фиолетовый свет (колебания с большей частотой) состоит из более крупных неделимых порций энергии, чем красный свет (колебания с меньшей частотой).
108
По этому можно судить, что "пиво не только продается пинтовыми бутылками, но и состоит из пинтовых порций", - свет состоит из неделимых частиц; он не только поглощается и излучается неделимыми частями, но и в промежутке между излучением и поглощением состоит из неделимых частиц, несущих больше энергии, если частота электромагнитных колебаний больше. Энергия частиц (квантов) света - фотонов - пропорциональна частоте и для определенного (монохроматического) света представляет определенную величину.
Корпускулярная структура света, существование фотонов демонстрируется самым непреложным образом в ряде экспериментов. Особенно отчетливо и убедительно существование фотонов выводится из явлений фотоэлектрического эффекта. Эти явления состоят в появлении электрического тока под действием света. Попадая на металлическую пластинку, свет вырывает из нее электроны, движение этих электронов создает электрический ток.
Представим себе некоторый источник света, т.е. излучатель электромагнитных волн. По мере того как волна расходится во все стороны, плотность энергии на фронте волны уменьшается. Но при этом энергия выбитых с пластинки электронов не уменьшается. Каждый выбитый электрон обладает той же энергией, уменьшается лишь число таких электронов. Пусть излученная энергия как раз такая, какая нужна, чтобы выбить электрон из пластинки. Эксперимент показывает, что в этом случае свет может вырвать электрон из пластинки, т.е. даст фотоэлектрический эффект на большом расстоянии от источника. По замечанию Крамерса, дело происходит так, как будто с корабля в воду прыгнул матрос, а энергия волны, разошедшейся по поверхности моря после всплеска воды, дошла бы до другого края моря и здесь выбросила такого же купающегося матроса на палубу его корабля.
Итак, из теории фотоэлектрического эффекта следует, что энергия, затраченная на освобождение одного электрона, не зависит от расстояния между металлической пластинкой и источником света. Она зависит от частоты электромагнитных колебаний. В каждом случае выбитый электрон получает всю необходимую для его освобождения энергию, по чем дальше расстояние, тем таких электронов меньше. Такая закономерность, заключил Эйнштейн, соответствует картине отдельных частиц, разле
109
тающихся во все стороны от источника света. Чем дальше от источника, тем меньше в среднем будет таких частиц в единице объема, тем меньше вероятность встречи с частицей света в каждой точке пространства, но если мы встретились с этой частицей, ее энергия одна и та же на любом расстоянии от источника, она зависит только от частоты колебаний. Но о каких, собственно, колебаниях идет речь, если свет состоит из частиц? Здесь мы сталкиваемся с самой тяжелой апорией физики XX в., содержащейся в выдвинутой Эйнштейном теории световых квантов.
Существование электромагнитных волн и волновая природа света не могут быть опровергнуты. Вместе с тем нельзя опровергнуть корпускулярную природу света - тот факт, что свет состоит из фотонов. Необъяснимое противоречие вошло в науку, и лишь через двадцать лет физической мысли удалось найти некоторое объяснение указанного противоречия.
Это противоречие, это парадоксальное соединение волновых и корпускулярных свойств света очень характерно для научных идей Эйнштейна. Эйнштейн ни на минуту не сомневается в том, что свет действительно обладает волновыми и корпускулярными свойствами. Он не хочет обойти парадокс, опрокидывающий и классическое представление о частицах, не обладающих волновыми свойствами, и классическое представление о волнах, которые никак не обладают корпускулярной природой.
В том же томе "Annalen der Physik", где была напечатана статья о световых квантах, было, как нам уже известно, напечатано первое изложение теории относительности Эйнштейна. Там описывалась, быть может, еще более парадоксальная ситуация: свет распространяется с одной и той же скоростью по отношению к телам, которые сами движутся, одно относительно другого. Можно провести дальше идущую аналогию: в обеих теориях, и в теории фотонов и теории относительности, Эйнштейн описывает парадоксальные ситуации в физике отнюдь не как внешний феноменологический результат непарадоксальных процессов. Как мы увидим дальше, существовала теория, выдвинутая Лоренцем и объяснявшая постоянство скорости света как результат лежащих в основе явления непарадоксальных процессов. В квантовой теории также существовала такая тенденция. Планк думал, что
110
свет - чисто волновой процесс без каких-либо корпускулярных свойств, т.е. нечто вполне респектабельное в глазах классической физики, - дает дискретное значение энергии только при поглощении и излучении, в силу некоторого особенного механизма излучения и поглощения света. Здесь имеется известная аналогия между соотношением взглядов Эйнштейна и Лоренца, с одной стороны, и Эйнштейна и Планка, с другой. В обоих случаях Эйнштейна отличало не только содержание выдвинутых им физических идей, но и связанное с этим содержанием удивительное по силе чувство парадоксальности бытия или, что то же самое, достоверности, объективности и субстанциальности парадоксальных выводов, противоречащих и "очевидному" наблюдению, и "очевидной" логике. Теория фотонов с ее парадоксальным соединением исключающих друг друга волновых и корпускулярных свойств света в течение долгого времени не получала признания. В 1912 г. в представлении, подписанном крупнейшими немецкими физиками и в том числе Планком, об избрании Эйнштейна в Прусскую Академию наук говорилось о гипотезе световых квантов как о чем-то требующем извинений: "То, что он в своих рассуждениях иногда выходит за пределы цели, как, например, в своей гипотезе световых квантов, не следует слишком сильно ставить ему в упрек. Ибо, не решившись пойти на риск, нельзя осуществить истинно нового, даже в самом точном естествознании" [2].
2 Успехи физических наук, 1956. 59. вып. 1, с. 127.
Постоянство скорости света
Представим себе двух физиков, у каждого из которых лаборатория, снабженная всеми мыслимыми физическими аппаратами. Лаборатория одного из физиков находится в открытом поле, а лаборатория другого - в вагоне поезда, быстро несущегося в некотором направлении. Принцип относительности утверждает: два физика, применив все аппараты для изучения всех существующих в природе законов - один в неподвижной лаборатории, другой в вагоне, - найдут, что эти законы одни и те же, если вагон движется равномерно и без тряски. Если сказать в более абстрактной форме, то это выглядит так: согласно принципу относительности законы природы не зависит от переносного движения систем отсчета.
Эйнштейн
Эйнштейну было шестнадцать лет, когда он впервые задумался о том, с какой скоростью свет распространяется в различных, движущихся одна относительно другой системах отсчета. Тогда же, в Аарау, и впоследствии, в Цюрихе, за десять лет до создания теории относительности, Эйнштейн, стремясь нагляднее представить движение системы отсчета, мысленно рисовал движущиеся вместе с каким-то телом, прикрепленные к этому телу измерительные стержни, а также часы. Стержни и часы позволяют измерить положение каждого тела в каждое мгновение и определить его скорость. Таким образом, система отсчета рисовалась Эйнштейну в виде реального тела, к которому прикреплено начало координат, бесконечные координатные оси и множество сколь угодно длинных стержней, так что любое тело, где бы оно ни находилось в данный момент, совпадает по своему положению с определенными отметками на измерительных стержнях, т.е. имеет определенные координаты, причем "данный момент" один и тот же в каждой точке, ориентированной при помощи стержней, - мы можем сверить все находящиеся в этих точках часы. Чтобы не смешивать измерения, сделанные по отношению к данной системе отсчета,
112
с другими, отнесенными к иной системе отсчета, Эйнштейн представил себе человека, который движется вместе с системой и не видит никаких других систем. Он наблюдает только, совместились ли тела с отметками на измерительных стержнях данной системы отсчета. Этот "наблюдатель" фигурирует почти во всех изложениях теории относительности, но можно было бы обойтись и без него; он представляет собой столь же воображаемую фигуру, как и координатные оси и измерительные стержни, прибитые к движущемуся тепу и образующие движущуюся вместе с ним систему отсчета (систему отсчета, в которой это тело неподвижно). "Наблюдатели" так же мало затушевывают объективный смысл теории относительности, как выражение "если вы протянете веревку от Земли до Солнца..." ставит объективный факт - определенное расстояние между небесными телами - в зависимость от реальных или воображаемых измерений. Когда воображение рисует "наблюдателя", то появляется несколько неясный образ человека, привязанного к летящим в пространстве измерительным стержням и способного одновременно измерять положения тел при помощи этих бесчисленных и бесконечных по величине стержней. Этот образ может быть заменен менее точным, но более представимым образом пассажира в купе поезда с задернутыми занавесками на окнах или в каюте корабля (этой каютой пользовался, как мы помним, Галилей для демонстрации классического принципа относительности).
Представим себе корабль, движущийся с той же скоростью, что и волны на поверхности моря. Для находящегося на корабле "наблюдателя", т.е. для человека, который может измерить скорости только по отношению к кораблю, волны покажутся неподвижными. Не замечая ни неба, ни берегов, "наблюдатель" увидит как бы застывшую поверхность моря, он ничего не будет знать о движении волн - ведь они неподвижны по отношению к кораблю. Такие субъективные впечатления "наблюдателя" лишь условное выражение объективного факта: волны действительно неподвижны по отношению к системе отсчета, в которой неподвижен корабль (к системе, "привязанной" к кораблю).
113
Эйнштейна заинтересовал вопрос, сохранится ли неподвижность волн по отношению к кораблю (к системе отсчета, "привязанной" к кораблю, и к находящемуся на нем "наблюдателю"), если это будут не волны на водной поверхности, а электромагнитные волны, т.е. свет. Свет пробегает вдоль Земли со скоростью, приблизительно равной 300 000 километров в секунду. Пусть корабль движется по морю с такой же скоростью. Для "наблюдателя" на корабле свет имеет тогда нулевую скорость. Но в этом случае оптические процессы на корабле резко изменятся, например вспышка фонаря не осветит экрана, находящегося на носу корабля. Электромагнитное поле станет аналогичным застывшей поверхности моря, окружающей корабль, оно окажется переменным в пространстве, т.е. в пространство будут чередоваться гребни и впадины, но они не будут сдвигаться с течением времени. Такое изменение оптических процессов позволит "наблюдателю" зарегистрировать абсолютным образом движение системы. Вооруженный оптическими инструментами "наблюдатель" сможет отличить движущийся корабль от неподвижного. Но это противоречит теории Максвелла, в которой свет всегда представляет собой движущиеся электромагнитные волны. Противоречит это и интуитивному убеждению в невозможности зарегистрировать равномерное и прямолинейное движение при помощи внутренних эффектов в движущейся системе.
Об указанном парадоксе, овладевшем его мыслями в шестнадцать лет в Аарау, Эйнштейн говорит:
"Парадокс заключается в следующем. Если бы я стал двигаться вслед за лучом света со скоростью с (скорость света в пустоте), то я должен был бы воспринимать такой луч света как покоящееся, переменное в пространстве электромагнитное поле. Но ничего подобного не существует; это видно как на основании опыта, так и из уравнений Максвелла. Интуитивно мне казалось ясным с самого начала, что с точки зрения такого наблюдателя все должно совершаться по тем же законам, как и для наблюдателя, неподвижного относительно Земли. В самом деле, как же первый наблюдатель может знать или установить, что он находится в состоянии быстрого равномерного движения?" [1]
1 Эйнштейн, 4, 278.
По существу, указанный парадокс является конфликтом между двумя идеями классической механики, перенесенными в новую область электродинамических процессов.
Первая из них представляет собой классическое правило сложения скоростей. Если человек идет по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда он идет по направлению движения поезда, и со скоростью 50-5 = 45 километров в час, когда он идет в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55-50 = 5 километров в час. Если волны движутся относительно берега со скоростью 30 километров в час, а корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30-30 = 0 километров в час, т.е. они остаются неподвижными. Что же произойдет в случае электромагнитных волн? Сохранится ли здесь столь очевидное правило сложения скоростей?
Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущейся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, т.е. можем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе, то преобразования называются галилеевыми. Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками - разность между их координатами в одной инерциальной системе отсчета - всегда равно их расстоянию в другой инерциальной системе.
Вторая идея - принцип относительности. Находясь на корабле, движущемся равномерно и прямолинейно, нельзя обнаружить его движение какими-либо внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что то же самое, электродинамическим эффектам? Интуиция (довольно явным образом связанная с классическим принципом относительности)
115
говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определенной скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантной по отношению к галилеевым преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом, электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики - правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми. Непротиворечивая картина мира могла быть только парадоксальной, "безумной", т.е. отказывающейся от привычного и поэтому "очевидного" положения. От какого именно - от правила сложения скоростей или от принципа относительности, - это должен был решить эксперимент.
Двадцать лет спустя этот динамический, чуждый понятию вероятности характер законов механики был опрокинут новой революцией в науке. Истоки новой революции содержались во все том же томе "Annalen der Physik" - в статье Эйнштейна о квантах света. Но отношение Эйнштейна к мысли о статистических закономерностях как исходных закономерностях мира было очень сложным. В нем нужно разобраться, иначе нельзя показать гармонию всего творчества Эйнштейна в целом. Здесь пришлось так подробно рассказать о статистических закономерностях термодинамики и включить элементарные пояснения, чтобы потом легче было изложить и
103
разъяснить отношение Эйнштейна к квантово-статистическим закономерностям. Этот вопрос интересует не только физиков. Как подходил величайший физик нашего времени к проблеме основных, исходных закономерностей мира - это вопрос не истории физики, а вопрос всей культурной истории XX столетия.
В юности на Эйнштейна произвела сильное впечатление именно неотделимость закономерностей термодинамики от механики молекул. Термодинамика в глазах Эйнштейна - не отрицание движения частиц, т.е. механики как основы картины мира (так думали Мах и Оствальд), и не область непосредственного господства механических законов (так думали эпигоны механицизма); для Эйнштейна термодинамика является широкой областью опосредствованного применения и подтверждения законов движения дискретных частей материи. Для механицизма XVIII в. и для его эпигонов физические задачи, которые решались при помощи механики, были однотипными. В науке XIX в. эти задачи были разнообразными в смысле сложности, многокрасочности, несводимости одна к другой. Для Эйнштейна подобное разнообразие задач и предметов - доказательство силы и согласия с действительностью той теории, которая в последнем счете, не зачеркивая специфичности частных задач, служит ключом к их решению. "Теория, - пишет Эйнштейн, - производит тем большее впечатление, чем проще ее предпосылки, чем разнообразнее предметы, которые она связывает, и чем шире область ее применения. Отсюда глубокое впечатление, которое произвела на меня классическая термодинамика. Это единственная физическая теория общего содержания, относительно которой я убежден, что в рамках применимости ее основных понятий она никогда не будет опровергнута (к особому сведению принципиальных скептиков)" [2].
2 Эйнштейн, 4, 270.
Что именно в классической термодинамике придает ей такую исключительную устойчивость?
Классические законы, определяющие ускорения, скорости и положения молекул в каждый момент, иначе говоря, законы механики Ньютона, уступили место другим, более точным законам. Незыблемым остается положение о переходе термодинамических систем в достаточно боль
104
ших пространственных и временных областях из менее вероятных состояний в более вероятные и выведение этой закономерности из большого числа беспорядочных движений отдельных молекул. Могут измениться законы, управляющие этими движениями, но связь сложных необратимых, вероятностных, статистических процессов с движением частиц остается незыблемой.
Теория броуновского движения разбивала иллюзию независимости макроскопических законов от кинетических моделей, в которых фигурируют молекулы. Эйнштейн, рассказывая, как законы броуновского движения и другие открытия в учении о теплоте и молекулярном движении убедили скептиков в реальности атомов, отмечает, что скептицизм Маха и Оствальда вытекал из предвзятой позитивистской схемы.
"Предубеждение этих ученых против атомной теории можно, несомненно, отнести за счет их позитивистской философской установки. Это интересный пример того, как философские предубеждения мешают правильной интерпретации фактов даже ученым со смелым мышлением и с тонкой интуицией" [3].
3 Эйнштейн, 4, 276.
Могут ли, спрашивает Эйнштейн, факты сами по себе без теоретических конструкций привести к научному представлению о действительности? Под теоретической конструкцией подразумеваются те или иные гипотезы о непосредствепно ненаблюдаемых атомах и молекулах и об их движениях. Для Маха подобное вторжение в непосредственно не наблюдаемую область "метафизика". Для Оствальда задача ограничивается описанием макроскопически наблюдаемых переходов энергии из одной формы в другую без проникновения в закулисный мир движущихся частиц материи. Для Эйнштейна именно в таком проникновении и состоит задача познания физических процессов. Описание непосредственно наблюдаемых фактов (в данном случае - макроскопических процессов) не дает однозначной теории. Непосредственно связанные с эмпирическим материалом понятия вовсе не вытекают однозначным образом из объективной реальности. Их "очевидность" - иллюзия, возникшая от длительного применения.
105
Фотоны
Не являются ли лучи света очень малыми телами, испускаемыми светящимся веществом?
Ньютон
В предыдущей главе говорилось о "классическом идеале" науки, о картине мира, которая может отличаться от ньютоновой по характеру законов, движения тел, но принадлежит к тому же типу: ее исходными понятиями служат относительное движение и взаимодействие частиц и состоящих из них тел. Столкновение механики Ньютона с термодинамикой окончилось благополучно и для механики Ньютона, и для "классического идеала" вообще. Механика Ньютона сохранила свои позиции за кулисами статистических законов термодинамики. Это, впрочем, еще не гарантировало абсолютной точности ньютонового варианта "классического идеала". Следующие столкновения (с электродинамикой!) заставили перейти к иным вариантам.
Теория относительности была освобождением "классического идеала" от противоречий и произвольных допущений, она приносила ему "внешнее оправдание" и "внутреннее совершенство" ценой перехода от ньютонового варианта к новому. Эта схема будет проиллюстрирована при изложении работ Эйнштейна 1905 г. (специальная теория относительности) и 1916 г. (общая теория относительности). Но указанная программа привела и к более радикальному результату. Она поставила под сомнение не только ньютонов вариант "классического идеала", но и самый этот идеал - картину мира, в которой наиболее элементарными понятиями служат перемещение и взаимодействие тождественных себе тел. С таким результатом теории относительности мы столкнемся в связи с работами Эйнштейна в тридцатые пятидесятые годы.
106
Указанный более радикальный результат - пересмотр "классического идеала" - гораздо явственнее и скорее, чем в теории относительности, наметился при развитии идеи, выдвинутой Эйнштейном также в 1905 г., - идеи квантов света, или фотонов. Первоначально речь шла также о торжестве "классического идеала". Но развитие идей, высказанных Эйнштейном в теории фотонов, в конце концов стало угрожать "классическому идеалу" в целом. Когда же принципы теории относительности и принципы квантовой теории света объединились, картина взаимного перемещения тождественных себе тел потеряла свой титул исходного, наиболее глубокого представления о мире.
В 1900 г. Макс Планк разрешил некоторые, очень тяжелые, противоречия теории излучения, предположив, что энергия электромагнитных волн, т.е. света, излучается и поглощается дискретными, далее неделимыми количествами, квантами.
Эйнштейн в 1905 г. выдвинул теорию, согласно которой свет не только излучается и поглощается, но и состоит из дискретных, далее неделимых порций, квантов света. Они представляют собой частицы, которые движутся в пустоте со скоростью 300 000 километров в секунду. Впоследствии (в двадцатые годы) эти частицы получили название фотонов.
Существование фотонов - квантов света - само по себе не следует из существования неделимых порций излучения и поглощения. Эйнштейн разъяснил соотношение гипотезы фотонов и теории Планка следующим сравнением:
"Если пиво всегда продают в бутылках, содержащих пинту, отсюда вовсе не следует, что пиво состоит из неделимых частей, равных пинте". Филипп Франк развил эту аналогию [1]. Чтобы проверить, состоит ли пиво в бочонке из неделимых далее частей, разольем его из бочонка в некоторое число сосудов, например в десять сосудов. Разливать мы будем пиво совершенно произвольным образом, предоставляя случаю определить, сколько попадет в каждый сосуд. Измерим, сколько пива ока
107
залось в каждом сосуде, и потом выльем его обратно в бочонок. Повторим такую операцию некоторое большое число раз. Если пиво не состоит из неделимых частей, среднее количество пива в каждом сосуде будет одно и то же для всех этих сосудов. Если же пиво состоит из неделимых частей, между сосудами появятся различия в среднем количестве пива. Представим себе в качестве крайнего случая, что бочонок содержит только одну неделимую порцию пива. Тогда вся эта порция будет вылита каждый раз только в один сосуд и различие между содержимым сосудов будет наибольшим: в одном сосуде окажется все пиво из бочонка, остальные сосуды останутся пустыми. Если бочонок состоит из двух, трех и так далее неделимых порций, отклонения от среднего значения станут все меньше. Таким образом, по величине отклонений от среднего значения, т.е. по величине флюктуаций, можно судить о величине неделимых порций пива.
1 См.: Frank, 72.
Перейдем теперь к изучению электромагнитных волн. Пусть они заполняют ограниченный стенками "бочонок" - некоторый объем пространства, состоящий из отдельных клеток. Можно ли разделить энергию этих волн на сколь угодно большое число частей или мы натолкнемся на неделимые далее "порции"? И если излученное электромагнитное поле дискретно, то какова величина его наименьших "порций"?
На эти вопросы можно ответить, измеряя отклонения количества энергии в клетках от среднего значения - вариации этого количества при переходе от одной клетки к другой. Если минимальные "порции" велики, то и вариации велики; если "порции" малы, то и вариации малы.
Измерения дают следующий результат. В фиолетовом свете (более высокие частоты электромагнитных колебаний), заполняющем некоторый объем, мы встречаемся со сравнительно большими вариациями количеств энергии в различных клетках. В красном свете (менее высокие частоты колебаний) флюктуации количества энергии, т.е. вариации при переходе из одной клетки в другую, меньше. Отсюда следует, что фиолетовый свет (колебания с большей частотой) состоит из более крупных неделимых порций энергии, чем красный свет (колебания с меньшей частотой).
108
По этому можно судить, что "пиво не только продается пинтовыми бутылками, но и состоит из пинтовых порций", - свет состоит из неделимых частиц; он не только поглощается и излучается неделимыми частями, но и в промежутке между излучением и поглощением состоит из неделимых частиц, несущих больше энергии, если частота электромагнитных колебаний больше. Энергия частиц (квантов) света - фотонов - пропорциональна частоте и для определенного (монохроматического) света представляет определенную величину.
Корпускулярная структура света, существование фотонов демонстрируется самым непреложным образом в ряде экспериментов. Особенно отчетливо и убедительно существование фотонов выводится из явлений фотоэлектрического эффекта. Эти явления состоят в появлении электрического тока под действием света. Попадая на металлическую пластинку, свет вырывает из нее электроны, движение этих электронов создает электрический ток.
Представим себе некоторый источник света, т.е. излучатель электромагнитных волн. По мере того как волна расходится во все стороны, плотность энергии на фронте волны уменьшается. Но при этом энергия выбитых с пластинки электронов не уменьшается. Каждый выбитый электрон обладает той же энергией, уменьшается лишь число таких электронов. Пусть излученная энергия как раз такая, какая нужна, чтобы выбить электрон из пластинки. Эксперимент показывает, что в этом случае свет может вырвать электрон из пластинки, т.е. даст фотоэлектрический эффект на большом расстоянии от источника. По замечанию Крамерса, дело происходит так, как будто с корабля в воду прыгнул матрос, а энергия волны, разошедшейся по поверхности моря после всплеска воды, дошла бы до другого края моря и здесь выбросила такого же купающегося матроса на палубу его корабля.
Итак, из теории фотоэлектрического эффекта следует, что энергия, затраченная на освобождение одного электрона, не зависит от расстояния между металлической пластинкой и источником света. Она зависит от частоты электромагнитных колебаний. В каждом случае выбитый электрон получает всю необходимую для его освобождения энергию, по чем дальше расстояние, тем таких электронов меньше. Такая закономерность, заключил Эйнштейн, соответствует картине отдельных частиц, разле
109
тающихся во все стороны от источника света. Чем дальше от источника, тем меньше в среднем будет таких частиц в единице объема, тем меньше вероятность встречи с частицей света в каждой точке пространства, но если мы встретились с этой частицей, ее энергия одна и та же на любом расстоянии от источника, она зависит только от частоты колебаний. Но о каких, собственно, колебаниях идет речь, если свет состоит из частиц? Здесь мы сталкиваемся с самой тяжелой апорией физики XX в., содержащейся в выдвинутой Эйнштейном теории световых квантов.
Существование электромагнитных волн и волновая природа света не могут быть опровергнуты. Вместе с тем нельзя опровергнуть корпускулярную природу света - тот факт, что свет состоит из фотонов. Необъяснимое противоречие вошло в науку, и лишь через двадцать лет физической мысли удалось найти некоторое объяснение указанного противоречия.
Это противоречие, это парадоксальное соединение волновых и корпускулярных свойств света очень характерно для научных идей Эйнштейна. Эйнштейн ни на минуту не сомневается в том, что свет действительно обладает волновыми и корпускулярными свойствами. Он не хочет обойти парадокс, опрокидывающий и классическое представление о частицах, не обладающих волновыми свойствами, и классическое представление о волнах, которые никак не обладают корпускулярной природой.
В том же томе "Annalen der Physik", где была напечатана статья о световых квантах, было, как нам уже известно, напечатано первое изложение теории относительности Эйнштейна. Там описывалась, быть может, еще более парадоксальная ситуация: свет распространяется с одной и той же скоростью по отношению к телам, которые сами движутся, одно относительно другого. Можно провести дальше идущую аналогию: в обеих теориях, и в теории фотонов и теории относительности, Эйнштейн описывает парадоксальные ситуации в физике отнюдь не как внешний феноменологический результат непарадоксальных процессов. Как мы увидим дальше, существовала теория, выдвинутая Лоренцем и объяснявшая постоянство скорости света как результат лежащих в основе явления непарадоксальных процессов. В квантовой теории также существовала такая тенденция. Планк думал, что
110
свет - чисто волновой процесс без каких-либо корпускулярных свойств, т.е. нечто вполне респектабельное в глазах классической физики, - дает дискретное значение энергии только при поглощении и излучении, в силу некоторого особенного механизма излучения и поглощения света. Здесь имеется известная аналогия между соотношением взглядов Эйнштейна и Лоренца, с одной стороны, и Эйнштейна и Планка, с другой. В обоих случаях Эйнштейна отличало не только содержание выдвинутых им физических идей, но и связанное с этим содержанием удивительное по силе чувство парадоксальности бытия или, что то же самое, достоверности, объективности и субстанциальности парадоксальных выводов, противоречащих и "очевидному" наблюдению, и "очевидной" логике. Теория фотонов с ее парадоксальным соединением исключающих друг друга волновых и корпускулярных свойств света в течение долгого времени не получала признания. В 1912 г. в представлении, подписанном крупнейшими немецкими физиками и в том числе Планком, об избрании Эйнштейна в Прусскую Академию наук говорилось о гипотезе световых квантов как о чем-то требующем извинений: "То, что он в своих рассуждениях иногда выходит за пределы цели, как, например, в своей гипотезе световых квантов, не следует слишком сильно ставить ему в упрек. Ибо, не решившись пойти на риск, нельзя осуществить истинно нового, даже в самом точном естествознании" [2].
2 Успехи физических наук, 1956. 59. вып. 1, с. 127.
Постоянство скорости света
Представим себе двух физиков, у каждого из которых лаборатория, снабженная всеми мыслимыми физическими аппаратами. Лаборатория одного из физиков находится в открытом поле, а лаборатория другого - в вагоне поезда, быстро несущегося в некотором направлении. Принцип относительности утверждает: два физика, применив все аппараты для изучения всех существующих в природе законов - один в неподвижной лаборатории, другой в вагоне, - найдут, что эти законы одни и те же, если вагон движется равномерно и без тряски. Если сказать в более абстрактной форме, то это выглядит так: согласно принципу относительности законы природы не зависит от переносного движения систем отсчета.
Эйнштейн
Эйнштейну было шестнадцать лет, когда он впервые задумался о том, с какой скоростью свет распространяется в различных, движущихся одна относительно другой системах отсчета. Тогда же, в Аарау, и впоследствии, в Цюрихе, за десять лет до создания теории относительности, Эйнштейн, стремясь нагляднее представить движение системы отсчета, мысленно рисовал движущиеся вместе с каким-то телом, прикрепленные к этому телу измерительные стержни, а также часы. Стержни и часы позволяют измерить положение каждого тела в каждое мгновение и определить его скорость. Таким образом, система отсчета рисовалась Эйнштейну в виде реального тела, к которому прикреплено начало координат, бесконечные координатные оси и множество сколь угодно длинных стержней, так что любое тело, где бы оно ни находилось в данный момент, совпадает по своему положению с определенными отметками на измерительных стержнях, т.е. имеет определенные координаты, причем "данный момент" один и тот же в каждой точке, ориентированной при помощи стержней, - мы можем сверить все находящиеся в этих точках часы. Чтобы не смешивать измерения, сделанные по отношению к данной системе отсчета,
112
с другими, отнесенными к иной системе отсчета, Эйнштейн представил себе человека, который движется вместе с системой и не видит никаких других систем. Он наблюдает только, совместились ли тела с отметками на измерительных стержнях данной системы отсчета. Этот "наблюдатель" фигурирует почти во всех изложениях теории относительности, но можно было бы обойтись и без него; он представляет собой столь же воображаемую фигуру, как и координатные оси и измерительные стержни, прибитые к движущемуся тепу и образующие движущуюся вместе с ним систему отсчета (систему отсчета, в которой это тело неподвижно). "Наблюдатели" так же мало затушевывают объективный смысл теории относительности, как выражение "если вы протянете веревку от Земли до Солнца..." ставит объективный факт - определенное расстояние между небесными телами - в зависимость от реальных или воображаемых измерений. Когда воображение рисует "наблюдателя", то появляется несколько неясный образ человека, привязанного к летящим в пространстве измерительным стержням и способного одновременно измерять положения тел при помощи этих бесчисленных и бесконечных по величине стержней. Этот образ может быть заменен менее точным, но более представимым образом пассажира в купе поезда с задернутыми занавесками на окнах или в каюте корабля (этой каютой пользовался, как мы помним, Галилей для демонстрации классического принципа относительности).
Представим себе корабль, движущийся с той же скоростью, что и волны на поверхности моря. Для находящегося на корабле "наблюдателя", т.е. для человека, который может измерить скорости только по отношению к кораблю, волны покажутся неподвижными. Не замечая ни неба, ни берегов, "наблюдатель" увидит как бы застывшую поверхность моря, он ничего не будет знать о движении волн - ведь они неподвижны по отношению к кораблю. Такие субъективные впечатления "наблюдателя" лишь условное выражение объективного факта: волны действительно неподвижны по отношению к системе отсчета, в которой неподвижен корабль (к системе, "привязанной" к кораблю).
113
Эйнштейна заинтересовал вопрос, сохранится ли неподвижность волн по отношению к кораблю (к системе отсчета, "привязанной" к кораблю, и к находящемуся на нем "наблюдателю"), если это будут не волны на водной поверхности, а электромагнитные волны, т.е. свет. Свет пробегает вдоль Земли со скоростью, приблизительно равной 300 000 километров в секунду. Пусть корабль движется по морю с такой же скоростью. Для "наблюдателя" на корабле свет имеет тогда нулевую скорость. Но в этом случае оптические процессы на корабле резко изменятся, например вспышка фонаря не осветит экрана, находящегося на носу корабля. Электромагнитное поле станет аналогичным застывшей поверхности моря, окружающей корабль, оно окажется переменным в пространстве, т.е. в пространство будут чередоваться гребни и впадины, но они не будут сдвигаться с течением времени. Такое изменение оптических процессов позволит "наблюдателю" зарегистрировать абсолютным образом движение системы. Вооруженный оптическими инструментами "наблюдатель" сможет отличить движущийся корабль от неподвижного. Но это противоречит теории Максвелла, в которой свет всегда представляет собой движущиеся электромагнитные волны. Противоречит это и интуитивному убеждению в невозможности зарегистрировать равномерное и прямолинейное движение при помощи внутренних эффектов в движущейся системе.
Об указанном парадоксе, овладевшем его мыслями в шестнадцать лет в Аарау, Эйнштейн говорит:
"Парадокс заключается в следующем. Если бы я стал двигаться вслед за лучом света со скоростью с (скорость света в пустоте), то я должен был бы воспринимать такой луч света как покоящееся, переменное в пространстве электромагнитное поле. Но ничего подобного не существует; это видно как на основании опыта, так и из уравнений Максвелла. Интуитивно мне казалось ясным с самого начала, что с точки зрения такого наблюдателя все должно совершаться по тем же законам, как и для наблюдателя, неподвижного относительно Земли. В самом деле, как же первый наблюдатель может знать или установить, что он находится в состоянии быстрого равномерного движения?" [1]
1 Эйнштейн, 4, 278.
По существу, указанный парадокс является конфликтом между двумя идеями классической механики, перенесенными в новую область электродинамических процессов.
Первая из них представляет собой классическое правило сложения скоростей. Если человек идет по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда он идет по направлению движения поезда, и со скоростью 50-5 = 45 километров в час, когда он идет в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55-50 = 5 километров в час. Если волны движутся относительно берега со скоростью 30 километров в час, а корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30-30 = 0 километров в час, т.е. они остаются неподвижными. Что же произойдет в случае электромагнитных волн? Сохранится ли здесь столь очевидное правило сложения скоростей?
Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущейся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, т.е. можем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе, то преобразования называются галилеевыми. Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками - разность между их координатами в одной инерциальной системе отсчета - всегда равно их расстоянию в другой инерциальной системе.
Вторая идея - принцип относительности. Находясь на корабле, движущемся равномерно и прямолинейно, нельзя обнаружить его движение какими-либо внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что то же самое, электродинамическим эффектам? Интуиция (довольно явным образом связанная с классическим принципом относительности)
115
говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определенной скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантной по отношению к галилеевым преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом, электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики - правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми. Непротиворечивая картина мира могла быть только парадоксальной, "безумной", т.е. отказывающейся от привычного и поэтому "очевидного" положения. От какого именно - от правила сложения скоростей или от принципа относительности, - это должен был решить эксперимент.