Наша первая попытка закончилась весьма плачевно: в слое IV были видны лишь слабые тени из нескольких зерен серебра. Только после нескольких недель мы осознали, что обратившись к наблюдению под микроскопом в условиях темного поля, можно извлечь выгоду из свойства зерен серебра рассеивать свет, благодаря чему чувствительность метода возрастет. Мы позаимствовали темнопольный конденсор, и когда взглянули на наш первый слайд в микроскоп, там в слое IV во всей своей красе сияли периодические структуры, выявленные метками (см. верхний рисунок на стр. 166).
   Следующим нашим шагом была попытка увидеть картину, так сказать, "в лицо", делая срезы коры параллельно поверхности. Кора обезьяны куполообразна, так что на срезе, параллельном поверхности и тангенциальном слою IV, этот слой выглядит как круг или овал, а на срезе, сделанном ниже слоя IV, его сечение представлено в виде кольца. Монтируя вместе серии таких овалов и колец из набора срезов, можно реконструировать картину на большой площади коры.
   Из такой реконструкции сразу стало очевидно, что общий план организации - это чередование параллельных полос, которые представляют окончания, принадлежащие глазу, подвергшемуся инъекции, и промежутков, которые представляют другой глаз. Полосы не так регулярны, как на обоях. (Время от времени мы напоминали себе, что это все-таки биология!) Тут и там полоса, представляющая один глаз, разветвляется на две полосы или кончается тупиком в точке, где ветвится полоса другого глаза. Нерегулярности наиболее обычны вблизи центра взора и вдоль линии, представляющей горизонт. Полосы по всей видимости всегда перпендикулярны к границе между первичной зрительной корой и ее соседом - полем 18, и здесь регулярность наибольшая. Такое общее правило, по-видимому, применимо к мозгу всех макаков, хотя узоры варьируют от одного индивидуума к другому и даже у одной и той же обезьяны от одного полушария к другому.
   Гипотетическая картина корковой активности, которая может быть результатом стимуляции левого глаза одним коротким отрезком горизонтальной линии, помешенным в верхнем левом квадранте поля зрения, показана цветными штрихами на схеме участка правой коры, рассматриваемой в фас. Область, в которую поступают входные сигналы от объекта в поле зрения, обведена пунктирной черной линией. Если колонки глазодоминантности и ориентационные колонки расположены так, как это здесь изображено, из всех клеток активируются те, которые оптимально реагируют на приблизительно горизонтальные стимулы, предъявляемые левому глазу.
   Ширина комплекта из двух полос постоянна, около 0,8 мм, по всей первичной зрительной коре, что еще раз подчеркивает однородность коры. Опять же эта ширина прекрасно согласуется с той идеей, что в пределах одного квадратного миллиметра коры должны содержаться все механизмы, необходимые для "присмотра" за областью, размером с агрегатное поле. Два описанных выше метода - применение меченой дезоксиглюкозы и транспорт аминокислоты, имеют огромное достоинство в том отношении, что они взаимно совместимы, в связи с чем мы можем применять их одновременно, один - для картирования ориентационных полос, а другой - для выявления колонок глазодоминантности. Число препаратов мозга, исследованных к настоящему времени, слишком мало, для того чтобы можно было сделать те или иные окончательные выводы, но пока эти две системы полос кажутся совершенно независимыми; они и не параллельны, и не перпендикулярны, а пересекаются случайным образом.
   Функция, выполняемая колонками глазодоминантности, пока остается тайной. Мы знаем, что нейроны со всеми градациями предпочтения глаза имеются по всей бинокулярной части поля зрения, и возможно, что некоторая регулярная упорядоченная система конвергенции входов гарантирует однородность распределения, благодаря чему ни один глаз не окажется случайно выделенным ни в одном месте. Зачем нужны повсеместно все эти градации предпочтения глаза, само по себе неясно; мы можем только догадываться, что это имеет какое-то отношение к восприятию глубины.
   Если собрать вместе все, что стало известно о первичной зрительной коре, будет ясно, что элементарным участком коры нужно считать блок площадью примерно в квадратный миллиметр и глубиной два миллиметра. Знать организацию такого кусочка ткани - это значит знать организацию всего поля 17; целое должно быть в значительной степени простым повторением этой элементарной единицы. Конечно, данную элементарную единицу не следует рассматривать как отдельный изолированный блок. С чего начинать отсчет ориентационных колонок - с колонки, представляющей вертикальную ориентацию, или наклонную или горизонтальную, - совершенно безразлично; точно так же все равно, с какой пары начинать последовательность полос глазодоминантности: левый глаз - правый глаз или правый глаз - левый глаз. Это же справедливо для любой ячейки кристалла хлористого натрия и для любого сложного повторяющегося узора типа тех, какие печатают на обоях.
   На что же тогда становится похожей зрительная картина, когда она проецируется на зрительную кору? Предположим, что животное фиксирует свой взгляд на некоторой точке и что единственный объект в поле зрения - прямая линия выше и чуть левее той точки, к которой прикован взгляд. Если бы каждая активная клетка должна была загораться и если бы мы могли стоять над корой и смотреть на нее сверху, какую картину мы бы увидели? Чтобы сделать задачу более интересной, предположим, что картина рассматривается только одним глазом. Ввиду только что описанной архитектоники объект предстанет не в виде линии, а всего лишь в виде набора регулярно расположенных обрывков. Это рассуждение можно проверить непосредственно, если предъявлять обезьяне, у которой один глаз закрыт, набор вертикальных полос, а затем, применив дезоксиглюкозу, изготовить радиоавтограф. Полученная картина не будет большим сюрпризом: это будет набор регулярно расположенных пятен, который будет отражать пересечение двух систем колонок. Вообразите удивление и замешательство маленького гномика, если бы он увидел такую версию внешнего мира!
   Реальный образец активности коры, которая была вызвана предъявлением одному левому глазу решетки из вертикальных полос. Полученный с помощью дезоксиглюкозы радиоавтограф тангенциального среза верхних слоев коры. Картина регулярно расположенных темных участков радиоактивности отражает пересечение систем колонок глазодоминантности и предпочтительной ориентации.
   Почему эволюция пришла к тому, чтобы взять на себя труд изобрести столь сложную схему, - это вопрос, который продолжает волновать нас. Возможно, самое подходящее объяснение состоит в том, что системы колонок - это решение проблемы отображения более двух измерений на двумерной поверхности. Кора имеет дело по крайней мере с четырьмя наборами значений: двумя для х и у-координат в поле зрения, одним - для ориентации и одним - для различных степеней предпочтения глаза. Две координаты точек на поверхности коры используются для указания позиции поля; две другие переменные удалось разместить в коре благодаря ее подразделению на столь мелкие участки, что, пробежав весь набор ориентации или степеней предпочтения глаза, мы будем иметь лишь такой сдвиг позиций в поле зрения, который будет мал по сравнению с разрешающей силой в этой части зрительного мира. Стратегия членения коры на мелкие вертикальные подразделения явно не ограничена первичной зрительной зоной. Такие подразделения впервые были обнаружены в соматосенсорной области В. Маунткаслом (V. Mountcastle) из Медицинской школы Университета Джонса Гопкинса примерно за 10 лет до нашей работы на зрительной коре. В соматосенсорной области, как мы указывали выше, в основе топографии лежит картирование противоположной половины тела, но сверх этого имеется еще двойная система подразделений, так что есть области, где нейроны реагируют на движение суставов или давление на кожу, и другие области, где нейроны реагируют на прикосновение или отклонение волосков. Как и в случае зрительных колонок, полный комплект (набор нейронов всех типов) занимает здесь место протяженностью около миллиметра. Эти подразделения аналогичны колонкам глазодоминантности в том отношении, что они определяются в первую очередь распределением волокон при входе в кору (там - от левого и правого глаза, здесь - от глубоко расположенных рецепторов и от рецепторов верхних слоев кожи), а не связями внутри коры, типа тех, которые определяют предпочтение ориентации и связанную с этим систему ориентационных колонок. Смысл колонок, обнаруженных в первичной зрительной и соматосенсорной коре, истолкован лучше всего, однако имеются указания на наличие сходных вертикальных подразделений и в некоторых других зонах: ряде высших зрительных областей, сенсорных теменных областях, недавно изученных Маунткаслом, и в слуховой зоне, где Т. Имиг (Т. Imig), X. Эдриен (Н. Adrian) и Дж. Брадж (J. Brugge) из Медицинской школы Висконсинского университета нашли подразделения, в которых два уха представляются попеременно то суммирующими идущую от них информацию, то конкурирующими.
   Для большинства из этих физиологически установленных систем (кроме зрительных) до настоящего времени неизвестно анатомических коррелятов. С другой стороны, в последние годы несколько анатомов, в особенности Э. Джонс (Е. Jones) из Медицинской школы Вашингтонского университета, а также Наута (Nauta) и П. Голдмен (P. Goldmen) из Массачусетского технологического института показали, что пути из одной зоны коры в другую (например, из соматосенсорной зоны одной стороны в соответствующую зону на другой стороне) оканчиваются в участках, имеющих правильные чередования с периодом около миллиметра. Здесь колонки видны морфологически, но нет никакой идеи относительно их физиологической интерпретации. Ясно, однако, что тонкие периодические подразделения - действительно общая черта коры мозга. Таким образом, можно сказать, что первое наблюдение Маунткаслом такого свойства способствовало четвертому глубокому прозрению относительно организации коры.
   Конечно, было бы неверно считать, что данное рассмотрение зрительной коры в какой-то степени исчерпывает предмет. Кора, по-видимому, имеет дело и с цветом, и с движением, и со стереоскопической глубиной, но в какой степени и каким образом - пока неясно. Из наших работ, относящихся к восприятию глубины, и из работ по цветовому зрению, выполненных С. Зеки (S. Zeki) из Лондонского университетского колледжа, можно заключить, что высшие кортикальные зрительные зоны, в которые первичная кора проецируется непосредственно или обходным путем, могут быть специализированы для обработки соответствующих параметров, но мы еще очень далеки от понимания того, в чем заключается эта обработка.
   Что делается за пределами первичной зрительной коры и как информация об ориентации используется на последующих стадиях? Нужно ли думать, что в конечном счете обнаружится клетка, специфически реагирующая лишь на некоторый очень определенный объект? (Обычно в качестве такого объекта выбирают чью-то бабушку по причинам, которые мы уяснить не можем.) Наш ответ состоит в том, что мы сомневаемся в существовании таких клеток, но мы не можем предложить взамен ничего хорошего. К счастью, широкие спекуляции на тему о том, каким образом мозг мог бы работать, это не единственный путь, открытый исследователями. Изучать мозг - это более увлекательное и, кажется, более полезное занятие.
   Было время, и не так давно, когда, глядя на миллионы нейронов в различных слоях коры, можно было сомневаться в том, что у кого-нибудь когда-нибудь может возникнуть хоть какая-нибудь идея относительно их функции. Работают ли все они параллельно, как клетки печени или почки, выполняя свои функции сообща, или каждый из них делает что-то свое, особое? Для зрительной коры ответ представляется теперь в общем плане известным: нейроны возбуждаются или тормозятся специфическими стимулами; группы нейронов действительно выполняют специальные преобразования. Если окажется возможным разгадать секреты нескольких подобных областей, будет резонно полагать, что и другие области со временем также раскроют свои тайны.
   Э. ЭВАРТС
   Механизмы головного мозга, управляющие движением
   Как головной и спинной мозг управляют движениями тела? Мозг не только посылает команды мышцам, но и получает по обратной связи сигналы, которые помогают ему согласовывать эти команды
   Одно из первых сведений, полученных более ста лет назад, об управлении движением со стороны головного мозга состояло в том, что движения тела могут быть вызваны сигналами, приходящими в спинной мозг из специальной области головного мозга - моторной зоны коры больших полушарий. Движения имеют широкий диапазон - от мышечных координации, требуемых для грубой ручной работы или быстрого перемещения всего тела, до тонких движений пальцев при хирургических операциях, выполняемых под микроскопом.
   Три белые "тени" на микрофотографии представляют собой метки, специально созданные, чтобы облегчить исследование важного аспекта связи между головным мозгом и движением, а именно химизма мышечного сокращения, следующего за импульсацией мотонейрона. На микрофотографии показан поперечный срез одной из мышц конечности кошки. "Тени" образованы отдельными мышечными волокнами в одной двигательной единице. Предварительное изучение этой единицы показало, что она относится к "медленной" мышце, т. е. такого рода мышце, которая развивает небольшую силу, но функционирует не утомляясь. Эти три волокна превратились в метки в результате длительной стимуляции мотонейрона, который управляет их сокращениями, что привело к истощению запаса гликогена - особой формы хранения глюкозы, которая служит источником энергии для работы мышцы. При окрашивании среза все мышечные волокна с нормальным содержанием гликогена стали розовыми. На следующих рисунках показаны другие срезы той же мышцы с теми же тремя метками. Они были окрашены, чтобы определить связь между химическими и механическими свойствами мышечных волокон. Микрофотографии получены Р. Берком (R. Burke) и П. Церисом (P. Tsairis) в Национальных институтах здравоохранения.
   Эта выходная активность моторной коры сама является результатом сигналов, поступающих из других пунктов - не только от других областей коры, например тактильной, но и от подкорковых структур мозжечка и базальных ганглиев, которые посылают сигналы в моторную кору еще через одно подкорковое образование - таламус. Основная часть современных исследований мозговых механизмов движения направлена на лучшее понимание того, как сигналы, приходящие от различных корковых и подкорковых структур, объединяются в контроле над конечными выходами из моторной коры к спинному мозгу и оттуда к мышцам. В настоящей статье будет рассмотрен современный уровень наших знаний, которые имеют важное значение по двум причинам. Во-первых, они связаны с фундаментальными проблемами общей организации головного мозга. Во-вторых, они имеют отношение к лечению и, возможно, к предупреждению таких неврологических заболеваний, как болезнь Паркинсона и хорея Гентингтона (две болезни из числа тех, при которых затронуты базальные ганглии), различные проявления инсульта, рассеянного склероза, а также многих других нарушений, возникающих при повреждении мозжечка.
   Каковы элементарные условия для выполнения движения? Первое - это мышца, второе - это сигнализирующая система, которая вызывает упорядоченное сокращение мышцы. Если начать с мышц, то надо сказать, что не все они работают одинаково. Рассмотрим мышцы глаза и руки у человека. Глазные мышцы должны работать с высокой скоростью и большой точностью, быстро ориентируя глазное яблоко в пределах нескольких дуговых минут. В то же время глазной мышце не приходится справляться с такими внешними задачами, как поднимание груза. Тонкое управление, требуемое при движении глаза, требует высокого иннервационного индекса - отношения числа нейронов, аксоны которых оканчиваются на наружной мембране мышечных клеток, к числу мышечных клеток.
   Для глазной мышцы иннервационный индекс составляет 1:3; это значит, что аксонные окончания одного мотонейрона выделяют свой медиатор не более чем на три отдельные мышечные клетки. (Мотонейрон - это такой нейрон, тело которого лежит в спинном мозгу, а аксон оканчивается на мембране мышечной клетки.) По-иному обстоит дело с мышцами руки: аксонные окончания одного мотонейрона, например иннервирующего бицепс, могут действовать своим медиатором на сотни мышечных волокон, и поэтому у такой мышцы иннервационный индекс составляет всего 1:100. В результате действие одной двигательной единицы мышцы конечности - одно быстрое сокращение (twitch), возникающее под влиянием одного импульса, вызывающего выделение медиатора из окончаний одного мотонейрона, - соответственно оказывается грубым.
   Двигательные единицы мышц различаются также по тому, насколько они подвержены утомлению. На одном конце шкалы лежат двигательные единицы медленного сокращения, способные длительно функционировать без утомления. Такие единицы могут быть активными в течение длительного времени, но развивают сравнительно небольшое мышечное напряжение. На другом конце шкалы находятся двигательные единицы быстрого сокращения; они могут создавать высокие пики мышечного напряжения, но быстро утомляются. Такие единицы обычно иннервируются мотонейронами с диаметром аксонов и скоростью проведения нервного импульса выше средних.
   В одной и той же мышце содержатся волокна и быстрых и медленных двигательных единиц. В 1968 г. шведские исследователи Э. Кугельберг (Е. Kugelberg) и Л. Эдстром (L. Edstrom) нашли способ определять, какие отдельные моторные волокна относятся к данной двигательной единице. Длительной стимуляцией аксона одного мотонейрона эти исследователи вызывали продолжительное сокращение мышечных волокон одной двигательной единицы. Сокращение приводило к истощению в отдельных мышечных волокнах запаса гликогена, который является источником энергии. При специальном окрашивании ткани на гликоген волокна истощенной двигательной единицы принимали вид белых "теней", рассеянных среди розовых волокон с нормальным запасом гликогена.
   Такой гистохимический эффект представляет собой демонстрацию биохимической реакции в живой микроанатомической структуре. Так, применив подход Кугельберга и Эдстрома, Р. Берк (R. Burke) с сотрудниками из Национальных институтов здравоохранения показал с помощью гистохимического окрашивания, что "быстрые" мышечные единицы, используя в качестве источника энергии аденозинтрифосфат (АТФ), расщепляют его ферментативным путем быстрее, чем это происходит в "медленных" двигательных единицах. Это ферментативное расщепление считается одним из важных факторов, определяющих присущую мышце скорость сокращения. Таким образом, гистохимические данные помогают объяснить различия в скорости сокращения. Равным образом, гистохимическое исследование других ферментов - тех, которые расщепляют сахара и жиры, - помогает объяснить весьма существенные различия в утомляемости между двумя видами двигательных единиц.
   Каково значение этих противоположных свойств двигательных единиц для организации движения? Посмотрим, как двигательные единицы мышцы последовательно "вовлекаются" в процесс движения. В общем мышечное напряжение регулируется двумя путями. Первый состоит в контроле над числом двигательных единиц, вовлекаемых в активность. Второй - в регуляции частоты импульсации вовлеченных единиц. Первыми вовлекаются единицы медленного сокращения, не склонные к утомлению и развивающие сравнительно слабое напряжение. Последними вовлекаются двигательные единицы быстрого сокращения, т. е. те, которые дают высокие пики напряжения, но быстро утомляются.
   Второй срез той же мышцы был окрашен для определения относительной способности мышечных белков расщеплять аденозинтрифосфат (АТФ). Темная окраска свидетельствует о более высокой расщепляющей активности. Три волокна-метки очень слабо окрашены (схема справа); такая низкая активность характерна для медленных мышечных волокон.
   Третий срез окрашен, чтобы показать способность мышечных белков расщеплять АТФ после их предварительной обработки кислотой. Обратное соотношение интенсивности окраски по сравнению со вторым срезом дает дальнейшие сведения о химизме мышечного волокна.
   Четвертый срез был окрашен, чтобы показать относительную способность мышечных волокон к окислительному метаболизму, определяемому по наличию ключевого фермента в митохондриях клетки. Три волокна медленной двигательной единицы (см. схему) находятся среди интенсивно окрашенных волокон; картина согласуется с представлением о меньшей утомляемости таких двигательных единиц.
   Э. Хеннемен (Е. Henneman) из Гарвардской медицинской школы внес важный вклад в общее понимание порядка вовлечения в активность отдельных двигательных единиц. Он отметил, что напряжение мелких мышц создается и точно контролируется избирательной мобилизацией разного числа мелких двигательных единиц. Между мелкими и более крупными единицами существует немалая разница. Например, самая крупная двигательная единица в икроножной мышце человека развивает напряжение в 200 раз больше, чем самая мелкая. Когда требуется общее усиление работы мышц, то, как установил Хеннемен, в активность вовлекаются более крупные двигательные единицы, что создает большие элементарные приросты напряжения. Это означает, что по мере увеличения общего напряжения оно создается меньшим числом дополнительных единиц. Разумеется, когда обстоятельства требуют резкого повышения общего напряжения мышцы, двигательные единицы вовлекаются не последовательно, а активируются практически одновременно.
   Так обстоит дело с разными видами мышц и их двигательными единицами. Теперь посмотрим, что заставляет эти единицы сокращаться. Мышечные сокращения совершаются благодаря тому, что медиатор ацетилхолин, который выделяется в нервно-мышечном соединении при каждом импульсе, исходящем от мотонейрона, способен вызвать импульс в мышечной клетке. Блокирование передачи на уровне соединения, например при помощи алкалоида кураре, препятствует мышечному сокращению. Такую блокаду воспроизводили и у людей. Испытуемым вводили кураре в условиях искусственного дыхания. Во время паралича, вызванного кураре, выделение ацетилхолина аксонами мотонейронов продолжается, но блокируется взаимодействие медиатора с соответствующими рецепторами на мембране мышечной клетки; в результате мышцы перестают реагировать на команды, поступающие от коры больших полушарий. Испытуемые продолжали мыслить и чувствовать, но внешние проявления деятельности мозга исчезали. Речь, выражение лица, способность направлять взор - все эти формы поведения зависят от сокращения мышц.
   Головной мозг макака, вид сверху. Помечены разные участки моторной коры больших полушарий. Окрашенная полоса обозначает ту часть мозга, которая удалена, чтобы показать подкорковые структуры на соседнем рисунке.
   Многие современные представления о механизмах движения возникли на основе трудов английского физиолога Шеррингтона, который в начале века занимался изучением функции мотонейронов в некоторых рефлекторных формах двигательной активности, таких, как чесание и ходьба. Сигналы, идущие от многих различных областей головного мозга, часто воздействуют на несколько одних и тех же мотонейронов спинного мозга. Установив этот факт, Шеррингтон охарактеризовал мотонейроны как "общий конечный путь", связывающий головной мозг с мышечным актом. Он изучал движение мышц у животных после перерезки спинного мозга, т.е. после нарушения связи мотонейронов с головным мозгом.
   Головной мозг макака, вид сзади. Сектор, величиной 90°, удален, чтобы показать некоторые детали подкорковых структур. Цветная пунктирная линия окружает базальные ганглии левого полушария - части стриатума,скорлупу и хвостатое ядро, а также смежный с ними бледный шар. Ближе к средней линии лежит левый таламус, а по обе стороны от средней линии - правая половина мозжечка, так что видны его внутренние части - зубчатое ядро и ядро шатра. Моторная область коры больших полушарий (окрашена) - филогенетически более поздняя структура по сравнению с базальными ганглиями и мозжечком. Проводимые в настоящее время исследования показывают, что импульсация нейронов моторной коры вызывается сигналами, приходящими в нее через таламус от филогенетически более древних подкорковых структур.
   Шеррингтон установил, что через несколько месяцев после такой перерезки у собаки удавались вызвать чесательный рефлекс механическими стимулами щекотанием кожи или легким потягиванием за волосок где-нибудь на обширной поверхности спины. Описывая эти реакции, он указал, что такие движения "происходили без видимого нарушения направления или ритма". Работа Шеррингтона по чесательному рефлексу привела к современной концепции о "запускаемом движении", основанной на представлении о "центральной программе" с участием спинального генератора ритма. Вскоре после Шеррингтона другой английский физиолог Г. Браун (G. Brown) показал, что у собак, лишенных связей между головным и спинным мозгом, возможны также ритмические движения конечностей, подобные тем, какие происходят при ходьбе. Очевидно, для ходьбы, так же как и для чесания, существуют спинальные генераторы ритма.